Award Number: W81XWH-07-1-0053

TITLE: Interactions between IGFBP-3 and Nuclear Receptors in Prostate Cancer Apoptosis

PRINCIPAL INVESTIGATOR: Kuk-Wha Lee, M.D.; Ph.D.

CONTRACTING ORGANIZATION: University of California Los Angeles
Los Angeles, CA, 90095

REPORT DATE: January 2008

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Interactions Between IGFBP-3 and Nuclear Receptors in Prostate Cancer Apoptosis

Kuk-Wha Lee, M.D.; Ph.D.

E-Mail: kukwhalee@mednet.ucla.edu

University of California Los Angeles
Los Angeles, CA 90095

IGFBP-3 is a potent inducer of apoptosis in both androgen-dependent and androgen-independent prostate cancer lines. When the nuclear receptor RXRalpha was described as an unexpected intracellular binding partner for IGFBP-3 and effects on DNA transcription were demonstrated, rapid effects of IGFBP-3 on programmed cell death (apoptosis) still could not be explained. These rapid effects on apoptosis were clarified when I hypothesized that IGFBP-3 was a biological signal for Nur77 nuclear receptor translocation to the mitochondria where an apoptotic cascade is initiated. We proposed to determine scientifically the protein regions in each of these important cell death molecules that are essential for apoptotic action and demonstrate this observation with mouse models. Our data so far reveal a nuclear export sequence in IGFBP-3. Mutation of this sequence impairs its apoptotic activity. Utilizing the IGFBP-3 KO mouse, we show that IGFBP-3’s critical role in castration-induced apoptosis. Mating studies are underway to determine the effects of genetically deleting Nur77 and IGFBP-3 in the ontogeny of prostate cancer.

IGFBP-3, apoptosis, prostate cancer, nuclear receptors

Approved for Public Release; Distribution Unlimited
Introduction
Prostate Cancer (CaP) continues to be the most frequently occurring malignancy (aside from skin cancers), found in American men. IGFBP-3 is a potent inducer of apoptosis in both androgen-dependent and androgen-independent prostate cancer lines. When the nuclear receptor RXRalpha was described as an unexpected intracellular binding partner for IGFBP-3 and effects on DNA transcription were demonstrated, rapid effects of IGFBP-3 on programmed cell death (apoptosis) still could not be explained. These rapid effects on apoptosis were clarified when I hypothesized that IGFBP-3 was a biological signal for Nur77 nuclear receptor translocation to the mitochondria where an apoptotic cascade is initiated. This project will determine scientifically the protein regions in each of these important cell death molecules that essential for apoptotic action and demonstrate this observation with mouse models. The innovative aspects of this grant include: (1) Characterization of a novel interface (i.e. mitochondrial localization) of nuclear receptor / IGFBP superfamilies in the initiation of tumor programmed cell death; (2) Development of pre-clinical mouse models of prostate cancer that can be used to assess therapies that exploit the IGFBP-3:Nur77:RXR cell death pathway; and (3) provide a compelling rationale for Phase I studies of IGFBP-3 (or small molecule mimetics of this pathway) in men with prostate cancer.
Task 1. Characterize IGFBP-3 protein-protein interactions and mitochondrial targeting in vitro and demonstrate that they are essential for IGFBP-3 induced apoptosis.

a. Confirm IGFBP-3/RXR/Nur77 ternary complex formation via protein-protein interaction studies. (Months 1-6)

We have established association as published in our Carcinogenesis paper (appendix #1). We investigated the ability of IGFBP-3 to associate with Nur77 in nuclear and cytoplasmic compartments utilizing co-immunoprecipitation techniques. 22RV1 prostate cancer cells were incubated with 1 mcg/ml of recombinant IGFBP-3 for 2 hours and nuclear and cytoplasmic fractions were isolated as indicated. Protein A-agarose was used to immunoprecipitate bound complexes and these were resolved by SDS-PAGE.

Western immunoblotting (Fig. 1) showed that endogenous IGFBP-3 associates with Nur77 in both nuclear and cytoplasmic fractions that is largely unchanged by the addition of exogenous IGFBP-3. Association of Nur77 with control precipitating antibody was not detected. Moreover, detection of IGFBP-3:IGFBP-3 complexes was revealed suggesting that IGFBP-3 can form oligomeric complexes in subcellular compartments. Non-glycosylated IGFBP-3 in this short incubation period was targeted to the nucleus, consistent with our previous observations.

To further study the functional interface of IGFBP-3 and Nur77,
we derived Nur77 null (Nur77^{−/−}) embryonic fibroblast cells (MEFs) from the Nur77^{−/−} knockout mouse. Using these Nur77 null MEFs, we tested the ability of IGFBP-3 to induce apoptosis (Fig. 2A).

Overnight treatment with IGFBP-3 resulted in a 60% increase in apoptosis as measured by fluorometric measurement of caspase 3/7 activation in fibroblasts derived from the wild-type animal, but was not able to induce further caspase activation in the line derived from the Nur77^{−/−} knockout animal. The phenomenon was specific to IGFBP-3 induced apoptosis as caspase activation induced by 2% dimethylsulfoxide (DMSO) was not different in WT versus knockout MEFs (Fig. 2B). Thus, Nur77 mediates the pro-apoptotic effect of IGFBP-3.

To more closely examine the role of Nur77 in IGFBP-3 induced apoptosis, we treated Nur77 KO and WT MEFs with increasing doses of recombinant IGFBP-3 that ranged from 1–10 µg/ml over 12 hours (Fig. 3). As expected from the former experiment, IGFBP-3 significantly induced apoptosis in a dose-dependent manner.

Surprisingly, IGFBP-3 also significantly induced caspase activation in the KO line in a dose-dependent manner, although this was minimal when compared to the WT line. However, this does suggest that a small portion of IGFBP-3 induced caspase activation may be Nur77-independent, although the functional relevance of this is currently unknown.

To validate our findings of Nur77 as a mediator of IGFBP-3 action, we reintroduced Nur77 by transient transfection, with and without co-expression of IGFBP-3. Overexpression of IGFBP-3 alone did not induce caspase activation. Overexpression of Nur77 alone did induce apoptosis activation consistent with previous reports. Reintroduction of Nur77 via transient transfection restored responsiveness to IGFBP-3 overexpression in the Nur77 knockout line (Fig. 4). Thus, rescue of IGFBP-3 induced apoptosis in WT MEFs in a dose-dependent manner.
apoptosis was associated with restoration of Nur77 expression.

Nur77 is phosphorylated by Jun N-terminal kinase (JNK) and by Akt. This phosphorylation is required for its nuclear export and involves JNK activation (phosphorylation) and inhibition of Akt phosphorylation. We investigated the effect of IGFBP-3 treatment of cancer cells on JNK phosphorylation and Akt phosphorylation and activation. (Figure 5) A, Western immunoblot for phospho and total Akt; also for phospho and total JNK. B, Akt kinase assay as assessed by phosphorylation of a GSK-3 fusion protein after immunoprecipitation of Akt. Experiments were repeated three times. Treatment with 1 mcg/ml of IGFBP-3 activated JNK in 22RV1 prostate cancer cells. Associated with this is a significant reduction in phosphorylated Akt and Akt activity as evidence by an Akt kinase assay.

Figure 5. IGFBP-3 induces phosphorylation of c-Jun N-terminal kinase and suppression of Akt phosphorylation and activity.

Figure 6. IGFBP-3-induced apoptosis involves translocation of Nur77 in CaP xenografts in vivo. (A) Cross-sectioned LAPC-4 tumors stained with anti-Nur77 (100X, oil immersion). Diaminobenzidine (DAB) was used as a chromogen (dark brown), and commercial hematoxylin was used for counterstaining (blue nuclei). Note predominant nuclear Nur77 staining in control tumor versus empty blue nuclei in the IGFBP-3-treated tumor. Top panel is 40X magnification; lower panel is 100X magnification (oil immersion). Arrows indicate nuclei in which Nur77 is intra-nuclearly stained or translocated to the mitochondria. Control immunohistochemistry shows competition of signal by blocking peptide, as well as lack of binding of secondary antibody. (B) Quantitation of TUNEL staining was used as a measure of apoptosis. TUNEL staining was quantitated by pixel histogram as indicated in bar graph. **P<0.005 relative to control treatment.
To determine the effect of IGFBP-3 on Nur77 translocation and apoptosis in vivo, we utilized LAPC-4 cells in Matrigel to create human CaP xenografts on SCID mice. Accordingly, cells were injected and tumors established for 2 weeks. At that time, IGFBP-3 or saline was given as a daily injection at a dose of 4 mg/kg/d intraperitoneally (IP) for 21 days, after which mice were euthanized. Tumor sections were stained with a Nur77 antibody to assess subcellular localization in response to IGFBP-3 as well as subjected to TUNEL staining as a marker for apoptosis. Consistent with our in vitro data, Nur77 exhibited a predominantly nuclear staining pattern in the rapidly growing control tumors (Fig. 6A, upper panels). Treatment with IGFBP-3 resulted in predominantly cytoplasmic staining of Nur77 with hematoxylin-counterstained nuclei prominent (Fig. 6A, lower panels). Associated with this was a marked significant increase in staining for TUNEL as a marker of apoptosis (Fig. 6B). In concert, these data support a novel extra-nuclear mechanistic role for the orphan receptor Nur77 in mediating the apoptotic actions of IGFBP-3 in vitro and in vivo.

b. Validate a putative nuclear export sequence (NES) in IGFBP-3. (Months 7-9).
We have successfully created the NES sequence mutants via 2 round PCR, and are characterizing the response to Leptomycin B currently. Primers used were L224A_L227A, 5'-ggaagacacactgaatcagcgaagttcgcctaattgctgactctcccagg-3' and L224A_L227A_antisense 5'-cctgggactcagcacttggcgaacttccgctgattcagtcttcctcc-3'. Sequences have been verified.
c. **Delineate the mitochondrial targeting sequence (MTS) in IGFBP-3. (Months 7-9).**

We have constructed the MTS-deletion mutants of IGFBP-3 with FLAG fusions via PCR and are characterizing subcellular co-localization with organelle specific markers currently with various imaging techniques.

Fig. 7. Verification of the mitochondrial targeting sequence (MTS) mutant by sequencing.
d. **Assess the effects of mutant IGFBP-3 (NES and MTS) on apoptosis. (Months 9-12)**

We have begun to assess the effects of the NES and MTS mutants on apoptosis and show that mutation prevents efficient apoptosis by IGFBP-3. (Fig. 8)

Task 2. Define the role of the IGFBP-3/RXR/Nur77 apoptotic pathway in vivo in the TRAMP mouse model.

a. We will age the Nur77 KO and IGFBP-3 KO mice to determine if and when these mice develop prostatic pre-neoplastic lesions. (Months 1-18)

We have established cohorts and are currently aging them.

b. Examine the role of IGFBP-3 in apoptosis induced by androgen withdrawal by castration of TRAMP and IGFBP-3 KO:TRAMP mice

i. Develop IGFBP-3 KO:TRAMP cross and assess mouse aging and tumor chronomics. (Months 1-24). Total 100 mice.

We are currently breeding these mice and genotyping. After some initial problems with mouse mating (mice were not mating secondary to loud construction noise from adjacent building project), we are happy to report that after moving to a new location the mice have resumed breeding.

ii. Examine subcellular localization of RXR, IGFBP-3, and Nur77 utilizing *in situ* immunohistochemistry and immunoblot post cellular fractionation in tumors before and after castration (25 mice/group; 13 castration and 12 “sham” castration) at 12 weeks of age (Total 75 mice). Animals to be sacrificed after 6h (2 mice/group) and then every 24h for 4 days. (months 1-6)
iii. Evaluate apoptosis utilizing TUNEL staining and evaluate protein subcellular
distribution of IGFBP-3, RXR, and Nur77 by Western blotting. (Months 6-12) (Fig. 9).

WT mice showed a dramatic, 6-fold, increase in the number of
TUNEL-positive nuclei at 48 hours post castration. However, IGFBP-3
KO mice prostates failed to show any significant
increase in TUNEL staining at 48 hours. By 72
hours TUNEL staining returned to near baseline
levels in WT mice and remained near baseline
levels in IGFBP-3 KO mice. Serum IGFBP-3 levels were undetectable
in the KO mouse and remained unchanged in WT mice post castration.
p53 has been shown to be required for prostatic apoptosis, and we
have now shown that IGFBP-3, which is activated downstream of p53,
is also required for this process. In summary, this is the first description
of an in vivo role for IGFBP-3 in physiological cell death and indicates
that IGFBP-3 is critical for prostatic apoptosis, a fact with potential
therapeutic implications in prostate cancer.

c. Study the in vivo effects of IGFBP-3 replacement treatment in the IGFBP-3
KO:TRAMP model of prostate cancer. This will commence at a later date after
the cross has been established.

i. Comparison of response to a 4-week course of IGFBP-3 treatment in the
TRAMP and TRAMP/IGFBP-3 KO mice on tumor size and histology.
(Months 24-30) 7 mice/group total 28 mice (including controls).

ii. Evaluation of tumor apoptosis by TUNEL staining and proliferation by
PCNA staining. (Months 24-30)

iii. Perform immunohistochemistry for subcellular localization of IGFBP-3,
Nur77, and RXR as well as subcellular fractionation and immunoblotting for
IGFBP-3, RXR, and Nur77. (Months 30-36)
Key Research Accomplishments

- Showed Nur77 mediates IGFBP-3 induced apoptosis
- Showed IGFBP-3 induces JNK phosphorylation and suppression of AKT phosphorylation and activity, necessary for Nur77 translocation
- Demonstrated Nur77 translocation by IGFBP-3 in vivo
- Created NES / MTS mutants of IGFBP-3
- Assessed Mutant Effects on IGFBP-3 induced apoptosis
- Castrated IGFBP-3 KO and WT mice
- Demonstrated that IGFBP-3 is essential for androgen deprivation-induced apoptosis
- Initiated IGFBP-3 KO : TRAMP mice mating
Reportable Outcomes

Conclusions

Thus, we conclude that IGFBP-3 is a potent apoptosis inducer with potential implications in prostate cancer. IGFBP-3 induces apoptosis of both androgen-dependent and –independent CaP in vitro, and this has recently been demonstrated in vivo. On a cell biology level, to my knowledge IGFBP-3 is the only molecule known with an endocrine (serum carrier for IGF), as well as an auto-/paracrine function (that can be IGF-independent) with nuclear and extranuclear functions. Therefore, the proposed work shifts the current thinking of IGFBP biology. We have begun to characterize how subcellular localization of IGFBP-3 effects apoptosis induction. In addition, we have for the first time implicated IGFBP-3 in physiologic apoptosis induced by androgen deprivation utilizing the IGFBP-3 KO mouse. Practically speaking, the mechanistic work proposed therein represents the foundation for a new therapeutic intervention in the treatment of men with prostate cancer. These experiments will provide a research-based rationale for clinical trials of IGFBP-3 and establish a role for such therapy in androgen-dependent and –independent prostate cancer. IGFBP-3 has recently undergone successful phase 1 studies in humans and is about to enter phase 2 studies in cancer patients. If successful, these expected findings will improve our understanding of this emerging prostate cancer therapy and facilitate further clinical development in men with prostate cancer.
References

Contribution of the orphan nuclear receptor Nur77 to the apoptotic action of IGFBP-3

Kuk-Wha Lee1, Laura J. Cobb, Vladislava Paharkova-Vatchkova, Bingrong Liu, Jeffrey Milbrandt1 and Pinchas Cohen

Division of Pediatric Endocrinology, Mattel Children’s Hospital at University of California at Los Angeles, David Geffen School of Medicine, 10833 Le Conte Avenue, MDC2 22-315, Los Angeles, CA 90095, USA and 1Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA

Email: kukwhalee@mednet.ucla.edu

To whom correspondence should be addressed. Tel: +1 310 825 6244; Fax: +1 310 206 5843; Email: kukwhalee@mednet.ucla.edu

Tumor suppression by insulin-like growth factor-binding protein-3 (IGFBP-3) has been demonstrated to occur via insulin-like growth factor-dependent and -independent mechanisms in vitro and in vivo. We have recently described IGFBP-3-induced mitochondrial translocation of the nuclear receptors RXRα/Nur77 in the induction of prostate cancer (CaP) cell apoptosis. Herein, we demonstrate that IGFBP-3 and Nur77 associate in the cytoplasmic compartment in 22RV1 CaP cells. Nur77 is a major component of IGFBP-3-induced apoptosis as shown by utilizing mouse embryonic fibroblasts (MEFs) derived from Nur77 wild-type and knockout (KO) mice. However, dose–response experiments revealed that a small component of IGFBP-3-induced apoptosis is Nur77 independent. Reintroduction of Nur77 into Nur77 KO MEFs restores full responsiveness to IGFBP-3. IGFBP-3 induces phosphorylation of Jun N-terminal kinase and inhibition of Akt phosphorylation and activity, which have been associated with Nur77 translocation. Finally, IGFBP-3 administration to CaP xenografts on SCID mice induced apoptosis and translocated Nur77 out of the nucleus. Taken together, our results verify an important role for the orphan nuclear receptor Nur77 in the apoptotic actions of IGFBP-3.

Introduction

Prostate cancer (CaP) continues to be the most frequently occurring malignancy (aside from skin cancers) in American men. Large epidemiological studies have shown that serum insulin-like growth factor (IGF)-I levels are elevated and insulin-like growth factor-binding protein-3 (IGFBP-3) levels are reduced in patients with CaP, with differences in these serum markers becoming evident 5 years prior to the development of clinical CaP (1). Multiple lines of in vitro and clinical evidence point to IGFBP-3 as an anticancer molecule (2). Indeed, in vivo demonstration of tumor suppression by IGFBP-3, either administered to cancer xenografts in combination with an RXR ligand (3) or as evidenced by mice transgenic for IGFBP-3 crossed with animal tumor models (4), has been verified by several groups.

We previously reported that IGFBP-3 induces the intrinsic (mitochondria-dependent) pathway of apoptosis by causing the nuclear receptors RXRα/Nur77 to target mitochondria and induce cytoplasmic cytochrome c release, caspase activation and subsequent apoptosis (5). The orphan nuclear receptor Nur77-dependent apoptotic pathway is unique in that mitochondria-targeted Nur77 induces a conformational change in the pro-survival molecule Bcl-2 and converts it to a ‘killer’ (6), exemplifying a shifting paradigm for transcription factors at the mitochondria (7). Herein, we report the physical interaction of IGFBP-3 and Nur77, the contribution of Nur77 on IGFBP-3-induced apoptosis and demonstrate for the first time that Nur77 translocation by IGFBP-3 occurs in cancer cells in vivo.

Materials and methods

Materials

Insomed (Glen Allen, VA) provided recombinant human IGFBP-3. Commercial antibodies included the following: anti-human IGFBP-3 from DSL (Webster, TX), anti-Nur77 and blocking peptide were from Geneka Biotechnology (Montreal, Canada) and control goat IgG from Santa Cruz Biotechs (Santa Cruz, CA), p-Akt, total Akt, p-Jun N-terminal kinase (JNK) and total JNK antibodies as well as Akt kinase assay were from Cell Signaling Technology (Danvers, MA). Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) reagents, Tween and fat-free milk were purchased from Bio-Rad (Hercules, CA). Enhanced chemiluminescence reagents were from Amersham Pharmacia Biotech (Sunnyvale, CA). Full-length IGFBP-3 and Nur77 cDNAs were cloned into pLP-IRESneo mammalian expression vector via pDNR-mediated Creator™ technology (Clontech, Palo Alto, CA). LipofectAMINE and PLUS reagent were from Invitrogen (Carlsbad, CA). All other chemicals were from Sigma–Aldrich (St. Louis, MO).

Cell culture

22RV1 cells were maintained in Dulbecco’s modified Eagle’s medium containing 10% fetal calf serum (Life Technologies, Carlsbad, CA), 100 units of penicillin/ml and 100 units of streptomycin/ml in a humidified environment with 5% CO2 also.

Subcellular fractionation procedures

Nu-CLEAR Protein Extraction kit (Promega, Madison, WI) and 50 ng expression vectors, empty or containing IGFBP-3 and/or Nur77 (to equalize total amount of expression vector), were mixed with carrier DNA to give 0.2 µg total DNA per well. After 24–48 h transfection, caspase activity was quantitated and normalized for transfection efficiency to measurements of aliquots of co-transfected β-galactosidase gene activity (β-galactosidase enzyme assay system, Promega).

Co-immunoprecipitation and western immunoblots

22RV1 nuclear or cytoplasmic extracts were immunoprecipitated with or anti-IGFBP-3 antibodies. Briefly, 250 µl of protein A-agarose was incubated overnight at 4°C with 5 µl of anti-human IGFBP-3 antibodies. One hundred and twenty-five microliters of each antibody-treated protein A-agarose were added to 10 µg of protein extract and incubated for 3 h at 4°C with shaking. Immunoprecipitated proteins were pelleted by centrifugation and washed three times with 100 µl of SACI buffer. Sample buffer (200 µl) was added to each sample and vortexed vigorously. Samples were boiled and vortexed again to release protein–antibody complexes from the protein A-agarose. The protein A-agarose was then separated from the immunoprecipitated complexes by centrifugation. The supernatants were saved, and the immunoprecipitated proteins were separated by non-reducing SDS–PAGE (8%) at constant voltage overnight, and then transferred to nitrocellulose for 4 h at 170 mA. The nitrocellulose was immersed in blocking solution [5% non-fat milk/Tris-buffered saline (TBS)] for 45 min, washed with TBS and 0.1% Tween and incubated with primary anti-human Nur77 or anti-human IGFBP-3 antibody (1:4000) for 2 h. After washing off any unbound antibodies, the nitrocellulose was incubated with a secondary antibody (1:10 000) for 1 h. The membrane was washed.
washed four times with TBS, 0.1% Tween and TBS. Bands were visualized using the peroxidase-linked enhanced chemiluminescence detection system (Amersham Pharmacia Biotech). Experiments were repeated three times.

Caspase assays

The caspase assay was done using Apo-ONE™ homogeneous caspase-3/7 assay (Promega) and performed according to the manufacturer's instructions. rhIGFBP-3 was used at final concentrations of 1–10 μg/ml. Two percent dimethylsulfoxide was used as a control in some experiments.

Generation of Nur77−/− and wild-type primary mouse embryo fibroblast lines

Nur77−/− and wild-type (WT) mice were generated on a C57Bl/6 background were maintained on standard chow. Experiments were conducted in accordance with the Animal Research Committee of the University of California, Los Angeles. Fibroblasts were generated from 13.5-day embryos as described previously (9). Cells were maintained in Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum, 1% penicillin–streptomycin and 1% l-glutamine. All cells were used before passage 6.

Kinase assay methods

22RV1 CaP cells were incubated for 24 h in serum-free media in the presence or absence of 1 μg/ml recombinant human IGFBP-3. Akt kinase assay was assessed using a non-radioactive Akt kinase assay kit (Cell Signaling Technology) following the manufacturer’s instructions. Briefly, Akt was immunoprecipitated from 100 μg cell lysate overnight using an immobilized Akt antibody. Immunoprecipitated protein was then incubated with 1 μg GSK-3 fusion protein in the presence of ATP for 30 min at 30°C. Proteins were separated by SDS–PAGE and analyzed by autoradiography for phospho and total GSK-3.

Tumor xenografts

The LAPC-4 human CaP cell line expresses a WT androgen receptor and was maintained on standard chow. Experiments were conducted in accordance with the Animal Research Committee of the University of California, Los Angeles. Fibroblasts were generated from 13.5-day embryos as described previously (9). Cells were maintained in Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum, 1% penicillin–streptomycin and 1% l-glutamine. All cells were used before passage 6.

Immunohistochemical staining for Nur77

Paraffin-embedded, 4 μm thick tissue sections of LAPC-4 xenografts were stained for the Nur77 protein. The sections were deparaffinized in a series of xylene baths and then rehydrated using a graded alcohol series. The sections were then immersed in methanol containing 0.3% hydrogen peroxide for 20 min to block endogenous peroxidase activity and then incubated in 2.5% blocking serum to reduce non-specific binding. Sections were incubated overnight at 4°C with primary anti-Nur77 antibody (1:100). The sections were then processed using standard avidin–biotin immunohistochemistry techniques according to the manufacturer’s recommendations (Vector Laboratories, Burlingame, CA). Diaminobenzidine was used as a chromogen and commercial hematoxylin was used for counterstaining.

TUNEL staining

Paraffin-embedded sections were prepared from LAPC-4 tumors harvested on day 21. After deparaffinization of tissue section, apoptotic DNA fragments were labeled by terminal deoxynucleotidyl transferase and detected by anti-digoxigenin antibody conjugated to fluorescein (ApopTag Fluorescein kit, Chemicon, Temecula, CA). Cells were examined at ×20 using an inverted fluorescence microscope (Axiovert 135M, Carl Zeiss, New York, NY). Apoptotic staining was quantified by pixel histogram (Adobe Systems, Mountain View, CA) and confirmed by manual counting (r = 0.98).

Statistical analysis

All experiments were repeated at least three times. Means ± SDs are shown. Statistical analyses were performed using analysis of variance utilizing InStat (GraphPad, San Diego, CA). Differences were considered statistically significant when P < 0.005, denoted by **.

Results

Subcellular association of IGFBP-3 and Nur77

We and others have described the physical interaction between IGFBP-3 and the nuclear receptors RXRα andRARα (10,11). We investigated the ability of IGFBP-3 to associate with Nur77 in nuclear and cytoplasmic compartments utilizing co-immunoprecipitation techniques. 22RV1 CaP cells were taken serum free overnight. Protein A-agarose was used to immunoprecipitate-bound complexes and these were resolved by SDS–PAGE.

Western immunoblotting (Figure 1) showed that endogenous IGFBP-3 associates with Nur77 in cytoplasmic fractions only and complexes were not detected in nuclear fractions. Controls of whole-cell lysate show presence of endogenous Nur77 and IGFBP-3 in the immunoprecipitation input. CCRF-CEM is a T lymphoblastoid cell line (ATCC), and nuclear extract was used as a positive control for Nur77. The major band of endogenous IGFBP-3 was detected in the nucleus, consistent with our previous observations (12). Similarly, Nur77 is typically a nuclear transcription factor. This observation is indicative of distinctive subcellular co-distribution whereby unassociated Nur77 and IGFBP-3 are prevalent in the nucleus, but their complexes are uniquely cytoplasmic.

Contribution of Nur77 to the apoptotic effects of IGFBP-3

To further study the functional interface of IGFBP-3 and Nur77, we derived Nur77 null (Nur77−/−) embryonic fibroblast cells (MEFs) from the Nur77−/− knockout (KO) mouse. Using these Nur77 null MEFs, we tested the ability of IGFBP-3 to induce apoptosis (Figure 2A). Overnight treatment with IGFBP-3 resulted in a 60% increase in apoptosis as measured by fluorometric measurement of caspase-3/-7 activation in fibroblasts derived from the WT animal, but was not able to induce further caspase activation in the line derived from the Nur77−/− KO animal. The phenomenon was specific to IGFBP-3-induced apoptosis as caspase activation induced by 2% dimethylsulfoxide was not different in WT versus KO MEFs (Figure 2B). Thus, Nur77 significantly contributes to the pro-apoptotic effect of IGFBP-3 at this dose.

To more closely examine the role of Nur77 in IGFBP-3-induced apoptosis, we treated Nur77 KO and WT MEFs with increasing doses of recombinant IGFBP-3 that ranged from 1 to 10 μg/ml ≥12 h (Figure 2C). As expected from the former experiment, IGFBP-3 significantly induced apoptosis in WT MEFs in a dose-dependent manner. Surprisingly, IGFBP-3 also significantly induced caspase activation in the KO line in a dose-dependent manner, although this was minimal when compared with the WT line. However, this does suggest that a small portion of IGFBP-3-induced caspase activation may be Nur77 independent, although the functional relevance of this is currently unknown.

Reintroduction of Nur77 in Nur77 KO MEFs restores responsiveness to IGFBP-3

To validate our findings of Nur77 as a mediator of IGFBP-3 action, we reintroduced Nur77 into Nur77 KO MEFs by transient transfection, with and without co-expression of IGFBP-3. Control transfection was with empty expression vectors and was not significantly different from that of transfection with empty Nur77 expression vector and IGFBP-3 over-expression. Over-expression of Nur77 in combination with empty IGFBP-3 expression vector did induce apoptosis activation consistent with previous reports (13,14). Reintroduction of Nur77 via transient transfection restored responsiveness to IGFBP-3.

Cytoplasmic Nuclear IgG WCL-CEM CCRF α-BP-3

Fig. 1. Cytoplasmic interaction between IGFBP-3 and Nur77. 22RV1 cells were taken serum free overnight and association of endogenous Nur77 and IGFBP-3 was assessed. Nuclear and cytoplasmic fractions were isolated as indicated. Protein A-agarose was used to immunoprecipitate bound complexes and resolved by SDS–PAGE. Nur77 and IGFBP-3 were detected by immunoblotting. 22RV1 whole-cell lysate (WCL) was used as an input control. CCRF-CEM nuclear extract as a positive control for Nur77 presence. Experiments were repeated three times.
over-expression in the Nur77 KO line (Figure 3). Thus, rescue of IGFBP-3-induced apoptosis was associated with restoration of Nur77 expression.

IGFBP-3 induces phosphorylation of c-JNK and suppression of Akt phosphorylation and activity

Nur77 is phosphorylated by JNK and by Akt (15–17). This phosphorylation is required for its nuclear export and involves JNK activation (phosphorylation) and inhibition of Akt phosphorylation in lung cancer and HEK cells (18). We investigated the effect of IGFBP-3 treatment of cancer cells on JNK phosphorylation and Akt phosphorylation and activation. Treatment with 1 lg/ml of IGFBP-3 for 24 h induced phosphorylation of JNK in 22RV1 CaP cells although the expression levels of total JNK were not changed (Figure 4C). Associated with this is a significant reduction in phosphorylated Akt and Akt activity as evidenced by an Akt kinase assay (Figure 4A and B). Thus, the apoptotic action of IGFBP-3, which we have described previously to involved RXR/Nur77 translocation via an IGF-independent mechanism (5), involves inhibition of Akt and phosphorylation of JNK.

IGFBP-3 induces apoptosis and translocates Nur77 in vivo

To determine the effect of IGFBP-3 on Nur77 translocation and apoptosis in vivo, we utilized LAPC-4 cells in Matrigel to create human CaP xenografts on SCID mice. Accordingly, cells were injected and tumors established for 2 weeks. At that time, IGFBP-3 or saline was given as a daily injection at a dose of 4 mg/kg/day intra-peritoneally for 21 days, after which mice were euthanized. Tumor sections were stained with a Nur77 antibody to assess subcellular localization in response to IGFBP-3 as well as subjected to TUNEL staining as a marker for apoptosis. Consistent with our in vitro data, Nur77 exhibited a predominantly nuclear staining pattern in the rapidly growing control tumors (Figure 5A, upper panels). Treatment with IGFBP-3 resulted in predominantly cytoplasmic staining of Nur77 with hematoxylin-counterstained nuclei prominent (Figure 5A, lower panels). Associated with this was a marked significant increase in staining for TUNEL as a marker of apoptosis (Figure 5B). In concert, these data support a novel extranuclear mechanistic role for the orphan receptor Nur77 in mediating the apoptotic actions of IGFBP-3 in vitro and in vivo.

Discussion

In the prostate, IGFs and IGFBPs play an important role in the proliferative processes that lead to benign prostatic hyperplasia and CaP. IGFBP-3 is secreted and reuptaken by endocytic pathways (specifically caveolin and transferrin receptor mediated) for apoptosis induced by transforming growth factor-β (12). After internalization, IGFBP-3 rapidly localizes to the nucleus where it interacts with RXRα, RAR and potentially RNA Polymerase II binding subunit as recently described (10,11,19), implicating IGFBP-3 as a potential direct modulator of gene transcription. Indeed, IGFBP-3 modulates signaling of nuclear receptor ligands and alters their action (20). Nuclear import of IGFBP-3 is a nuclear localization signal-dependent process and mediated by binding to importin-β (21).

The first in vivo validation for IGF-independent actions of IGFBP-3 on tumor suppression has recently been published in a mouse model of CaP (4). Important findings in this study include the
following: (i) dramatic tumor suppressive effects by a non-IGF-binding mutant of IGFBP-3, (ii) observation that autocrine/paracrine IGFBP-3 expression correlated with tumor suppression, rather than circulating serum levels, and (iii) no obvious effect of IGFBP-3 on non-cancerous tissues. IGFBP-3 transgenic mice have been described to be modestly growth restricted and glucose intolerant, in mechanisms that may be largely related to IGF inhibition (22). However, in vitro evidence would suggest that this too may also involve IGF-independent effects (23). It is probable that growth inhibiting and apoptosis-promoting effects by IGFBP-3 in the whole animal involve IGF-dependent and -independent mechanisms and both are major contributors to tumor suppression.

Although we have demonstrated using the Nur77 KO MEFs that a significant portion of IGFBP-3-induced caspase activation is Nur77 dependent, we were able to show a small but significant contribution that is Nur77 independent. This may be a cell type-specific phenomena or may involve activation of other various pathways that have been described for IGFBP-3 including the following: (i) activation of caspase 8 and 9 (24), (ii) cell-surface receptors (25), (iii) Stat1 activation (26), (iv) SMAD inhibition (27), (v) phosphatase activation (28) and (vi) calcium flux regulation (29).

In addition to IGFBP-3, Nur77-dependent apoptosis is induced by retinoid-related molecules (30,31), calcium ionophores and etoposide (30), which are known to act via signaling pathways that involve kinases and phosphatases. Indirect inactivation of survival kinases by different agents are used to elicit tumor death (32,33). A recent report implicates both activation of JNK and inhibition of Akt as necessary in translocation of Nur77 from the nucleus to the cytoplasm in other cancer models (18). We describe herein JNK activation and inhibition of Akt phosphorylation and activity by IGFBP-3, which translocates RXR/Nur77 in an IGF-independent manner (5). Other pro-apoptotic agents, such as oridonin (34), the multikinase inhibitor, sorafenib, and the proteasome inhibitor, bortezomib (35), have also been described to inhibit Akt and phosphorylate JNK, it is intriguing to speculate that Nur77 translocation may be involved as well.

Additional kinase pathways phosphorylate Nur77 including the mitogen-activated protein kinase pathway (36) and ribosomal S6 kinase and mitogen- and stress-activated kinase (37). We and others...
have additionally identified DNA protein kinase to phosphorylate IGFBP-3 in vivo and that this phosphorylation regulates nuclear localization (38,39). Additionally, casein kinase-2 has been shown to phosphorylate and negatively regulate IGFBP-3 (40). Complex kinase networks that control phosphorylation of both Nur77 and IGFBP-3 underscore the importance of multiple regulatory levels to determine activity of both these molecules and their subcellular localization.

In summary, the current work and previous work done by our group shows that IGFBP-3 is secreted and reuptaken by endocytic mechanisms to the nucleus (12). In the nucleus it interacts with the nuclear receptor RXR, where binding may expose a nuclear export sequence described previously in the DNA-binding domain of RXR (41) and indirectly enhance Nur77 binding to RXR (5). Conformation of this complex may further be changed after export to the cytoplasm where IGFBP-3 directly interacts with Nur77 as described in the current study. Immunohistochemical demonstration of the ability of IGFBP-3 to translocate Nur77 in vivo offers an output measure to assess IGFBP-3 efficacy in the clinical arena. Further work, including mitochondrial targeting of this complex, is needed to unravel the molecular mechanisms of IGFBP-3 intracellular activity and its potential clinical application.

Supplementary material

Supplementary figure can be found at http://carcin.oxfordjournals.org/.

Acknowledgements

The authors wish to thank David Hwang and George Lin for expert technical assistance. We are also grateful to Dr X.-k. Zhang for providing the Nur77

Conflict of Interest Statement: None declared.

References

Received September 13, 2006; revised February 28, 2007; accepted March 29, 2007
Insulin-Like Growth Factor Binding Protein-3 Induces Insulin Resistance in Adipocytes In Vitro and in Rats In Vivo

HAE SOON KIM, OMAR ALI, MELANIE SHIM, KUK-WHA LEE, PATRICIA VUGUIN, RADHIKA MUZUMDAR, NIB BARZILAI, AND PINCHAS COHEN

Department of Pediatrics [H.S.K.], Ewha Womans University, Seoul, 120-750 Korea; David Geffen School of Medicine [O.A., M.S., K.-W.L., P.C.], University of California–Los Angeles, Los Angeles, California 90095; Albert Einstein College of Medicine [P.V., R.M., N.B.], Bronx, New York 10461

ABSTRACT: Insulin-like growth factor binding protein (IGFBP)-3 binds to IGF and modulates their actions and also possesses intrinsic activities. We investigated its effects on insulin action and found that when IGFBP-3 was added to fully differentiated 3T3-L1 adipocytes in culture, insulin-stimulated glucose transport was significantly inhibited to 60% of control in a time- and dose-dependent manner. Tumor necrosis factor (TNF)-α treatment also inhibited glucose transport to the same degree as IGFBP-3 and, in addition, increased glucose utilization and glycogen synthesis. These findings demonstrate that IGFBP-3 has potent insulin-antagonizing activity.

IGF-I and -II are involved in the regulation of cell growth and differentiation in a variety of cell types (1). However, the IGF also mimic some of the metabolic actions of insulin and act as insulin sensitizers (2). IGF-I has approximately an equipotent effect on ex vivo muscle strips (4), as well as being an insulin sensitizer, and has been considered as a putative treatment agent for both type-1 and type-2 diabetes (5,6). The IGFBP are a family of six binding proteins that bind to IGF with high affinity and specificity. A variety IGBP profiles are observed in different tissues, presumably regulating specific cellular activities. IGFBP-3 is the most abundant circulating IGF binding protein and is expressed in most tissues. IGFBP-3 not only regulates IGF bioavailability and action (so-called IGF-dependent actions), but also mediates IGF independent actions on cell survival and apoptosis (7–9). By binding IGF in the circulation, the IGFBP reduce the levels of free IGF and antagonize their insulin-like activity; in addition, they may be involved in carbohydrate metabolism in ways that remain poorly characterized (10). IGFBP-3 levels are regulated by multiple factors, including cytokines that have been implicated in insulin resistance, such as TNF-α.

Recently, it has been shown that IGFBP-3 reduces insulin-stimulated glucose uptake in both rodent and human adipocytes (11). We carried out a series of experiments to elucidate the effects of IGFBP-3 on insulin sensitivity in vitro and in vivo and the mechanisms involved in its actions. In addition, we show here that the insulin-antagonistic effects of tumor necrosis factor (TNF)-α are mediated in part by IGFBP-3.

MATERIALS AND METHODS

Materials. Recombinant hIGFBP-3 was a generous gift from Celtrix (Mountain View, CA). Human recombinant insulin was obtained from Sigma Chemical Co. (Saint Louis, MO). [2-3H (G)] deoxy-γ-glucose was purchased from New England Nuclear, Inc. (Boston, MA). Anti-human IGFBP-3 antibodies, which were affinity purified on an IGFBP-3 column, were purchased from Diagnostic Systems Laboratories (Webster, TX). 125-I-labeled IGF-I and IGF-II were purchased from Amersham (Piscataway, NJ). Anti-phospho-insulin receptor beta subunit antibody was purchased from BioSource International (Camarillo, CA). Anti-adiponectin antibody was purchased from Chemicon International (Temecula, CA). The Bradford protein assay kit and all electrophoresis chemicals were obtained from Bio-Rad (Richmond, CA). All other chemicals were purchased from Sigma Chemical Co. The antisense oligonucleotide designed to flank the initiation codon of murine IGBP-3 (12) was GCCGCCGGGGATGCATGGCGCCGGGTGGACG, with the corresponding sense oligonucleotide being 5′-CGTCCAC-CCGGCGCCATG-CATCCGCCGCGC-Tho-ester bonds linked the first three and final three nucleotides of each oligo (Sigma-Genosys, Ltd., The Woodlands, TX).

Cell culture. All cell lines and tissue culture reagents were purchased from ATCC (Rockville, MD). 3T3-L1 adipocytes were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and an antibiotic mixture containing penicillin and streptomycin. For the experiments, cells were cultured in 12-well dishes and differentiated into adipocytes using 3-isobutyl 1-methylxanthine, dexamethasone and insulin (100 nmol/L) in DMEM with 10% FBS for 48 h. The cells were then maintained in a medium containing 10% FBS and insulin (10nmol/L). Experiments were performed when greater than 90% of the cells were differentiated into adipocytes.

Abbreviations: IGFBP, insulin-like growth factor binding protein; PPAR, peroxisome proliferator activated receptor.
Glucose transport assay. Before glucose transport assays, the cells were incubated in serum-free media, with or without treatment (IGFBP-3 or TNF-α). Treatment with IGFBP-3 was performed at various concentrations and durations (see “Results”). TNF-α treatment was performed at a concentration of 10 ng/mL for 24 h. All experiments were done in triplicate unless otherwise indicated. The procedure for glucose transport measurement was modified from methods previously described (14). After the treatment period, the cells were washed twice with PBS and incubated in the same buffer for 30 min with insulin (10 nmol/L). The transport reaction was started by addition of 10 μL substrate (3H-2-deoxyglucose 0.1 μCi to produce a final concentration of 0.1 mM) and halted after 5 min by aspirating the reaction mixture and rapidly rinsing each well five times with 4-degree PBS. Cells were solubilized by addition of 0.5 mL 0.1 N NaOH and incubated with shaking. An aliquot (100 μL) of the suspension was removed for protein analysis using Bio-Rad reagent (Richmond, CA) (15). After solubilization, 400 μL of the suspension was placed in a scintillation vial and neutralized with 1.0 N HCL and scintillation fluid was added. Radioactivity in this lysate was determined by scintillation counting.

Western immunoblots. Phosphorylated insulin receptor beta subunit levels were detected using cell lysate from differentiated 3T3-L1 adipocytes that were treated with or without IGFBP-3 (1 μg/mL) for 24 h. Each of these experiments was performed in the presence or absence of insulin (10 nmol/L) for the last 30 min of the treatment period. Adiponectin was detected using cell lysates from 3T3-L1 adipocytes that were treated with or without IGFBP-3 (10 μg/mL) for 24 h (10). These experiments were repeated three times. Samples of 50 μL were separated by nonreducing 8% SDS-PAGE overnight at constant voltage and electroblotted onto nitrocellulose. The membranes were then sequentially washed with NP40, 1% BSA, and Tween 20, blocked with 5% nonfat dry milk in Tris-buffered saline, probed with the specified antibody and detected using a peroxidase-linked enhanced chemiluminescence detection system (Amersham, Arlington Heights, IL).

Immunofluorescence confocal microscopy. Fully differentiated 3T3-L1 adipocytes, 1 × 10^6, were plated on cover-glass in serum containing media for 2 d. The cells were then incubated in serum-free media for 24 h. For the last 6 h, half of the wells were treated with IGFBP-3 in a dose of 1 μg/mL for 6 h. The cells were then exposed to insulin (10 nmol/L) for 30 min. After three washes in PBS, fixation and permeabilization of the cells were performed with 1% paraformaldehyde in PBS for 15 min at room temperature and 0.2% Triton X-100 in PBS for 15 min on ice, and cells were washed twice with PBS. Specimens were incubated with primary antibodies in PBS for 1 h at room temperature, with secondary antibodies in PBS for 40 min at room temperature, and then incubated with Hoechst from Electron Microscopy Sciences (Ft. Washington, PA) for 2 min. Samples were analyzed using the Inverted Confocal Microscope (Leica, Wetzlar, Germany), equipped by digital camera (Hamamatsu, Hamamatsu City, Japan), and operated by QED image software. DAPI (blue) identifies the nuclei.

To examine IGFBP-3 induction by TNF-α, 1 × 10^6 fully differentiated 3T3-L1 adipocytes were plated on cover-glass in serum containing media for 2 d. The cells were then incubated in serum-free media with or without TNF-α at a concentration of 10 ng/mL for 48 h, before staining for immunofluorescence as described above. IGFBP-3 protein localization was detected using the DSL hIGFBP-3 goat polyclonal antibody (which was previously purified on an IGFBP-3 column), diluted 1:200, followed by fluorescein anti-goat antibody (Vector Laboratories, Burlingame, CA). Samples were then analyzed using the Inverted Confocal Microscope at 60× magnification (Leica), equipped by digital camera (Hiramitsu), and operated by QED-image software.

Western ligand blotting. IGFBP-3 protein levels were assessed using cell lysate from 3T3-L1 adipocytes that were treated with or without TNF-α at a concentration of 10 ng/mL for 48 h, before staining for immunofluorescence as described above. IGFBP-3 protein localization was detected using the DSL hIGFBP-3 goat polyclonal antibody (which was previously purified on an IGFBP-3 column), diluted 1:200, followed by fluorescein anti-goat antibody (Vector Laboratories, Burlingame, CA). Samples were then analyzed using the Inverted Confocal Microscope at 60× magnification (Leica), equipped by digital camera (Hiramitsu), and operated by QED-image software.

IGFBP-3 antisense treatment. 3T3-L1 adipocytes were grown and differentiated in 12-well plates (in quadruplicates) as described above. The cells were then preincubated with sense or antisense IGFBP-3 oligos (detailed above), at concentrations of 500 ng/plate for 30 min in the presence of LipofectAMINE (Invitrogen). Following the preincubation, the cells were incubated in serum-free medium for 24 h with and without TNF-α (10 ng/mL) at the end of the 24 h, the cells were exposed to insulin (10 nmol/L) and a glucose transport assay was performed as described above.

In vivo hyperinsulinemic euglycemic clamps. The principles of laboratory animal care set out by the National Institutes of Health were followed strictly. The study protocol was reviewed and approved by the Animal Care and Use Committee of the Albert Einstein College of Medicine. Male Sprague-Dawley rats (Charles River Laboratories, Wilmington, MA) were housed in individual cages and subjected to a standard light (0600–1800 h) and dark (1800–0600 h) cycle. They were fed ad libitum using regular rat chow that consisted of 64% carbohydrate, 30% protein, and 6% fat with a physiologic fuel value of 3.3 kcal/g chow.

To study the acute effects of an infusion of IGFBP-3, two groups of awake, unstressed, chronically catheterized Sprague-Dawley rats (0.3 kg) were studied for 300 min. All rats received a primed continuous infusion (15–49 μCi/min bolus, 0.4 μCi/min) of 3-H-glucose throughout the study. After establishing rates of basal glucose turnover, a primed infusion of somatostatin (1.5 μg/kg/min), insulin (3 mU/kg/min), and a variable infusion of 25% glucose to clamp the plasma concentration of euglycemic levels of 140 mg/dL, was administered for 2 h. At 120 min, the rats received a primed continuous infusion of IGFBP-3 (60 μg/kg/h) or saline (control) for an additional 3 h.

For the chronic IGFBP-3 infusion experiments, Sprague-Dawley rats (0.3 kg) received either IGFBP-3 (40 μg/kg/h) or saline as control by osmotic minipumps for 7 d and clamp studies were performed on d 7. All rats received a primed continuous infusion (15–49 μCi/min bolus, 0.4 μCi/min) of 3-H-glucose throughout the study. After establishing rates of basal glucose turnover, a primed infusion of somatostatin (1.5 μg/kg/min), insulin (3 mU/kg/min), and a variable infusion of 25% glucose to clamp the plasma glucose concentration at euglycemic levels of 140 mg/dL, were administered for 2 h. Recombinant human IGFBP-3 levels in rat sera were measured by ELISA (DSL, Webster, TX). There was no cross-reactivity between human and rat IGFBP-3 in this assay.

Statistical analysis. Statistical significance was evaluated using t tests and ANOVA and two-tailed p values were calculated. Significance was accepted at the p < 0.05 level.

RESULTS

IGFBP-3 inhibits glucose uptake in 3T3-L1 adipocytes. Addition of 1 μg/mL IGFBP-3 to 3T3 adipocytes for 24 h resulted in a >40% decrease in insulin-stimulated glucose transport compared with serum-free controls. When adipocytes were exposed to IGFBP-3 for 24 h at a concentration of 1 μg/mL, glucose transport decreased by >40% (Fig. 1A). This is similar to the decrease in insulin-stimulated glucose transport observed when adipocytes are exposed to 10 ng/mL TNF-α over the same time period.

Treatment with IGFBP-3 for 24 h suppressed glucose uptake in adipocytes in a dose-dependent manner. The effect was maximal at an IGFBP-3 concentration of 1 μg/mL where glucose transport decreased by 40% compared with serum-free controls. Treatment with IGFBP-3 at a concentration of 1.5 μg/mL did not increase the response (Fig. 1B). In addition, a time course treatment with IGFBP-3 at a concentration of 1 μg/mL demonstrated suppression of glucose uptake in a time-dependent manner. The suppression was greatest after 24 h of treatment; however, an effect was detectable as early as 30 min of treatment (Fig. 1C). These results indicate that IGFBP-3 increases insulin resistance in vitro, in a time- and dosage-dependent manner. IGFBP-3 inhibited basal glucose transport by 20% (Fig. 1D).

TNF-α induces the production of IGFBP-3 in 3T3-L1 adipocytes. To test whether TNF-α induces IGFBP-3 production in 3T3-L1 adipocytes, adipocytes in serum-free media were treated with TNF-α for 48 h at a concentration of 10 ng/mL. Production of IGFBP-3 was then detected by immunofluorescence confocal microscopy using a rodent IGFBP-3-specific antibody. Following TNF-α treatment, the overall levels of IGFBP-3, (stained in green) in the cells rose dramatically compared with serum-free controls (Fig. 2), implying increased endogenous production. Interestingly, IGFBP-3 lo-
cated within the nuclei at low levels in basal conditions appears to increase to a greater extent in response to treatment with TNF-α.

The increase in IGFBP-3 protein levels in response to treatment with TNF-α was also demonstrated by densitometric analysis of Western ligand blots using ¹²⁵I-IGF-I and -II. We quantified the protein levels of IGFBP-3 in total cell lysates of adipocytes that were exposed to treatment with TNF-α at a concentration of 10 ng/mL for 72 h. When the blot was assessed by densitometric analysis, it was found that TNF-α induced a 3-fold increase in production of IGFBP-3 compared with serum-free conditions (p < 0.05, Fig. 2B).

Insulin-antagonistic effect of TNF-α is partially blocked by pretreatment with IGFBP-3 antisense. To test whether the insulin-antagonistic action of TNF-α may be mediated via induction of IGFBP-3, 3T3-L1 adipocytes were exposed to TNF-α after transfection of IGFBP-3 antisense or sense oligonucleotides. Cells pretreated with antisense IGFBP-3 oligos and then treated with TNF-α 10 ng/mL exhibited a significantly smaller decrease in insulin-mediated glucose transport (p < 0.05, Fig. 2C). Cell extracts transfected with antisense IGFBP-3 demonstrate 50% reduction in IGFBP-3 content by immunoblot with no change noted in the sense-transfected cells.

IGFBP-3 inhibit adiponectin expression in mature adipocyte. To determine whether IGFBP-3 regulates additional adipocyte functions, we examined the effects of IGFBP-3 on glucose transport. (A) 3T3-L1 adipocytes treated (n = 3 per condition) with 1 µg/mL IGFBP-3 or with 10 ng/mL TNF-α for 24 h and pulsed with insulin (10 nmol/L) × 30 min before measurement of glucose transport as described. Glucose transport expressed as percentage of serum-free conditions. Dose response (B) and time course (C) are also shown. The effects of 1 µg/mL IGFBP-3 on basal glucose transport (n = 4 per group) are shown in (D). *p < 0.05.
adiponectin expression. Adiponectin immunoblot was performed on cell lysates from differentiated 3T3-L1 adipocytes that were treated with and without IGFBP-3 and the PPARγ agonist rosiglitazone for 24 h in serum-free media. Western blotting of adiponectin from IGFBP-3 treated cells revealed a 55% decrease in adiponectin expression compared with control. PPARγ-stimulated adiponectin was also inhibited by IGFBP-3 (Fig. 4).

Infusion of IGFBP-3 impairs glucose metabolism in Sprague-Dawley rats. To examine the effect of elevated IGFBP-3 levels upon insulin sensitivity in vivo, we studied Sprague-Dawley rats utilizing the insulin clamp technique. Acute effects were studied by infusing IGFBP-3 (60 μg/kg/h) for 3 h. Because maximal effect in vitro is seen after several days, we also performed IGFBP-3 infusion for 7 d and the effects of prolonged exposure were studied by continuously infusing 40 μg/kg/h over 7 d.

Infusion of IGFBP-3 for 3 h decreased peripheral glucose uptake by 15% compared with controls (19.0 ± 0.7 mg/kg/min, treatment versus control; p < 0.05). Glycogen synthesis was decreased by 25% (7.3 ± 0.3 mg/kg/min vs 10.8 ± 1.4, treatment versus control; p < 0.05) (Fig. 5, A and B).

Seven days of IGFBP-3 infusion decreased the peripheral glucose uptake (Rd) by 40% in rats treated with IGFBP-3 compared with control (14.0 ± 0.2 versus 23.2 ± 0.5 mg/kg/min, treatment versus control; p < 0.01). This decrease in Rd was primarily accounted for by a 50% decrease in glycogen synthesis (4.5 ± 1.0 versus 10.8 ± 1.4 mg/kg/min, treatment versus control; p < 0.005) (Fig. 5, C and D). Human IGFBP-3 levels were undetectable in pre-infusion sera and achieved levels of 1200 ± 225 ng/mL at the end of 7 d, well within the physiologic range.

DISCUSSION

In this study, we have shown that IGFBP-3 rapidly induces insulin resistance in vivo and in vitro and that this effect occurs at physiologic concentrations of IGFBP-3. We have also demonstrated a link between IGFBP-3 induction and the insulin-antagonistic effect of inflammatory cytokines.
clearly explained by disturbances in growth hormone secretion or adiposity (16).

A relationship of elevated circulating IGFBP-3 levels to hyperglycemia is also suggested in certain clinical states characterized by impaired insulin action including puberty (17), acromegaly (18), and treatment with recombinant hGH (19). These conditions are associated with the development of insulin resistance and glucose intolerance despite a concomitant elevation of circulating IGF-I levels in each case. We show in this paper that IGFBP-3 is a potent insulin antagonist in 3T3-L1 adipocytes and in Sprague-Dawley rats. Our results also show that the magnitude of this effect is similar to the effect of TNF-α, a multifunctional cytokine that may be an important mediator of insulin resistance linked to obesity (20).

It was not directly tested in our studies whether IGFBP-3 insulin-antagonizing effects are dependent or independent of IGF-I. But Chan et al. (13) recently showed that IGFBP-3 mutants with reduced binding to IGF-I and -II were still able to reduce insulin-stimulated glucose uptake and both that group’s as well as our data demonstrated that other IGFBP do not mediate this effect. This suggests the possibility that the inhibitory effect of IGFBP-3 may be independent of its binding to IGF, although an IGF-inhibitory mechanism is also possible. Distinguishing between these possibilities in vivo will require additional studies involving the systemic administration of non-IGF-binding mutants of IGFBP-3. Hyperglycemia has been convincingly demonstrated after the injection of IGFBP-1 (21) in rats and in transgenic mice, which overexpress IGFBP-1 (22), however, an IGF-dependent mechanism for this phenomena has been postulated.

IGFBP-3 in serum inhibits the effects of IGF on IGF-activated glucose consumption in mouse fibroblasts (23). In addition, glucose intolerance is observed in liver-specific IGF-I knockout mice (24) where circulating IGF-I levels are reduced to a larger degree than those of IGFBP-3. In these situations, the hyperglycemia could be attributable to a reduction in free IGF-I levels. It is possible that excess IGFBP-3 binds free (unbound) IGF-I, thereby decreasing its bioavailability and its hypoglycemic effect.

However, in addition to modulating the availability of IGF-I, IGFBP-3 has been shown to have independent effects in a variety of cell lines. For example, IGFBP-3 has antiproliferative effects on breast cells that are unresponsive to IGF (8) and on mouse fibroblasts that lack IGF-1 receptors (9). IGFBP-3 has been shown to inhibit type-1 IGF receptor activation independently of its IGF binding affinity in breast cancer cells (25). In addition, proteolytic fragments of IGFBP-3 that have markedly reduced affinity for IGF-I retain antiproliferative effects in vitro. These IGFBP-3 effects may be mediated via cell surface binding proteins (26), nuclear binding sites (27), or other pathways (28). The IGFBP-3 NLS mutant, which is known to not translocate to the nucleus, also inhibited insulin-stimulated glucose uptake (13) Thus, it is possible that some of the insulin-antagonistic effects of IGFBP-3 are mediated via IGF-independent pathways that does not require nuclear localization. For example, a previously published study reports that IGFBP-3 is capable of activating a phosphotyrosine phosphatase independent of its IGF binding affinity (29). Activation of a phosphotyrosine phosphatase and subsequent de-phosphorylation could be a mechanism responsible for the decreased phosphorylated insulin receptor levels observed in our study. Of note is that Chan et al. (13) did not observe reduced IR phosphorylation but did see less Thr (308) phosphorylation of Akt after IGFBP-3 treatment. These investigators also did not observe an effect of IGFBP-3 on baseline (insulin-free) glucose transport, which we have. The possible differences between these studies may include either subtle differences in the experimental conditions or a different behavior of the strain of the 3T3-L1 cells, which may be susceptible to biologic drift over time in repeat culturing as described for many other cell lines (30).

TNF-α is thought to play an important role in the pathogenesis of insulin resistance associated with obesity. In adipose tissue, levels of TNF-α and its mRNA correlate positively with the degree of obesity or hyperinsulinemia (31). TNF-α’s main mechanism of action is unknown, although it has been shown to decrease insulin receptor and the insulin-receptor substrate IRS-1 phosphorylation (32) by attenuating tyrosine kinase activity and/or activating phospho-protein phosphatase-1. Here, we report that TNF-α induces the production of IGFBP-3 in 3T3-L1 adipocytes and that the insulin-antagonistic effect of TNF-α on cultured adipocytes is partially blocked by the presence of IGFBP-3 antisense. This raises the possibility that some of the insulin antagonistic activity of TNF-α may be mediated via induction of IGFBP-3. Such a role is not unexpected as IGFBP-3 has been shown to mediate other effects of TNF-α in various cell types (33) and has also been implicated in mediating the effects of other growth-inhibitory and apoptosis-inducing agents such as tumor suppressor gene p53 (34), retinoic acid (35), and transforming growth factor-beta (36).

We have previously reported that IGFBP-3 is a binding partner for the ligand-dependent nuclear receptor, retinoid X receptor-α (RXR-α) and modulates its transcriptional activity (37). RXR-α is the obligate heterodimeric partner for the nuclear receptor PPAR-γ (38), which controls the transcription of genes important in the regulation of carbohydrate and lipid metabolism. TNF-α has previously been shown to antagonize PPAR-γ (39). Our observation that TNF-α appears to increase the nuclear localization of IGFBP-3 hints at the possibility that TNF-α may exert some of its insulin-antagonizing effects by modulating the transcriptional activity of PPAR-γ via induction and nuclear translocation of IGFBP-3.

Regardless of the possible numerous interactions of IGFBP-3 with the insulin-signaling pathway, the strength of this report is in demonstrating that IGFBP-3 rapidly induces peripheral insulin resistance in rodents, which is evident within hours. Furthermore, after several days, the degree of insulin resistance induced by IGFBP-3 is similar in magnitude to that seen in many diabetic states. This suggests that IGFBP-3 effects are important in vivo and may explain the alterations in insulin action during pubertal development, and in pathophysiological conditions such as in acromegaly, when IGFBP-3 levels are high.
Adiponectin, an important adipocytokine that is induced by thiazolidinediones (TZD), is closely related to insulin sensitivity (40). We also show here that IGFBP-3 inhibits adiponectin expression both at the basal state and after PPAR-γ agonist stimulation. These findings may further explain how IGFBP-3 induces insulin resistance in vivo.

In conclusion, our results show that IGFBP-3 is a potent inhibitor of insulin action in cultured adipocytes as well as in vivo. This effect is of the same magnitude as the insulin antagonistic effect of TNF-α. In addition, we show that TNF-α induces IGFBP-3 production in cultured adipocytes and that IGFBP-3 may mediate some of the insulin-antagonistic activity of TNF-α. We also show that IGFBP-3 suppresses adiponectin expression. The mechanisms of IGFBP-3-induced insulin resistance action are as yet fully characterized and are likely multiple. Further studies of the role of IGFBP-3 in insulin resistance will shed light on the molecular mechanisms of insulin resistance in general and the physiologic significance of IGFBP-3 in particular.

REFERENCES

Insulin-like growth factor-binding protein-3 inhibition of prostate cancer growth involves suppression of angiogenesis

B Liu1, K-W Lee1, M Anzo1, B Zhang2, X Zi3, Y Tao4, L Shiry5, M Pollak4, S Lin6 and P Cohen1

1Division of Pediatric Endocrinology, Department of Pediatrics, Mattel Children’s Hospital, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; 2Center of Developmental Biology and Genetics, College of Life Sciences, Peking University, Beijing, PR China; 3Department of Urology and Chao Family Comprehensive Cancer Center, UCI, Irvine, CA, USA; 4Division of Experimental Medicine, Department of Medicine and Department of Oncology, McGill University, Montreal, QC, Canada; 5INSMED Corp., Glen Allen, Charlottesville, VA, USA and 6Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA, USA

Insulin-like growth factor-binding protein-3 (IGFBP-3) is a multifunctional protein that induces apoptosis utilizing both insulin-like growth factor receptor (IGF)-dependent and -independent mechanisms. We investigated the effects of IGFBP-3 on tumor growth and angiogenesis utilizing a human CaP xenograft model in severe-combined immunodeficiency mice. A 16-day course of IGFBP-3 injections reduced tumor size and increased apoptosis and also led to a reduction in the number of vessels stained with CD31. In vitro, IGFBP-3 inhibited both vascular endothelial growth factor- and IGF-stimulated human umbilical vein endothelial cells vascular network formation in a matrigel assay. This action is primarily IGF independent as shown by studies utilizing the non-IGFBP-binding IGF-1 analog Long-R3. Additionally, we used a fibroblast growth factor-enriched matrigel-plug assay and chick allantoic membrane assays to show that IGFBP-3 has potent antiangiogenic actions in vivo. Finally, overexpression of IGFBP-3 or the non-IGF-binding GGG-IGFBP-3 mutant in Zebrafish embryos confirmed that both IGFBP-3 and the non-IGF-binding mutant inhibited vessel formation in vivo, indicating that the antiangiogenic effect of IGFBP-3 is an IGF-independent phenomenon. Together, these studies provide the first evidence that IGFBP-3 has direct, IGF-independent inhibitory effects on angiogenesis providing an additional mechanism by which it exerts its tumor suppressive effects and further supporting its development for clinical use in the therapy of patients with prostate cancer.

Introduction

Regulation of cellular growth and development by the insulin-like growth factors (IGFs) is well accepted and interventions that block the IGF axis as such are currently in development for cancer therapy (Jones et al., 2005). In addition, various components of this axis are modulated by dietary and pharmacological cancer interventions (Voskuil et al., 2005).

Insulin-like growth factor-binding protein-3 (IGFBP-3), one of six members of the IGFBP family that noncovalently bind to IGFs with high affinity, is the most abundant in human serum (for a review see Firth and Baxter, 2002). IGFBP-3 is a multifunctional protein that transports and stabilizes IGFs in circulation; modulates IGF bioactivity; inhibits the growth of cancer cells; and induces apoptosis of cancer cells. The effects of IGFBP-3 on cell growth and apoptosis involve both sequestering IGFs from their receptors and IGF-independent mechanisms that include: binding to retinoid X receptor (RXR) and modulation of nuclear signalling followed by nucleomitochondrial translocation of RXR/Nur77 and induction of rapid apoptosis (Lee et al., 2005); binding to membrane receptors (Huang et al., 2003); and antagonism of the recently described survival factor, humanin (Ikonen et al., 2003). We have recently reported the initial description of successful therapeutic use of IGFBP-3 as a cancer therapy in vivo, and demonstrated that combination treatment of IGFBP-3 and RXR ligand had a synergistic effect on apoptosis induction leading to substantial inhibition of prostate cancer xenograft growth (Liu et al., 2005).

We hypothesized that apart from apoptosis induction, IGFBP-3 might have direct effects on angiogenesis because: (1) IGFBP-3 contains a highly basic heparin-binding area, and specifically binds to vascular endothelial cell monolayers (Booth et al., 1996) in a manner that may affect vascular angiogenesis; (2) IGFBP-3 inhibits vascular endothelial growth factor (VEGF)-mediated survival of human umbilical vein endothelial cells (HUVEC) in an IGF-independent mechanism (Zadeh and Binoux, 1997; Franklin et al., 2003) and...
may also affect angiogenesis in vivo; (3) IGFBP-3 is transcriptionally upregulated during hypoxia, a potent stimulator of angiogenesis (Diaz-Gonzalez et al., 2005) in endothelial cells (Koong et al., 2000); and (4) IGFBP-3 mRNA is predominantly expressed in the vascular endothelial cells of human (Fraser et al., 2000), rat (Erickson et al., 1993), and bovine corpus lutea (Brown and Braden, 2001), which suggest a possible involvement in angiogenesis regulation, perhaps as part of a feedback mechanism. Other reports also indicate that IGFBP-3 mRNA is more abundantly expressed in hypoxia-associated inflammatory angiogenesis (Tucci et al., 1998; Lee et al., 1999) and tumor endothelial cells (Schmid et al., 2003). Importantly, a recent publication identifies IGFBP-3 as a farnesyl transferase inhibitor-induced negative regulator of angiogenesis in head and neck squamous cell carcinoma (Oh et al., 2006).

Here, we report that IGFBP-3 has direct, IGF-independent inhibitory effects on angiogenesis. Solid tumors require a supply of blood vessels to survive, grow and metastasize (Folkman, 2004) and treatments that address these issues can be more effective than nonspecific chemotherapies. Our results reveal a unique mechanism by which IGFBP-3 exerts its tumor suppressive effects and supports further investigation into the clinical translation of IGFBP-3 as a neoadjuvant in prostate cancer therapy.

Results

IGFBP-3 inhibits the growth of 22RV-1 prostate cancer xenografts in vivo

To examine the effects of IGFBP-3 as a single therapy on inhibiting prostate cancer tumor cell growth in vivo, male severe-combined immunodeficiency (SCID) mice with 22RV-1 prostate cancer xenografts were given daily injections of saline, or IGFBP-3 (30 mg/kg/day intraperitoneally (i.p.)) for 16 days. Treatment with IGFBP-3 resulted in significant tumor size inhibition (40% growth inhibition, \(P<0.005; n=10 \)) relative to control animals (Figure 1a). A greater effect (50% inhibition) was seen for IGFBP-3 therapy on tumor weight (Figure 1b). These studies show that treatment of IGFBP-3 as a single therapy inhibits the growth of 22RV1 prostate cancer xenografts.

Induction of tumor apoptosis by IGFBP-3

Inhibition of xenograft growth by IGFBP-3 and RXR ligand is associated with an increase in apoptosis and activated Caspase-3 (Liu et al., 2005). The effect of IGFBP-3 single therapy on apoptosis in this xenograft model was examined by light microscopic terminal nucleotidyl transferase-mediated nick end labeling (TUNEL) assay. Representative photographs are shown in Figure 2a. As shown in Figure 2b, quantification of TUNEL-positive cells was increased sevenfold in the IGFBP-3 treatment group over saline-treated tumors. We next assessed whether this effect of IGFBP-3 is associated with an in vivo activation of Caspase-3. Microscopic examination of tumor sections stained for Caspase-3 clearly showed an increased detection of Caspase-3 in the IGFBP-3 therapy group as compared with the control group (Figure 2c). Quantification of Caspase-3-positive staining was increased sevenfold in IGFBP-3 treatment group over saline-treated tumors (Figure 2d). To further evaluate if regulation of cellular proliferation is also involved in the actions of IGFBP-3 on prostate cancer xenografts, we stained the tumors with the proliferation marker proliferating cell nuclear antigen (PCNA), and as shown in Figure 2e, observed no difference between IGFBP-3 and saline treatment (quantified in Figure 2f), suggesting that IGFBP-3-mediated inhibition of tumor growth does not involve regulation of cell proliferation. Negative controls, in which PCNA antibodies were omitted, did not show any positive staining (data not shown). This is in agreement with our previous observation utilizing a lower dose of IGFBP-3 (Liu et al., 2005).

IGFBP-3 decreases vessel formation in vivo

Microvessel density, a measurement used for quantifying intratumoral angiogenesis activity, has been suggested as a valuable prognostic marker in prostate carcinoma (Weidner et al., 1993). To investigate if IGFBP-3 had any effect on intratumoral angiogenesis, we carried out immunohistochemical staining using an antibody against CD31, an endothelial cell-specific antigen, to evaluate the antiangiogenic effect of IGFBP-3 on 22RV1 tumor xenografts. As shown in Figure 3, a twofold increased number of CD31-positive microvessels and endothelial cells were found in the control group compared to the IGFBP-3-treated group. Our results indicate that IGFBP-3 is able to suppress prostate cancer angiogenesis through inhibiting microvessel formation.

IGFBP-3 inhibits both IGF- and VEGF-induced vascular formation

VEGF is one of the most potent angiogenic factors affecting endothelial proliferation, motility and vascular
permeability. VEGF binds with high affinity to the tyrosine kinase receptors Flt-1 (VEGFR-1) and Flk-1/KDR (VEGFR-2) expressed by endothelial cells (Ferrara, 2001). VEGF expression by prostate cancer specimens is far greater than that by stromal cells of the normal prostate. These observations suggest that VEGF plays a role on tumor cell activation (autocrine regulation), in addition to paracrine actions, whereby it regulates endothelial cell (EC) functions and subsequent neovascular development (Jackson et al., 1997). We further investigated the effect of IGFBP-3 on VEGF-regulated vascular formation, using an established in vitro model of human endothelial cellular vessel formation in matrigel (Iwatsuki et al., 2005). IGFBP-3 alone has no effect on vascular formation in this assay; however, VEGF stimulated substantial new vascular complex formation. Importantly, VEGF-induced vessel formation was completely inhibited by IGFBP-3 cotreatment (Figure 4).

To further explore the effect of IGFBP-3 on VEGF-regulated vascular formation and to examine its effects on IGFBP-3 regulated vascular formation and to determine if this is an IGF-independent action, human endothelial cells on matrigel were treated individually with IGF-1, IGFBP-3, Long R3-IGF-1 (an IGF-1 analog which does not bind IGFBP-3) or their combination (Figure 4). IGF-1 stimulated vascular formation consistent with its described angiogenic effect (Hanahan and Folkman, 1996). IGFBP-3 alone has no effect on vascular formation in this assay; however, VEGF stimulated substantial new vascular complex formation. Importantly, VEGF-induced vessel formation was completely inhibited by IGFBP-3 cotreatment (Figure 4).

To further explore the effect of IGFBP-3 on VEGF-regulated vascular formation and to examine its effects on IGFBP-3 regulated vascular formation and to determine if this is an IGF-independent action, human endothelial cells on matrigel were treated individually with IGF-1, IGFBP-3, Long R3-IGF-1 (an IGF-1 analog which does not bind IGFBP-3) or their combination (Figure 4). IGF-1 stimulated vascular formation consistent with its described angiogenic effect (Hanahan and Folkman, 1996). IGFBP-3 alone has no effect on vascular formation in this assay; however, VEGF stimulated substantial new vascular complex formation. Importantly, VEGF-induced vessel formation was completely inhibited by IGFBP-3 cotreatment (Figure 4).

Figure 2 Inhibition of xenograft growth by IGFBP-3 is associated with an increase in apoptosis but does not involve a change in cell proliferation. (a) TUNEL immunohistochemistry of xenografts in control with saline treatment (left) and treatment with IGFBP-3 (right). (b) TUNEL pixel histogram quantitation. **P < 0.005 as compared with control (n = 10 per group). (c) Microscopic examination of tumor sections stained for activated Caspase-3 antigen in control with saline treatment (left), and treatment with IGFBP-3 (right). (d) Quantification of Caspase-3-positive staining per pixel histogram (n = 10 per group). (e) Proliferating cell nuclear antigen immunohistochemistry of xenografts in control with saline treatment (left), and treatment with IGFBP-3 (right). (f) Proliferating cell nuclear antigen pixel histogram quantitation (n = 10 per group). **P < 0.005 as compared with saline control.

Figure 3 IGFBP-3 decreases vessel formation in vivo. Immunohistochemical staining of xenografts using CD31 antibody. (a) Control with saline treatment and IGFBP-3 treatment. (b) Quantification of CD31-positive staining by pixel histogram (n = 10 per group).
IGF-induced vascular formation in part via an IGF-1-independent mechanism.

IGFBP-3 inhibits in vivo angiogenesis

To investigate the antiangiogenic activity in an *in vivo* setting, rhIGFBP-3 was tested on chicken embryo chick allantoic membrane (CAM) and murine matrigel plug angiogenesis assays. Compared to phosphate-buffered saline (PBS) control, IGFBP-3 at doses of 2.5 and 10 μg/disk completely inhibited the growth of new vascular vessels in all six tested chick embryos, which was measured by the formation of avascular zones (Figure 5). No inflammation was observed in these studies.

Basic fibroblast growth factor (bFGF)-induced angiogenesis has been considered as a model of tumor-derived neovascularization (Klauber *et al*., 1997). Figure 6 shows that the bFGF plugs were bright red and contained a large numbers of micro-blood vessels, which penetrated into the solidified matrigel and spread widely. There were no blood vessels in the PBS plugs (data not shown). However, the numbers of micro-blood vessels decreased in the plugs with both bFGF and different doses of rhIGFBP-3 in a dose-dependent manner. Quantification by image analysis showed that bFGF-induced neovascularizations were inhibited by 17 and 75% at the doses of 2.5 and 5 μg/ml rhIGFBP-3, respectively. Addition of 10 μg/ml of IGFBP-3 to FGF-2 was not significantly different from the 5 μg/ml dose.

Overexpression/ectopic expression of human IGFBP-3 inhibits vascular patterning in Zebrafish embryos in an IGF-independent manner

To assess the role of IGFBP-3 in blood vessel patterning *in vivo*, we overexpressed/ectopic expressed human
IGFBP-3 via injection of the corresponding mRNA into the cytoplasm of one-cell stage flk1:green fluorescent protein (GFP) transgenic Zebrafish embryos. flk1:GFP represents a stable integration of a GFP reporter gene driven by the promoter of VEGF receptor-2 (flk1) and it utilized in the rapid, high-throughput screening of antiangiogenesis drug screening (Cross et al., 2003). As the vascular endothelial cells are labeled with green fluorescence, the blood vessels can be easily visualized in live embryos in this transgenic fish line. As shown in Figure 7, introduction of IGFBP-3 (300 pg of mRNA) resulted in defects of vascular patterning in the trunk and tail regions (Figure 7) in 36 h.p.f. (hours post fertilization) embryos. Intersegmental vasculogenesis is severely affected. Vessels are lacking and the remaining vessels are abnormally positioned. In addition, regional somites are compressed compared to control fish. To test whether the observed effect is dependent on the function of IGFBP-3 in IGF-sequestration, mRNA from a mutant form of IGFBP-3 which is defective in IGF binding was injected into flk1:GFP embryos in parallel with wild-type form. The phenotype in embryos injected with the mutant form is essentially indistinguishable from that with wild-type IGFBP-3, indicating that the effect of IGFBP-3 on vasculogenesis is independent of IGF sequestration. These apparently dorsalized embryos resemble previously characterized Zebrafish mutants such as the notochord mutant ntl, which shows defects in notochord differentiation (Odenthal et al., 1996) as well as the dominant-negative IGF-1R overexpression mutant (Eivers et al., 2004).

Discussion

In prostate cancer, as in other cancers, tumor-associated angiogenesis is a crucial step in the process of tumor growth, invasion and metastasis (van Moorselaar and Voest, 2002). Previous studies on prostate cancers have demonstrated a correlation between microvessel density, pathological stage and Gleason score (Arakawa et al., 1997; Bettencourt et al., 1998; Bono et al., 2002). Therefore, inhibiting vessel formation offers hope to reduce the morbidity and mortality from prostate cancer, and solid tumor cancers in general (Folkman, 1971).

Two reports have shown that IGFBP-3 inhibited the growth of bovine aortic endothelial cells (Delafontaine et al., 1996) and the IGF-/VEGF-induced proliferation of HUVEC (Franklin et al., 2003). In addition, IGFBP-3 is inhibitory for both proliferation and in vitro angiogenesis of the mouse endothelial progenitor cell line AEL-R1/LRT-RunxI in a manner independent from growth inhibitory effects of IGFBP-3 (Iwatsuki et al., 2005). This was shown to be specific to IGFBP-3 as IGFBP-6 was not inhibitory for in vitro angiogenesis of AEL-R1/LRT-RunxI cells, even at a higher concentration.

It has been reported that VEGF and transforming growth factor 1 downregulate the expression of IGFBP-3 via injection of the corresponding mRNA into the cytoplasm of one-cell stage flk1:green fluorescent protein (GFP) transgenic Zebrafish embryos. flk1:GFP represents a stable integration of a GFP reporter gene driven by the promoter of VEGF receptor-2 (flk1) and it utilized in the rapid, high-throughput screening of antiangiogenesis drug screening (Cross et al., 2003). As the vascular endothelial cells are labeled with green fluorescence, the blood vessels can be easily visualized in live embryos in this transgenic fish line. As shown in Figure 7, introduction of IGFBP-3 (300 pg of mRNA) resulted in defects of vascular patterning in the trunk and tail regions (Figure 7) in 36 h.p.f. (hours post fertilization) embryos. Intersegmental vasculogenesis is severely affected. Vessels are lacking and the remaining vessels are abnormally positioned. In addition, regional somites are compressed compared to control fish. To test whether the observed effect is dependent on the function of IGFBP-3 in IGF-sequestration, mRNA from a mutant form of IGFBP-3 which is defective in IGF binding was injected into flk1:GFP embryos in parallel with wild-type form. The phenotype in embryos injected with the mutant form is essentially indistinguishable from that with wild-type IGFBP-3, indicating that the effect of IGFBP-3 on vasculogenesis is independent of IGF sequestration. These apparently dorsalized embryos resemble previously characterized Zebrafish mutants such as the notochord mutant ntl, which shows defects in notochord differentiation (Odenthal et al., 1996) as well as the dominant-negative IGF-1R overexpression mutant (Eivers et al., 2004).
of IGFBP-3 in aortic endothelial cells (Erondu et al., 1996; Dahlfors and Arnqvist, 2000), whereas IGF, tumor necrosis factor-α and interleukin-1 upregulate it in endothelial cells or articular chondrocytes (Olney et al., 1995; Erondu et al., 1996). Thus, IGFBP-3 may be a downstream effector for many growth regulatory cytokines and its transcription must be regulated differently depending on the cell type. Indeed, knockdown of IGFBP-3 expression by RNA interference or neutralizing antibodies blocked the antiangiogenic effect of the farnesyl transferase inhibitor SCH66336 in head and neck squamous cell carcinoma (Oh et al., 2006).

IGFBP-3 is known to be overexpressed during the angiogenic phase of the corpus luteum in rats, primates and humans (Erickson et al., 1993; Fraser et al., 1998, 2000). Other reports also indicate that IGFBP-3 mRNA is more abundantly expressed in hypoxia-associated inflammatory angiogenesis (Tucci et al., 1998; Lee et al., 1999) and tumor endothelial cells (Schmid et al., 2003). Indeed, hypoxia is the major pathophysiological condition regulating angiogenesis, and increased angiogenesis in response to hypoxia is part of an adaptive response aimed at achieving increased delivery of oxygen and nutrients to tissues (Acker and Plate, 2003). IGFBP-3 is induced by hypoxia (Grimberg et al., 2005) and may be involved in the normalization of tumor vasculature, modulating the abnormal structure and function of tumor vasculature (Jain, 2005).

Chan et al. (1998) demonstrated that plasma level of IGFBP-3 was a predictor of advanced-stage prostate cancer (relative risk = 0.2, 95% confidence interval 0.1–0.6 for the highest versus the lowest quartiles of IGFBP-3). Lee et al. (2002) has reported that the overexpression of rhIGFBP-3 by an adenoviral vector, AdSCMV, inhibited the growth of non-small-cell lung cancer cells in tumor xenografts. Singh et al. (2004b) showed that the antitumor effects of both grape seed extract and inositol hexaphosphate (Singh et al., 2004a) were associated with a concomitant rise in serum IGFBP-3 and importantly, suppression of angiogenesis as measured by tumor vessel immunohistochemistry and serum VEGF levels. Silibinin, an antioxidant flavonoid, also inhibits prostate cancer xenograft growth and was associated with a decrease in tumor VEGF staining as well as increased intracellular IGFBP-3 staining (Singh et al., 2003).

Evidence for IGF-independent actions of IGFBP-3 include: (1) effects on cells that lack a functional type 1 IGF receptor (Valentinis et al., 1995); (2) IGFBP-3 binds other protein partners (receptors) that are not associated with IGFs (Liu et al., 2000; Huang et al., 2003; Ikonen et al., 2003) and as supported in the current study, (3) IGF analogs that do not bind IGFBP-3 fail to block IGFB action (Franklin et al., 2003); and (4) IGFBP-3 mutants that do not bind IGFs maintain biologic actions (Chan et al., 2005). In the present study, we further support this concept by demonstrating antagonism of VEGF action and reporting data utilizing a mutant form of IGFBP-3 with greatly reduced IGF binding in Zebrafish.

In summary, these data provide evidence for the first time that rhIGFBP-3 has direct inhibitory effects on angiogenesis. As invasion and angiogenesis are important determinants of tumor progression, this newly described function of IGFBP-3 could have important relevance to both the prediction of cancer progression as a biomarker and cancer therapy as a therapeutic target. Collectively, these results suggest that inhibition of human prostate cancer growth by IGFBP-3 is associated with its in vivo antiproliferative, proapoptotic and antiangiogenic efficacy and supports further research into the potential clinical use of IGFBP-3 or pharmacological inducers of IGFBP-3 as neoadjuvant approaches for patients with prostate cancer.

Materials and methods

Cell culture

22RV1 cells were from ATCC (Manassas, VA, USA) and maintained as directed. HUVEC and Microvascular Endothelial Cell Growth Medium Bullet Kit-2 (EGM-2-MV Bullet Kit) were purchased from Clonetics (San Diego, CA, USA) and maintained as directed. All cultures were incubated at 37°C in a humidified atmosphere containing 5% CO₂.

Tumor xenografts

22RV1 xenograft tumors were generated by injection of 1 × 10⁶ cells in 200 μl mixed at a 1:1 dilution with matrigel in the right flank of male SCID mice. Tumors were established for 2 weeks before the start of treatment. Ten SCID mice with 22RV1 tumors were treated daily with saline or IGFBP-3 (30 mg/kg/day), given by daily i.p. injections for 16 days. The length and width of the mass located at the site of injection of the 22RV1 cells were measured with calipers and recorded once a week. The mice were killed at day 16. Tumors were harvested, weighed, fixed in formaldehyde and embedded in paraffin. Animal care was in accordance with current regulations and standards of the National Institutes of Health, as well as our institutional guidelines for animal care. All animal experiments were approved by the animal research committee of the institutional review board.

Tumor immunohistochemistry

Paraffin-embedded sections were prepared from 22RV1 tumors harvested on day 16. After deparaffinization of tissue section, apoptotic DNA fragments were labeled by terminal deoxynucleotidyl transferase, and detected by antidigoxigenin antibody conjugated to fluorescein (ApopTag fluorescein in situ apoptosis detection kit, Chemicon, Temecula, CA, USA). Cells were examined at ×40 using an inverted fluorescence microscope (Alexivert 135M, Carl Zeiss, New York, NY, USA). Apoptotic staining was quantified by pixel histogram (Adobe Systems, Mountain View, CA, USA) and confirmed by manual counting (r = 0.98) by counting the positive cells (brown-stained), as well as the total number of cells in 10 arbitrarily selected fields by an independent observer. Indirect immunohistochemistry was performed with Vectastain Elite ABC kit (Vector Labs, Burlingame, CA, USA) using 3′-diaminobenzidine as a chromogen and quantitated as per TUNEL assay above. Sections were incubated with mouse monoclonal antibodies against PCNA (Ab-1, 1:2500; Oncogene Science, Manhasset, NY, USA), CD31 (JC70A, 1:20; Dako Corp., Carpinteria, CA, USA),
activated Caspase-3 antibody (Sigma, St Louis, MO, USA) overnight at 4°C in a humidified chamber. Negative controls were treated with only Tris-buffered saline under the same conditions.

In vitro vascular formation matrigel assays
HUVEC cells (1.5 × 10⁶) were resuspended in 1 ml of StemPro-34 SFM complete medium (Invitrogen, Carlsbad, CA, USA) with or without recombinant human IGFBP-3 or VEGF (Sigma, St Louis, MO, USA) andoverlayed on a Biocoat matrigel basement membrane (BD Biosciences, San Jose, CA, USA) in a six-well plate. After a 12–14 h incubation at 37°C, the number of polygonal areas formed by vascular tube-like structures was counted under a microscope for each well (Iwatsuki et al., 2005).

Materials
Recombinant human IGFBP-3 and IGF-1 were obtained from INSMED Corp. (Glen Allen, VA, USA), aliquoted and stored at −80°C. The activity of rhIGFBP-3 for both IGF-I-binding and -inhibitory effect on cell proliferation of human breast cancer MCF7 cells was confirmed by Western ligand blotting and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay as described previously (Pratt and Pollak, 1994), respectively, before the experiments (data not shown). bFGF and the rabbit antiserum against human IGFBP-3 were purchased from Upstate Inc. (Lake Placid, NY, USA). Long R3-IGF-1 was obtained from Groep (Adelaide, Australia). Matrigel (11.46 mg/ml) was from Becton Dickinson Labware (Bedford, MA, USA).

Chicken embryo choioallantoic membrane assay
Three-day-old fertilized white Leghorn eggs were cracked, and chicken embryos with intact yolks were carefully placed in 20 × 100 mm plastic Petri dishes. After 6 days of incubation in 3% CO₂ at 37°C, a disk of methylcellulose containing 10, 5 and 2.5 µg of rhIGFBP-3 dried on a nylon mesh (3 × 3 mm) was implanted on the CAM of individual embryos. The nylon mesh disks were made by desiccation of 10 ml of 0.45% methylcellulose in water. After 3–4 days of incubation, embryos and CAMs were examined for the formation of new blood vessels in the field of the implanted disks by a dissecting microscope. Disks of methylcellulose containing PBS were used as negative controls (Cao et al., 1998).

Murine matrigel plug angiogenesis assay
Angiogenesis was assayed as the growth of blood vessels from subcutaneous tissue of mice into a solid gel of reconstituted basement membranes containing the test sample. Matrigel in liquid form at 4°C was mixed with bFGF (1 µg) and with PBS, or 2.5, or 5 or 10 µg/ml rhIGFBP-3, and then injected into the abdominal subcutaneous tissue of six mice/group. At body temperature, the matrigel rapidly solidifies. Mice were killed 2 weeks later, and the matrigel plugs were exposed for photography (Bagheri-Yarmand et al., 1999).

Zebrafish mRNA microinjection
Templates for transcription were prepared by linearizing plasmids pcDNA3IGFBP3 (wild-type IGFBP-3) and pcDNA1GGGBP3 (non-IGF-binding GGG mutant of IGFBP-3 (Buckway et al., 2001)) with Smal. Capped mRNA was synthesized in vitro using the mMESSAGE mMACHINE Kit (Ambion, Austin, TX, USA). After purification as recommended by the manufacturer, RNA was dissolved in nuclease-free water at a concentration of approximately 500 ng/µl. The RNA was diluted to a final concentration of 100 ng/µl and injected into the cytoplasm of one-cell stage flkl:GFP Zebrafish embryos.

Fluorescence microscopy
Embryos were examined under a fluorescein isothiocyanate filter on a Zeiss microscope (Zeiss Axioplan-2, Thornwood, NY, USA). Pictures represent an area of 500 × 500 µm imaged with a × 20/0.7 NA HC PlanApo lens. GFP was detected at a spectral range from 507 to 550 nm.

Statistical analysis
All in vitro experiments were repeated at least three times. Means ± s.d. are shown. Statistical analyses were performed using analysis of variance tests using InStat (GraphPad, San Diego, CA, USA). Differences were considered statistically significant when *P < 0.05 and when **P < 0.005.

Acknowledgements
This work was supported in part by a Prostate Cancer Foundation award and National Institutes of Health Grants RO1AG20954, P50CA92131 and RO1CA100938 (to PC), grants from the Stein-Oppenheimer Foundation, the Lawson Wilkins Pediatric Endocrinology Society, the UCLA Prostate Cancer SPORE and National Institutes of Health Grant 2K12HD34610 (to K-WL); and a National Institutes of Health Grant R01DK054508 (to SL).

