Control of Growth Within Drosophila Peripheral Nerves by Ras and Protein Kinase A

Michael Stern, Ph.D.
E-Mail: stern@bioc.rice.edu

Rice University
Houston, TX 77251

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Approved for Public Release; Distribution Unlimited

The long term goals of this research are to understand the mechanisms by which NF1 and its partners control growth using the Drosophila peripheral nerve as our assay system. This system is advantageous because we can apply a number of powerful molecular genetic methodologies that are not available in other systems. Our major findings were generated from aim #4. We reported after year 2 that Ras nonautonomously activates perineurial glial growth via PI3 Kinase, Akt and FOXO (published in the Journal of Neuroscience in 2007). Second, we port preliminary evidence that pushover (push) acts in the glia to regulate perineurial glial growth, but in the neuron to regulate excitability. Third, we report that activation of the Tor pathway is necessary but not sufficient to increase perineurial glial growth. Fourth, we report that the metabotropic glutamate receptor regulates neuronal growth and excitability via PI3K.

Molecular genetics; neuroscience; cell biology; cell signaling; model systems
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>6</td>
</tr>
<tr>
<td>Body</td>
<td>6</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>25</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>25</td>
</tr>
<tr>
<td>Conclusion</td>
<td>26</td>
</tr>
<tr>
<td>References</td>
<td>26</td>
</tr>
<tr>
<td>Appendices</td>
<td>26</td>
</tr>
</tbody>
</table>
INTRODUCTION

Over the last several years, my lab has been developing the Drosophila peripheral nerve as a system with which to identify and study the signalling pathways controlling growth of the perineurial (outer) glial layer. To accomplish this goal, we apply the various molecular genetic methodologies uniquely available in Drosophila; we hope that these methodologies will enable us ultimately to identify all of the relevant genes that interact with NF1 to control growth, and place NF1 and these partner genes in as complete a mechanistic context as possible. Then this mechanism could be tested and refined in systems more similar to humans but more difficult to work with (e.g. the mouse). Because all of the experiments are performed on the acutely dissected third instar larva, there are no complications or caveats associated with experimentation on cell culture systems, and we assay the entire nerve cross section as it exists within the whole organism. We thought that a more complete mechanistic understanding of growth control within peripheral nerves would greatly facilitate the ability to design drugs able to combat neurofibromas. Within this larger context, I proposed four different tasks to investigate various aspects of the genetic control of growth within peripheral nerves. These tasks involve elucidation of the relationship among Neurofibromin, pushover, and protein kinase A, as well as the identification of signalling pathways downstream of Ras that affect growth within peripheral nerves. We report the most success from our experiments with task #4, in which we demonstrated that Ras activates perineurial glial growth via PI3K, Akt and Foxo, and in preliminary findings we also collected data suggesting that the Tor pathway cooperates with Foxo in regulating glial growth, and that the EGF ligand spitz might participate in glial growth control. For task #3, we have collected data demonstrating that Pushover (push) acts in the motor neuron to control motor neuron excitability, but in preliminary data appears to act in the glia to control perineurial glial growth.

BODY

Task one (completed): Does Neurofibromin activate PKA? Several experiments were proposed in the grant application to address this possibility, and many of these were completed during the first year of funding. However, as discussed in the first year report, the completed experiments gave inconclusive and in some cases conflicting results, making it impossible to place the data in a mechanistic framework. For example, during year 1, I proposed to determine: first, if expression of NF1 specifically in peripheral glia suppressed the effects of NF1V12 on perineurial glial growth, second: test if overexpression of NF1 in peripheral glia enhanced the effects of RasV12 on perineurial glial growth, third: test if loss of function mutations in PKA suppress the effects of RasV12 on perineurial glial growth, and fourth: test the prediction that the constitutively active PKA called PKA-C1* is epistatic to NF1V12 in its interaction with RasV12. The results of these experiments are summarized in Figure 1 and answers to each specific question are described below.

Does expression of NF1 specifically in the peripheral glia suppress the effects of NF1V12 on perineurial glial growth? Expression of RasV12 in peripheral glia thickens perineurial glia, and this effect is suppressed by the NF1V12 mutation. To determine if lack of NF1 specifically within the peripheral glia was responsible for this suppression, we introduced a UAS-NF1 transgene into larvae carrying both gli-GAL4 and UAS-RasV12, all in the presence of the NF1V12 mutation. In these larvae, wildtype NF1 would be expressed only in the peripheral glia; the rest of the larval cells would remain mutant for NF1. We found that, indeed, expression of NF1V12 in the peripheral glia rescued this mutant effect of NF1V12. In particular, perineurial glial thickness was increased from 1.7 μm in the absence of UAS-NF1, to 2.6 μm in the presence of UAS-NF1 (compare lanes 2 and 3, figure 1 below). These results suggest that loss of NF1 specifically in the peripheral glia causes the suppression of the effects of RasV12.

Does overexpression of NF1 specifically in the peripheral glia enhance the effects of RasV12 on perineurial glial growth? To address this question, we co-expressed RasV12 and NF1 in peripheral glia, and compared perineurial glial thickness to larvae expressing RasV12 alone. We found that there was no significant difference in perineurial glial thickness between the two genotypes (compare lanes #1 and #4, Figure 1 below), suggesting that our hypothesis was incorrect: overexpressing NF1 in peripheral glia does not enhance the effects of RasV12.

Does reduction in PKA activity suppress the effects of RasV12 on perineurial glial growth? Expression of a constitutively active PKA enhances the effects of RasV12, Neurofibromin activates PKA (Tong et al., 2002), and the NF1V12 mutation suppresses the effects of RasV12. These observations led to the prediction that reduction in PKA activity would suppress the effects of RasV12. To address this question, we measured perineurial glial thickness in larvae expressing RasV12 and heterozygous for a PKA null mutation (PKAΔ12). This allele is expected to reduce PKA activity in the larva by 50%. We found no effect on perineurial glial growth (compare lanes #1 and #5 in Figure 1,
Then we replaced the PKAH2 allele for this experiment with two alleles expected to reduce PKA activity: a deletion of PKA called gamma-15, which is expected to reduce PKA activity by 50\%, as well as a transgene expressing a dominant-negative PKA allele called BGO: this transgene is a mutant form of the PKA regulatory subunit which fails to bind cAMP, and thus constitutively represses the endogenous, wildtype PKA. Again, we found no effect of this reduction in PKA activity on perineurial glial growth (compare lanes #1 and #6 in Figure 1 below).

![Figure 1: Effects of altered NF1 activity on perineurial glial growth in larvae expressing RasV12](image)

Figure 1: Mean perineurial glial thickness (µm, +/- SEM) is shown along the Y axis for the genotypes indicated along the X axis. The following pairwise combinations had statistically significant differences (Student's unpaired t-test): For gli-RasV12; NF1P2 (lane #2), n= 41 vs. gli-RasV12-NF1; NF1P2 (lane #3), n=30, p < 0.0001; for gli-RasV12; PKA-C1*; NF1P2 (lane#8), n=16 vs. gli-RasV12; NF1P2 (lane #2), n=41, p < 0.0001. For gli-RasV12; PKA-C1(lane #7) n=41 vs. gli-RasV12; PKA-C1*; NF1P2(lane#8), n=16, p=0.0056.

Is expression of the constitutively active PKA epistatic to NF1P2 in its interaction with RasV12? NF1P2 suppresses the effects of RasV12, whereas expression of the constitutively active PKA (called PKA-C1*) enhances the effects of RasV12. If NF1P2 exerts its suppression by reducing [cAMP] and thus PKA activity, then expression of PKA-C1* is predicted to be epistatic to NF1P2 because PKA-C1* does not require cAMP for activity. We tested this possibility by co-expressing RasV12 and PKA-C1*in peripheral glia in an NF1P2mutant background. We found that, as predicted, PKA-C1* was epistatic to NF1P2: The perineurial glia, in an NF1P2 background and in the presence of both RasV12 and PKA-C1* was extremely thick, actually even thicker than in an NF1P2 background (compare lanes#2, #7 and #8 in Figure 1).
Overall conclusions, Task one: Our observation that overexpression of \(NF1\) in peripheral glia has no effect on perineurial glial growth is not inconsistent with the mechanisms proposed in the grant application. This observation probably means that normally, Neurofibromin levels are not limiting for the signalling pathways in which it operates; thus, overexpression is phenotypically silent. The inability of reductions of PKA to suppress the effects of Ras\(^{V12}\) is not consistent with the central hypothesis. One possibility is that we are unable to lower PKA activity sufficiently to observe the anticipated suppression of the effects of Ras\(^{V12}\). Unlike \(NF1\), PKA-CI* is an essential gene, so a reduction of PKA to zero kills Drosophila prior to the third instar larval stage that we assay. In this view, we are unable to lower PKA activity sufficiently to confer suppression and still retain viability. An alternative possibility, of course, is that Neurofibromin does not act through PKA.

The ability of \(NF1\) to rescue \(NF1^{P2}\) when expressed only in the peripheral glia is consistent with our central hypothesis, as is the demonstration that \(PKA-CI*\) is epistatic to \(NF1^{P2}\). However, I have noticed that there is a lot of larva to larva variability associated with \(NF1\) mutations which makes me want to move cautiously in reporting these results. It is possible that some of this variability reflects genetic background effects; such effects are also observed with \(NF1\) mutations when the small size phenotype is assayed. To address this possibility, in year two we isogenized the transgenes and mutations listed in this report by back-crossing five times to our isogenic wildtype strain. Then we re-tested the effects of the \(NF1^{P2}\) null mutation on perineurial glial growth in larvae expressing \(Ras^{V12}\) in the peripheral glia, but this time used stocks in which each genetic element was isogenized (by five successive back-crosses) to our isogenic wildtype stock. We found that in an isogenic genetic background, the \(NF1^{P2}\) mutation actually enhanced, rather than suppressed, the growth promoting effects of Ras\(^{V12}\). In particular, perineurial glial thickness in \(NF1^{P2}\); \(gli-Ras^{V12}\) larvae was 3.1 +/- 0.2 \(\mu\)m (n=13), which is significantly thicker than glial thickness in \(NF1^{P2}\); \(gli-Ras^{Y}\) (2.2 +/- 0.1). This unexpected result is definitive, as this result controls for genetic background effects. The enhancement of \(Ras^{V12}\) by \(NF1^{P2}\) could be the result of loss of \(NF1\) in the peripheral glia, or the peripheral glia. We planned to distinguish between these possibilities by determining if expression of \(NF1^{P2}\) specifically in the peripheral glia was able to rescue this phenotype. All of the necessary mutations and transgenes were isogenized and the necessary stocks constructed to perform this experiment. Unfortunately, we were unable to obtain any larvae homozygous for the \(NF1^{P2}\) mutation so we were unable to make the desired measurements. I don't think this lack of larvae results from any interesting genetic interaction - rather, I think that combining the generally debilitating \(NF1^{P2}\) mutation with the simultaneous presence of three additional transgenes decreased larval viability to below a frequency needed to observe any larvae in a realistic number of bottles.

Task two: Which domain of Neurofibromin is responsible for PKA activation? The performance of these experiments required a successful conclusion to the experiments in task one. Because that task did not reach a positive conclusion, we were unable to perform the experiments described in this task.

Task three: A key question in this task was an identification of the cell type in which Pushover (Push) functions to control perineurial glial growth. The three possible cell types are: the neuron, the peripheral glia, and the perineurial glia. We have approached this question in two ways, first by identifying the cell type in which Push must function for proper control of perineurial glial growth, and second, by identifying the cell type(s) in which Push protein is present. These two approaches provide complementary information, and both approaches together provide a believable answer to the question posed. We have made good progress on both fronts.

First, to identify the cell type in which Push must function: we constructed a push RNAi construct under UAS control and obtained transgenic flies carrying this construct. To test for the ability of this RNAi construct to knockdown push levels sufficiently to observe a phenotype, we assayed for the push motor neuron excitability defect, which is monitored with electrophysiology moethods. This defect is more robust and easier to observe than the perineurial glial phenotype. We drove push-RNAi with the Gal4 driver D42, which expresses in motor neurons, and gli-Gal4, which expresses in peripheral glia. We found that when both driver and push-RNAi were heterozygous, we could observe no electrophysiological phenotype with either driver. However, when both the D42 drives and push-RNAi were homozygous, then we observed an increase in neuronal excitability similar to, but not as extreme, as the push null mutant. In contrast, larvae homozygous for gli>push-RNAi exhibited wildtype neuronal excitability (not shown). These experiments demonstrate that the push-RNAi construct can knockdown push activity but only when homozygous, and this construct may not generate a complete null phenotype. These experiments also demonstrate that the push mutations increase neuronal excitability because of lack of push in neurons, not glia.

To identify the cell type within which push functions to control perineurial glial thickness, we drove push-RNAi with each of three Gal4 drivers: \(D42\), gli-Gal4, and a third driver, repo-Gal4, which expresses in both peripheral and perineurial glia. We found that in larvae heterozygous for \(D42>push-RNAi\), and repo>push-RNAi, perineurial glial thickness was normal, whereas in gli>push-RNAi, perineurial glial thickness was significantly, although moderately, elevated. Given that the chromosomal push null mutation confers only a moderate increase in
perineurial glial thickness in an otherwise wildtype background, these preliminary findings are consistent with the notion that push acts in the peripheral glia to control perineurial glial thickness, as hypothesized. The inability of repo-Gal4 to confer a perineurial glial phenotype when driving push-RNAi might result from inadequate knockdown of push levels in these larvae heterozygous for each transgene, as described above for the motor neuron excitability phenotype. If so, then perhaps doubling the dosage of the push-RNAi transgene might knock down push levels further, and to a level sufficient to observe a perineurial glial thickness phenotype. To test this possibility, we assayed perineurial glial thickness in larvae carrying one copy of repo-Gal4 and homozygous (two copies) of UAS-push-RNAi. We found an even greater increase in perineurial glial thickness in these larvae, which is consistent with a role for push in the glia.

Figure 2: Effects of push knockdown in neurons or glia on perineurial glial thickness. Means and SEMs of perineurial glial thickness (Y axis) for the indicated genotypes (X-axis). Number of nerves measured: gli+, n=13, gli>push-RNAi, n=19, D42>push-RNAi, n=37, repo>push-RNAi, n=33, repo>push-RNAi, push-RNAi, n=26. gli> + is significantly different from gli>pushRNAi, pushRNAi (p=0.0090).

Second, to identify the cell(s) in which Push is present: We decided to address this question by constructing a push transgene containing about 10-15 kb of upstream sequence, to enable proper tissue-and temporal-specific expression, push genomic sequence (about 18 kb, including about 16 kb of open reading frame) with the C terminus "tap-tagged", which will enable a number of protein chemistry experiments to be performed on Push, including Push localization through immunocytochemistry. Because the DNA is so large in amount, we needed to use a novel in vivo recombination technique to make the construct; this technique is called "recombineering". Student Curtis Lin has successfully completed the construct and has sent the DNA to a company that will inject the DNA into fly embryos so that we can obtain transgenic flies. Because standard P element mediated transformation does not work effectively with DNA of such large size, we are using the new phi31 recombinase system to obtain transgenics.

Task Four: The major focus of this task was to identify signalling pathways acting in the peripheral glia downstream of NF1 and Ras. Unexpectedly, we found that the PI3K pathway, but not the Raf pathway, appeared to be the most important for mediating the effects of NF1 and Ras on perineurial glial growth. We further showed that
PI3K exerted its effects on growth via the downstream kinase Akt and the transcription factor Foxo. These experiments were published last year (Lavery et al., 2007) and the PDF for this paper is appended to this document. The experiments described in this paper are summarized below. Figures from the attached paper are referenced when appropriate.

We also modified the statement of work to begin testing the possibility that the Drosophila metabotropic glutamate receptor, mGluRA, is an endogenous activator of PI3K in neurons. Given the critical importance of PI3K in mediating the effects of Neurofibromin on glial growth, the possibility that mGluRA endogenously regulates PI3K in neurons (and perhaps glia as well) potentially has huge significance for the mechanisms by which Neurofibromin affects neuronal and glial properties.

To evaluate the role of Ras signalling in nonautonomous growth control within peripheral nerves, we used the GAL4/UAS system to express wildtype and mutant transgenes specifically within the peripheral glia. Two GAL4 drivers, gli-GAL4 and MZ709, were reported to express in the peripheral glia but not the neurons of peripheral nerves. The gli-Gal4 driver is a particularly well characterized marker for peripheral glia. gli-Gal4 was generated via gene conversion from a gli-lacZ enhancer trap line, which was reported to express specifically in peripheral glia, exit glia and some midline glia. The gli-Gal4 driver was used to study peripheral glial dynamics during embryonic peripheral nerve development. This driver was also used to study peripheral glial anatomy during larval growth and at the mature third instar larval neuromuscular junction and peripheral sensory structures. These studies confirmed that gli-Gal4 is expressed in peripheral glia but not motor and sensory neurons.

To confirm that gli-Gal4 and MZ709 do not express Gal4 in the perineurial glia, we visualized the expression pattern of these drivers within peripheral nerves via induced expression of a nuclear-localized GFP. We also visualized the total complement of peripheral nerve nuclei (peripheral and perineurial glial) via the Hoechst DNA dye. As shown in Figures 1B and 1D from Lavery et al., 2007, attached, there are about 20 nuclei per mm of peripheral nerve. Most of these are perineurial glial nuclei whereas a few are peripheral glial nuclei. If gli-Gal4 and MZ709 express in the perineurial glia as well as peripheral glia, then we anticipate that in gli-GFP (nls) and MZ709-GFP (nls), most or all of these nuclei would contain GFP. In fact, as shown in Figure 1C and 1E from Lavery et al., 2007, attached, we observe that only a few (presumably peripheral glial) nuclei from these larvae express GFP. Therefore, we conclude that neither gli-GAL4 and MZ709 expresses Gal4 in the perineurial glia. We generally observe GFP in fewer than 8 peripheral glial nuclei, which presumably results from cell-to-cell variability in Gal4 expression levels, as was reported previously for peripheral glia. We also observed that each driver also expresses Gal4 within certain cells of the ventral ganglion, as shown in Figure 1 from Lavery et al., 2007, attached.

In both mice and humans, neurofibroma formation appears to occur only when the Schwann cell component of the peripheral nerve is homozygous for Nf1. This observation suggests that activated Ras within Schwann cells is necessary for neurofibroma formation. To test the effects of activating Ras within Drosophila peripheral glia (analogous to the mammalian Schwann cell), we used the gli-GAL4 driver to express RasV12 or the constitutively-active RasV12 specifically in the peripheral glia. We found that larvae bearing gli-GAL4 and either of two UAS-RasV12 transgenes exhibited a thickened perineurial glia. The thickness observed, 2.1-2.3 µm, was significantly (about 50%) greater than the value observed in larvae carrying gli-GAL4 or UAS-RasV12 alone, or gli-Gal4 as shown in Figure 2 from Lavery et al., 2007, attached. We conclude that Ras activation specifically within the peripheral glia is sufficient to promote perineurial glial growth. We also found that gli-GAL4-driven co-expression of both UAS-RasV12 transgenes does not cause a further increase in perineurial glial thickness: perineurial glial thickness in larvae expressing both transgenes is the same as in larvae expressing either transgene alone, as shown in Figure 2 from Lavery et al., 2007, attached. This observation suggests that in gli-GAL4 larvae, RasV12 levels are not limiting for promoting perineurial glial growth. To rule out the possibility that the presence of two transgenes decreased expression of both via titration of Gal4, we measured perineurial glial thickness in larvae co-expressing RasV12 with an indifferent transgene (GFP). We found that this co-expression did not suppress the growth-promoting effects of RasV12, as shown in Figure 2 from Lavery et al., 2007, attached, suggesting that the presence of a second UAS-driven transgene does not significantly affect expression of the first.

Activated Ras activates a number of downstream molecules, including Raf, PI3 kinase (PI3K) and the guanine nucleotide exchange factor for the Ral GTPase. To identify the effector(s) responsible for transducing the nonautonomously expressed RasV12, we expressed transgenes encoding the constitutively active RasV12, PI3K-CAAX, and RafV20 proteins within peripheral glia using gli-GAL4. As shown in Figure 3B from Lavery et al., 2007, attached, we found that expression of RafV12 or RafV20 had no significant effect on perineurial glial thickness. However, expression of PI3K-CAAX increased perineurial glial thickness to about 3 µm as shown in Figure 3A and 3B from Lavery et al., 2007, attached. This thickness is significantly greater than both wildtype thickness and the increased thickness conferred by RasV12 expression. When UAS-PI3K-CAAX was expressed with a second peripheral glial driver, MZ709, perineurial glial thickness was increased to the same extent as with gli-
GAL4. These results suggest that Ras exerts its nonautonomous effects on perineurial glial growth via activation of PI3K. The observation that PI3K-CAAX exerts a stronger effect than Ras^{V12} might indicate that PI3K levels are limiting in peripheral glia to promote perineurial glial growth. In this view, transgene-induced overexpression of PI3K-CAAX overcomes this limitation and enables a more robust growth effect to be observed.

The results shown in Figure 3 (from Lavery et al., 2007, attached) demonstrate that PI3K activation in peripheral glia is sufficient to increase peripheral glial growth. To determine if PI3K activity is necessary for the nonautonomous growth-promoting effects of Ras^{V12}, we introduced the heteroallelic PI3K loss of function combination PI3K^{5/5}/PI3K^{4/4} into gli-Ras^{V12} larvae. This mutant combination was chosen because it decreases PI3K activity sufficiently to confer phenotypes, but retains sufficient activity to permit viability to the third instar larval stage. We found that PI3K^{5/5}/PI3K^{4/4} significantly suppressed the growth-promoting effects of Ras^{V12} as shown in Figure 4 (from Lavery et al., 2007, attached), which demonstrates that PI3K activity is necessary for this effect. To determine if PI3K activity is necessary in peripheral glia rather than the perineurial glia, we blocked PI3K activity specifically in the peripheral glia by co-expressing Ras^{V12} with a transgene encoding the dominant-negative PI3K^{D954A}. We found that the peripheral-glial-specific expression of PI3K^{D954A} blocked the growth-promoting effects of Ras^{V12} as shown in Figure 4 (from Lavery et al., 2007, attached), suggesting that PI3K activity is required in the peripheral glia to promote perineurial glial growth. In contrast, as described above, co-expressing Ras^{V12} with GFP did not suppress the growth-promoting effects of Ras^{V12} (see Figure 2).

To confirm that PI3K^{5/5}/PI3K^{4/4} suppressed the Ras^{V12} phenotype by decreasing PI3K activity in the peripheral glia rather than the perineurial glia, we introduced PI3K^{5/5}/PI3K^{4/4} into gli-PI3K-CAAX larvae. The extremely thick perineurial glia conferred by PI3K-CAAX was not significantly affected by the presence of PI3K^{5/5}/PI3K^{4/4} as shown in Figure 4 (from Lavery et al., 2007, attached); thus, the perineurial glia in the PI3K^{5/5}/PI3K^{4/4} mutant is fully competent to respond to growth-promoting signals from the peripheral glia, which strongly suggests that the significant suppression of the Ras^{V12} growth phenotype by PI3K^{5/5}/PI3K^{4/4} results from loss of PI3K activity in the peripheral glia.

One PI3K effector is the protein kinase Akt. Elevated PI3K activity promotes the ability of the kinase PDK1 to phosphorylate and activate Akt. To determine if Akt activity was necessary for the growth-promoting effects of PI3K, we replaced either one or both copies of Akt¹ with the strong hypomorphic Akt⁴²²⁶ allele in gli-PI3K-CAAX larvae. We found that replacing one copy of Akt¹ moderately suppressed, and replacing both copies of Akt¹ profoundly suppressed, the effects of PI3K-CAAX as shown in Figure 5 (from Lavery et al., 2007, attached). These results demonstrate that Akt activity is required for the growth-promoting effects of PI3K. Akt activity can promote growth cell autonomously. Thus, Akt⁴²²⁶ could suppress the growth-promoting effects of PI3K-CAAX by decreasing Akt activity in either the peripheral or perineurial glia. To determine if Akt¹ activity in the peripheral glia was sufficient to increase perineurial glial growth, we measured perineurial glial thickness in larvae expressing either of two UAS-Akt¹ transgenes driven by gli-Gal4 and found no effect on the perineurial glia as shown in Figure 5 (from Lavery et al., 2007, attached). Because these Akt¹ transgenes encode wildtype Akt, which requires activation by the PI3K-dependent kinase PDK1, it was possible that this lack of effect might result from low endogenous PI3K activity in the peripheral glia, which would lead to inability to activate Akt. To test this possibility, we activated Akt in the peripheral glia by using gli-Gal4 to co-overexpress UAS-Akt¹ with UAS-PI3K-CAAX. We found a striking increase in perineurial glial thickness in this genotype compared with larvae overexpressing PI3K-CAAX alone as shown in Figure 5 (from Lavery et al., 2007, attached); note that the gli-PI3K-CAAX, Akt¹ nerve pictured is an extreme nerve, not a typical nerve. This result suggests that in the absence of activated PI3K, Akt levels within the peripheral glia become limiting for activating growth nonautonomously. In this view, increasing Akt levels by transgene expression serves to relieve this limitation and enable further increase in perineurial glial growth. We conclude that Akt activation in the peripheral glia is sufficient to increase perineurial glial growth.

In addition to the effect of gli-PI3K-CAAX, Akt on perineurial glial thickness, we observed a significant increase in thickness of the "axon bundle" (motor and sensory axons and peripheral glia) in this genotype. This increased thickness is due mostly to the presence of motor and sensory axons of increased diameter as shown in Figure 5 (from Lavery et al., 2007, attached). A more complete description of this phenotype will be presented in a future study. However, these observations suggest that extremely high levels of Akt activity can nonautonomously activate axonal growth as well as perineurial glial growth.

One Akt effector is the forkhead-box transcription factor FOXO. FOXO inhibits PI3K- and Akt-dependent gene expression; this activity is lost upon phosphorylation by Akt, which causes phospho-FOXO to be excluded from the nucleus. To test the possibility that PI3K and Akt activity increase perineurial glial growth by inhibiting FOXO, we co-expressed PI3K-CAAX and either of two FOXO transgenes within the peripheral glia. We found that expression of either FOXO transgene significantly suppressed the growth-promoting effects of PI3K-CAAX as shown in Figure 6 (from Lavery et al., 2007, attached). In contrast, when we co-expressed PI3K-CAAX with a
neutral UAS-driven transgene (UAS-GFP), we did not observe significant suppression as shown in Figure 6 (from Lavery et al., 2007, attached). Thus, FOXO overexpression suppresses the growth-promoting effects of PI3K.

Our studies provide new mechanistic insights into the nonautonomous growth promoting effects of peripheral nerve growth in peripheral nerves. Our results are completely consistent with the possibility that these nonautonomous effects are mediated by a pathway in which the negative regulation of growth by FOXO is inhibited by its Akt-dependent phosphorylation. FOXO might directly or indirectly repress transcription of growth factors that recruit the growth of neighbors.

We have also begun attempts to identify growth factors that may be responsible for the nonautonomous growth promoting effects of PI3K on perineurial glial growth. Given that FOXO is a transcription factor, we hypothesized that Foxo regulates perineurial glial thickness nonautonomously by repressing the transcription of a growth factor released from the peripheral glia that activated growth of the perineurial glia. This Foxo-mediated repression could be indirect. If so, then overexpressing this growth factor with the Gal4/UAS system would be predicted to increase perineurial glial growth. With this hypothesis in mind, we overexpressed several candidate growth factor genes in peripheral glia and measured perineurial glial thickness. Because the Ratner lab had previously implicated aberrant EGF signalling in neurofibroma formation, we first tested EGF ligands, and TGF-β. Because the Misky lab had implicated Desert Hedge Hog in perineurial glial development, we also tested the role of Hh ligands in perineurial glial growth control. However, we found that overexpression of none of these ligands affected perineurial glial thickness (Figure 3). Because it has been reported that growth factors or peptide hormones are more effective when overexpressed in the recipient cell, rather than the signalling cell, we also overexpressed many of these ligands in the recipient cell (perineurial glia) using the repo-Gal4 driver. We found a moderate effect of spitz overexpression in perineurial glia (Figure 3). This possible role of the spitz EGF ligand will be investigated further by expressing spitz RNAi in peripheral glia, and seeing if this expression suppresses the increased perineurial glial growth conferred by PI3K overexpression.

We have also investigated the roles of the Ras-activated Raf and Ras transgenes as collaborators with PI3K in activating perineurial glial cell growth. Our evidence that the Ras GTPase might be involved in nonautonomous growth regulation came from experiments performed for other reasons. As reported previously we had demonstrated that activating Ras in peripheral glia promotes perineurial glial growth (Lavery et al., 2007), but we then wanted to know if Ras activity might also be required in the perineurial glia to respond properly to the growth promoting effects of the peripheral glia. To test this possibility, we introduced a heteroallelic loss of function combination of Ras (Ras+/−/Ras−/−) into larvae expressing activated PI3K in the peripheral glia. We found that the Ras alleles significantly suppressed the growth promoting effect of activated PI3K (Figure 4 below). To show that Ras was exerting this effect in the perineurial glia, rather than the peripheral glia, we wanted to show that blocking Ras specifically in the peripheral glia (by expressing the dominant-negative RasN17 transgene) was not able to suppress the growth-promoting effects of activated PI3K. But to our great surprise, we found that co-expression of RasN17 completely suppressed the growth-promoting effects of PI3K (Figure 3 below). In contrast, co-expressing the constitutively-active RasV12 enhanced the growth-promoting of PI3K (Figure 4 below).

Because PI3K-CAAX, the constitutively active allele that we used to promote growth is predicted to be Ras-independent, we thought it unlikely that RasV12 was decreasing PI3K activity. Rather, we thought it was more likely that RasN17 was blocking a second Ras-activated signalling pathway that was required for PI3K to induce growth. This second pathway did not appear to be the Raf-Erk pathway because co-expression of either a dominant-negative or constitutively-active Raf transgene with PI3K-CAAX had only moderate effects on perineurial glial thickness (Figure 4 below). The Raf-GTPase represents a third, Ras-activated pathway: active Ras activates Raf via the Raf guanine dissociation factor.

To test the possibility that Raf is involved in the control of perineurial glial growth, we expressed the constitutively active RafV12 transgene in peripheral glia and found no effect on perineurial glial growth (Figure 4 below). However, expression of RafV12 significantly enhanced the ability of PI3K-CAAX to promote perineurial glial growth (Figure 5 below), and this enhancement was approximately the same as the enhancement conferred by co-expression with RasV12. These results support the possibility that Raf activity regulates the ability of PI3K to promote peripheral nerve growth nonautonomously.
Figure 3: Effects of growth factor misexpression on perineurial glial growth. Means and SEMs of perineurial glial thickness (Y axis) for the indicated genotypes (X-axis). Number of nerves measured: gli+, n=13, gli>spitz, n=33, gli>gurken, n=34, gli>dpp, n=20, gli>Hh, n=21, repo>Hh, n=28, repo>spitz, n=32. No pairwise combinations have statistically significant differences.

The experiments described above suggest that Ral is one Ras effector with activity required to potentiate the effects of PI3K. To determine if Ral is the only Ras effector with activity required to potentiate the effects of PI3K, we decided to test if expression of activated Ral was sufficient to enhance the effects of PI3K-CAAX even in the simultaneous presence of RasN17. If so, then such a result would indicate that PI3K and Ral could together promote perineurial glial growth even when every other Ras effector pathway was blocked by RasN17. We first tested the system with a positive control. We coexpressed PI3K-CAAX and RasN17, in which perineurial glial growth is suppressed, along with RasV12, which is anticipated to be completely epistatic to PI3K-CAAX and RasN17 because RasN17 blocks wildtype Ras by blocking the nucleotide exchange factor, which RasV12 does not require for activity.
Figure 4: Ras activity in the peripheral glia is required for PI3K to increase perineurial glial growth. Y Axis: Means +/- SEMS of perineurial glial thickness (µm) for the indicated genotypes (X Axis). Genotypes were as follows: A: gli-Gal4/+, n=60, B: UAS-PI3K-CAAX/+, n=59, C: gli>PI3K-CAAX, n=76, D: gli>PI3K-CAAX; Ras^{124}/Ras^{12}, n=30, E: gli>PI3K-CAAX, Ras^{N17}, n=31, F: gli>PI3K-CAAX, GFP, n=25.

Figure 5: Ral, but not Raf potentiates the effects of PI3K on perineurial glial growth. Y Axis: Means +/- SEMS of perineurial glial thickness (µm) for the indicated genotypes (X Axis). Genotypes were as follows: A: gli>PI3K-CAAX, Raf^{GOF}, n=52, B: gli>PI3K-CAAX, Raf^{DN}, n=24, C: gli>Ral^{V20}, n=29, D: gli>PI3K-CAAX, Ras^{V12}, n=39, and E: gli>PI3K-CAAX, Raf^{DN}, n=30.
As expected, we found that increased perineurial glial growth was restored when *PI3K-CAAX*, *Ras*\(^{N17}\) and *Ras*\(^{V12}\) were each expressed in the peripheral glia (Figure 6). In addition, we found out that, as expected, increased perineurial glial growth was restored when *PI3K-CAAX*, *Ras*\(^{N17}\) and *Ral*\(^{N20}\) were each expressed in the peripheral glia (Figure 6). However, when we co-expressed *PI3K-CAAX*, *Ras*\(^{N17}\) and *Ral*\(^{N20}\) in the peripheral glia, increased perineurial glial growth was still restored (Figure 6), even though Ral activity is predicted to be blocked in this genotype. This result was both unexpected and difficult to interpret, particularly as perineurial glial growth was much thicker in larvae expressing *PI3K-CAAX*, *Ras*\(^{N17}\) and *Ral*\(^{N20}\) than in larvae only expressing *PI3K-CAAX* and *Ral*\(^{N20}\). Taken at face value, this result suggests that *Ras*\(^{N17}\) has a positive effect on perineurial glial growth, at least under some conditions. To my knowledge, there is no precedent in the literature that would be consistent with this possibility. At this point, I think it is best to drop this aspect of the project until some way of moving forward comes to light (for example, by a new publication that suggests a mechanism for this observation).

Finally, we evaluated the role of the PI3K-regulated Tor pathway in the nonautonomous control of perineurial glial growth. As described last year, we used transgenes encoded altered S6 Kinase (S6K), which is phosphorylated and activated by Tor, as our way to manipulate Tor activity. We found that expressing a constitutively-active S6K *S6K*\(^{DN}\) specifically in the peripheral glia was not sufficient to increase perineurial glial growth (Figure 7). Furthermore, elimination of Foxo by the *Foxo*\(^{21}\)/*Foxo*\(^{22}\) heteroallelic null combination also failed to increase perineurial glial growth (Figure 7). To determine if S6K activity is necessary to mediate the effects of *PI3K-CAAX* on perineurial glial growth, we co-expressed *PI3K-CAAX* and the dominant-negative *S6K*\(^{DN}\) in peripheral glia, and we found that the presence of *S6K*\(^{DN}\) significantly suppressed the ability of *PI3K-CAAX* to

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Perineural glial thickness (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gli>PI3K-CAAX</td>
<td>2.5 (±0.2)</td>
</tr>
<tr>
<td>gli>+</td>
<td>2.0 (±0.1)</td>
</tr>
<tr>
<td>gli>Ras(^{N17}) PI3K-CAAX</td>
<td>3.5 (±0.3)</td>
</tr>
<tr>
<td>gli>Ras(^{N17}) PI3K-CAAX, Ral(^{N20})</td>
<td>3.0 (±0.2)</td>
</tr>
<tr>
<td>gli>Ras(^{N17}) PI3K-CAAX, Ras(^{V12})</td>
<td>4.0 (±0.5)</td>
</tr>
<tr>
<td>gli>Ras(^{V12}) PI3K-CAAX, Ral(^{N20})</td>
<td>4.5 (±0.6)</td>
</tr>
<tr>
<td>gli>Ras(^{V12}) PI3K-CAAX, Ral(^{N20})</td>
<td>5.0 (±0.7)</td>
</tr>
</tbody>
</table>

Figure 6: Interactions between PI3K and Ras, Raf and Ral. Means and SEMs of perineurial glial thickness (Y axis) for the indicated genotypes (X-axis). Number of nerves measured: gli>PI3K-CAAX, n=76, gli>+ n=13, gli>Ras\(^{N17}\) PI3K-CAAX, n=31, gli>Ras\(^{N17}\), PI3K-CAAX, Ral\(^{N20}\), n=22, gli>Ras\(^{N17}\), PI3K-CAAX, Ras\(^{V12}\), n=26, gli>Ras\(^{V12}\), PI3K-CAAX, Ral\(^{N20}\), n=20. The following pairwise combinations have statistically significant differences versus gli>PI3K-CAAX: gli>+ (p<0.0001), gli>Ras\(^{N17}\) PI3K-CAAX, Ras\(^{V12}\) (p<0.0001), gli>Ras\(^{N17}\) PI3K-CAAX, Ras\(^{N17}\), Ral\(^{N20}\) (p=0.0015), gli>Ras\(^{N17}\) PI3K-CAAX, Ras\(^{N17}\), Ral\(^{N20}\) (p<0.0001).
increase perineurial glial growth (Figure 7). These results suggest that PI3K-mediated activation of the Tor pathway, in addition to inhibition of Foxo, is necessary for full activation of perineurial glial growth. This result raised the possibility that PI3K activated glial growth in two ways: by activating transcription of the EGF-ligand spitz, and by activating the Tor pathway. If so, then increased perineurial glial growth would require both overexpression of spitz and expression of S6K^{act}. To test this possibility, we measured perineurial glial growth in larvae overexpressing both S6K^{act} and spitz in peripheral glia, but found no increase in glial thickness (Figure 7). We also found no evidence of increased perineurial glial growth when we combined expression of S6K^{act} and loss of one dose of Foxo (Figure 7). Therefore we tentatively conclude that PI3K-mediated increased perineurial glial growth requires both inhibition of Foxo and activation of the Tor pathway.

![PI3K-mediated increased perineurial glial growth requires S6K](image)

Figure 7: Means and SEMs of perineurial glial thickness (Y axis) for the indicated genotypes (X-axis). Number of nerves measured: gli>PI3K-CAAX, n=76; gli>S6K^{act}, n=26; gli> S6K^{ext}, spitz, n=13; gli>S6K^{act}, PI3K-CAAX, n=32, Foxo^{+/-}; gli>S6K^{ext}, n=31, Foxo^{+/Foxo}⁻, n=24. The pairwise combination gli>PI3K-CAAX vs. gli>P13K-CAAX, S6K^{ext} is significantly different (p<0.0001).

Regulation of neuronal PI3K by the Drosophila metabotropic glutamate receptor: This task, following revision of the original task #4, is based on two papers published after this proposal was submitted for funding. The papers are: Bogdanik et al. (2004), and Martin-Pena et al. (2006). Bogdanik et al. reported effects of mutations in the single Drosophila metabotropic glutamate receptor (mGlurA) on motor neuron structure and function, whereas Martin-Pena et al. reported effects of altered PI3K activity on Drosophila motor neuron structure and function. The similarity, at least superficially, in phenotype between these genotypes raised the possibility that activation of the Drosophila mGlurA in motor neurons activates PI3K. Given the importance of PI3K in mediating the effects of Neurofibromin on various aspects of cell biology, the possibility that glutamate-liganded metabotropic glutamate receptors could act as endogenous activators of PI3K would have huge significance in the
Therefore we embarked on a series of experiments to test this possibility, and identify downstream signalling pathways mediating the effects of PI3K on neuronal growth and excitability.

The increase in neuronal excitability conferred by the mGluRA112b null mutation is manifested by an increased rate of onset of a form of synaptic plasticity termed long-term facilitation (LTF), which is induced when a motor neuron is subjected to repetitive nerve stimulation at low bath [Ca\(^{2+}\)]. At a certain point in the stimulus train, an abrupt increase in transmitter release and hence muscle depolarization (termed excitatory junctional potential, or ejp) is observed (Figure 8A). This abrupt increase is caused by an abrupt increase in the duration of nerve terminal depolarization and hence Ca\(^{2+}\) influx, and reflects a progressive increase in motor neuron excitability induced by the repetitive nerve stimulation: when an excitability threshold is reached, LTF occurs.

Figure 8. DmGluRA activity inhibits neuronal excitability via activation of the PI3K pathway. The motor neuron GAL4 driver D42 was used to drive expression of all transgenes. For all LTF experiments, the bath solution contained 0.15 mM [Ca\(^{2+}\)] and 100 µM quinidine, which is a K\(^+\) channel blocker that sensitizes the motor neuron and enables LTF to occur and measured even in hypoexcitable neurons.

A, Representative traces showing the decreased rate of onset of long-term facilitation (LTF) (I) and decreased excitatory junction potential (ejp) amplitude (II) in larvae overexpressing PI3K-CAAX in motor neurons compared to wildtype at the indicated [Ca\(^{2+}\)], and the increased rate of onset of LTF and ejp amplitude in larvae overexpressing PTEN. Arrowheads indicate the increased and asynchronous ejps, indicative of onset of LTF. In (II), ejps are averages of 180 responses for each
genotype. B, Number of stimulations required to induce LTF (Y axis) at the indicated stimulus frequencies (X axis) in the indicated genotypes. Geometric means +/- SEMs are shown. For B, from top to bottom, n = 12, 7, 18, 9, 21, and 6 respectively, for each genotype. C, Mean ejp amplitudes (Y axis) at the indicated [Ca\(^{2+}\)] (X axis), from the indicated genotypes. Larval nerves were stimulated at a frequency of 1 Hz, and 10 responses were measured from each of six larvae. Means +/- SEMs are shown. D, Effects of altered PI3K pathway activity on failures of transmitter release. Mean transmitter release success rate +/- SEMs (Y axis) at the indicated Ca\(^{2+}\) concentration (X axis) for the indicated genotypes. Larval nerves were stimulated at 1 Hz. 10 responses were collected per nerve from each of 6 larvae for the given genotype and at the given Ca\(^{2+}\) concentration.

In Drosophila, many genotypes that increase motor neuron excitability by decreasing K\(^{+}\) currents or increasing Na\(^{+}\) currents increase the rate of onset of LTF. For example, altered activities of frequentin and Hyperkinetic, which act via K\(^{+}\) channels, or paralytic and pumilio, which act via Na\(^{+}\) channels, each increase the rate of onset of LTF. By increasing motor neuron excitability, these genotypes apparently bring excitability closer to the threshold required to evoke LTF and consequently decrease the number of prior nerve stimulations required to reach this threshold. The observation that mGluR\(^{112b}\) increases the rate of onset of LTF suggested that mGluRA\(^{112b}\) increases motor neuron excitability as well.

The increased excitability of mGluRA\(^{112b}\) led Bogdanik et al. (2004) to suggest that mGluRA mediates an activity-dependent inhibition of neuronal excitability. In this view, glutamate release from motor nerve terminals downregulates subsequent neuronal activity by activating presynaptic mGluRA autoreceptors, which then decrease excitability. Elimination of mGluRA disrupts this negative feedback and prevents the decrease in excitability from occurring.

The mGluRA\(^{112b}\) null mutation increases neuronal excitability by preventing PI3K activation: In addition to increasing neuronal excitability, mGluRA\(^{112b}\) also decreased arborization and synapse number at the larval neuromuscular junction. This phenotype is also observed in larval motor neurons with decreased activity of PI3K. This observation raised the possibility that mGluRA might exert its effects on neuronal excitability as well as synapse formation via PI3K activity. To test the possibility that PI3K mediates the effects of mGluRA on neuronal excitability, we used the D42 Gal4 driver to overexpress transgenes expected to alter activity of the motor neuron PI3K pathway. We found that inhibiting the PI3K pathway by motor neuron-specific overexpression of either the phosphatase PTEN, which opposes the effect of PI3K, or the dominant-negative PI3K\(^{DN}\), each significantly increased the rate of onset of LTF, similarly to that of mGluRA\(^{112b}\) (Figure 8A and 8B). In contrast, we found that activating the PI3K pathway by expression of the constitutively active PI3K-CAAX, or via RNAi-mediated inhibition of PTEN, decreased rate of onset of LTF (Figure 8A and 8B).

In addition to effects on LTF, mutations that alter motor neuron excitability can alter basal transmitter release and hence ejp amplitude at low bath Ca\(^{2+}\) concentrations, at which Ca\(^{2+}\) influx would be limiting for vesicle fusion to occur. For example, mutations in ether-a-go-go (eag), which encodes a potassium channel \(\alpha\) subunit, increase transmitter release about two-fold, whereas a mutation in the sodium channel gene paralytic decreases transmitter release by increasing the frequency at which nerve stimulation failed to evoke any vesicle fusion, termed "failure" of vesicle release. Presumably altered excitability affects the amplitude or duration of the action potential and consequently the amount of Ca\(^{2+}\) influx through voltage-gated channels. We found that mGluRA\(^{112b}\) also increased ejp amplitude and hence basal transmitter release at three low bath Ca\(^{2+}\) concentrations tested (Figure 8C), which is consistent with increased motor neuron excitability in this genotype. We found that decreasing PI3K pathway activity via motor neuron overexpression of PI3K\(^{DN}\) or PTEN also increased transmitter release to levels similar to mGluRA\(^{112b}\), whereas increasing PI3K pathway activity via overexpression of PI3K-CAAX decreased basal transmitter release (Figure 8C).

The mGluRA\(^{112b}\) mutation also decreased the frequency at which failures of vesicle release occur, particularly at the lower Ca\(^{2+}\) concentrations tested (Figure 8D). This observation confirms that the effect of mGluRA\(^{112b}\) on ejp amplitude is presynaptic. We also observed a decreased frequency of failures when the PI3K pathway was inhibited by motor neuron expression of PI3K\(^{DN}\) or PTEN (Figure 8D). In contrast, motor neuron overexpression of PI3K-CAAX increased the frequency of failures (Figure 8D). Therefore, with three electrophysiological readouts, the mGluRA\(^{112b}\) mutant phenotype was mimicked by decreased activity of the PI3K pathway, whereas increasing PI3K pathway activity conferred opposite effects.

These observations support the notion that loss of mGluRA increases motor neuron excitability by preventing the activation of PI3K. If so, then motor neuron expression of PI3K-CAAX is predicted to suppress the mGluRA\(^{112b}\) hyperexcitability. To test this possibility, we drove motor-neuron expression of PI3K-CAAX in an mGluRA\(^{112b}\) background and found a rate of onset of LTF, ejp amplitude, and failure frequency very similar to what was observed when PI3K-CAAX was expressed in a wildtype background (Figure 8). We conclude that hyperexcitability of the mGluRA\(^{112b}\) mutant results from inability to activate PI3K.
Glutamate application increases levels of phosphorylated Akt in motor nerve terminals in an mGluRA-dependent fashion: The results described above suggest that glutamate release from motor nerve terminals as a consequence of motor neuron activity activates PI3K within motor nerve terminals via mGluRA autoreceptors. To test this possibility directly, we measured the ability of glutamate applied to the neuromuscular junction to activate PI3K within motor nerve terminals. To assay for PI3K activity we applied an antibody specific for the phosphorylated form of the kinase Akt (p-Akt), which is increased by elevated PI3K pathway activity. The ability to detect p-Akt in larval motor nerve terminals overexpressing PI3K-CAAX, but not in wildtype (Figure 9), validates this antibody as a PI3K reporter.

We compared p-Akt levels in wildtype versus mGluRA^{112b} motor nerve terminals immediately prior to or following a 1 minute application of 100 µM glutamate. We found that glutamate application strongly increased p-Akt levels in wildtype larvae, but not in the mGluRA^{112b} larvae (Figure 9), demonstrating that glutamate application increases nerve terminal p-Akt levels, and that mGluRA activity is required for this increase. Furthermore, we found that mGluRA activity was required presynaptically for this p-Akt increase: motor neuron-specific expression of an mGluRA RNAi construct, which was previously shown to decrease mGluRA levels successfully, blocked the ability of glutamate to increase p-Akt levels, as did motor motor neuron-specific expression of PI3K^{DN} (Figure 9). Thus, presynaptic mGluRA and PI3K activity are both necessary for glutamate to increase p-Akt.

![Figure 9](image-url)

Figure 9. Glutamate application stimulates presynaptic Akt phosphorylation in DmGluRA⁺ but not in DmGluRA^{112b} mutant larvae. A. Representative confocal images of in DmGluRA⁺, DmGluRA^{112b}, D42>mGluRA^{RNAi}, and D42>PI3K^{DN} larvae stained with anti-HRP (upper) and anti-p-Akt (lower) in the indicated conditions. All images
are from muscles 7 and 6 of abdominal segment A3 or A4. Scale bar = 20 µm.

B, Quantification of phosphorylated Akt (p-Akt) levels in DmGluRA-, DmGluRA\textsubscript{112b}, D42>mGluRAA8A4 and D42>PI3KDN larvae immediately prior to glutamate application, after 1 min of 100 µM glutamate application (final bath concentration), and 10 min after a wash with glutamate free media. Nerve terminals were outlined with HRP fluorescence as reference. Pixel intensities were quantified using ImageJ software and background subtraction was performed as described in detail in Methods section. Bars represent mean synaptic p-Akt levels +/- SEMs. D42 > PI3K-CAAX is included as a positive control. For DmGluRA- versus D42>PI3KDN, p=0.046.

The effects of PI3K on neuronal excitability are mediated by Foxo, not Tor/S6 kinase: Many effects of the PI3K pathway are mediated by the downstream kinase Akt. Activated Akt phosphorylates targets such as Tsc1/Tsc2, which regulates cell growth via the Tor/S6 Kinase (S6K) pathway, Foxo, which regulates apoptosis, and GSK3, which mediates at least in part the effects of altered PI3K pathway activity on arborization and synapse number. All of these Akt-mediated phosphorylation events inhibit activity of the target protein.

If PI3K pathway activity decreases neuronal excitability by inhibiting Foxo, then Foxo overexpression is predicted to mimic the hyperexcitability observed when PI3K pathway activity is blocked in motor neurons, whereas loss of Foxo is predicted to mimic the hypoexcitability observed when PI3K-CAAX is expressed in motor neurons. To test these predictions, we measured the rate of onset of LTF in larvae carrying the heteroallelic Foxo21/Foxo25 null mutant combination (Junger et al. 2003) and in larvae overexpressing Foxo+ in motor neurons. We found that overexpression of Foxo+ increased the rate of onset of LTF to a level very similar to that observed when PI3K pathway activity was decreased (Figure 10A), whereas in Foxo21/Foxo25 larvae, the rate of onset of LTF, basal transmitter release and frequency of successful eJPs were decreased to levels very similar to those observed when PI3K-CAAX was expressed in motor neurons (Figure 10A, 10B and 10C). These observations support the notion that PI3K activity decreases excitability by downregulating Foxo activity.

Figure 10. A Foxo - PI3K epistasis series in the control of motor neuron excitability. The Gal4 driver D42 was used to drive expression of transgenes in all genotypes except for Foxo21/Foxo25; OK6>PI3KDN, in which the motor
neuron driver OK6 was used and which behaves similarly to D42 in this assay (not shown). A, Mean ejp amplitude +/- SEMs (Y axis) for each genotype at the indicated [Ca$^{2+}$]. Nerves from six larvae were stimulated at a frequency of 1 Hz, and 10 responses were measured per larva. B, Mean transmitter release success rate +/- SEMs (Y axis) at the indicated Ca$^{2+}$ concentration (X axis) for the indicated genotypes. Larval nerves were stimulated at 1 Hz. 10 responses were collected per nerve from each of 6 larvae for the given genotype and at the given Ca$^{2+}$ concentration. C, Number of stimulations required to induce LTF (Y axis) at the indicated stimulus frequencies (X axis). The bath solution contained 0.15 mM [Ca$^{2+}$] and 0.1 mM quinidine. Geometric means +/- SEMs are shown. From top to bottom, n = 12, 6, 7, 18, 10, 21, and 9 respectively, for each genotype.

If the hyperexcitability conferred by motor neuron expression of Pi3kDN results from Foxo hyperactivity, then the Foxo$^{+/+}$/FoxoAA null combination will suppress this hyperexcitability and confer motor neuron hypoexcitability similar to what is observed in Foxo$^{+/+}$/FoxoAA larvae in an otherwise wildtype background. We confirmed this prediction: larvae carrying the Foxo$^{+/+}$/FoxoAA null combination and expressing Pi3kDN in motor neurons exhibited a rate of onset of LTF, basal transmitter release, and failure frequency very similar to what was observed in the Foxo$^{+/+}$/FoxoAA null mutant alone (Figure 10A, 10B and 10C), or in larvae expressing Pi3K-CAAX in motor neurons. We used the OK6 motor neuron Gal4 driver rather than D42 for ease of stock construction in experiments involving Foxo$^{+/+}$/FoxoAA. OK6 confers motor neuron phenotypes indistinguishable from D42 in our assays (Figure 10A and not shown).

In addition, if the hypoexcitability conferred by motor neuron expression of Pi3K-CAAX results from decreased Foxo activity, then co-overexpression of FoxoAA will suppress this hypoexcitability and confer hyperexcitability similar to what is observed when Pi3kDN, PTEN or FoxoAA alone are expressed in motor neurons. We confirmed this prediction: larvae co-expressing FoxoAA and Pi3K-CAAX in motor neurons exhibited rate of onset of LTF, basal transmitter release and failure frequency very similar to what was observed when Pi3KDN, PTEN, or FoxoAA alone were expressed in motor neurons (Figure 10A, 10B and 10C). Thus, eliminating Foxo reverses the hyperexcitability conferred by blocking Pi3K pathway in motor neurons, whereas overexpressing FoxoAA reverses the hypoexcitability conferred by activating Pi3K in motor neurons. These epistasis tests support the notion that Pi3K activity decreases motor neuron excitability by inhibiting Foxo.

In contrast, we found that altering the Tor/S6k pathway had no effect on motor neuron excitability. In particular, motor neuron expression of neither the dominant-negative S6kDN nor the constitutively active S6kAA transgene had any effect on the rate of onset of LTF (Figure 11). In addition, expression of S6kDN had no effect on the ability of Pi3K-CAAX to decrease the rate of onset of LTF (Figure 11). Furthermore, expression of S6kAA had no effect on basal transmitter release, and did not affect the ability of Pi3K-CAAX to depress basal transmitter release (data not shown). Therefore we conclude that the Tor/S6K pathway does not mediate the effects of Pi3K on neuronal excitability.

The effects of Pi3K on synapse number are mediated by Tor/S6 kinase, not Foxo: Because altered Pi3K pathway activity alters motor neuron arborization and synapse number, it seemed possible that a causal relationship existed between the Pi3K-mediated excitability and neuroanatomy defects. To test this possibility, we evaluated the roles of the Tor/S6k and Foxo pathways in mediating the effects of altered Pi3K activity on synapse number. We found that motor neuron-specific expression of S6kAA increased synapse number to an extent similar to Pi3K-CAAX, and motor neuron expression of S6kDN decreased synapse number to the same extent as PTEN while...
also partially suppressing the increase in synapse number conferred by PI3K-CAAX (Figure 12B). These observations suggest that S6K mediates in part the effects of PI3K on arborization and synapse number. However, the ability of S6KDN to suppress only partially the effects of PI3K-CAAX overgrowth suggests that both Tor/S6K and a second, PI3K-mediated, pathway (presumably involving GSK3) regulate synapse formation. In contrast to the effects of altered S6K on synapse formation, we found that Foxo+ overexpression had no effect on synapse number (data not shown) and failed to suppress the growth-promoting effects of PI3K-CAAX (Figure 12A and 12B).

We found that the PI3K pathway also affects growth along the length of axons and thus regulates axon diameter. In Drosophila peripheral nerves, about 80 motor and sensory axons are wrapped by about three layers of glia, as shown in the transmission electron micrograph from cross sections of peripheral nerves in Figure 12C. We found that motor neuron specific expression of PTEN decreased axon diameter, whereas motor-neuron specific expression of PI3K-CAAX increased axon diameter. Tor/S6K, but not Foxo, mediates this growth effect. In particular, motor neuron-specific expression of S6KAT increased axon diameter to an extent similar to PI3K-CAAX, and motor-neuron-specific expression of S6KDN decreased motor axon diameter to an extent similar to PTEN and also partially suppressed the growth-promoting effects conferred by PI3K-CAAX. In contrast, Foxo+ overexpression had no effect on the ability of PI3K-CAAX to increase axon diameter (Figure 12D). Therefore, Foxo mediates the excitability effects, but not the growth-promoting effects, of altered PI3K pathway activity, whereas the Tor/S6K pathway mediates in part the growth-promoting effects but not the excitability effects of altered PI3K pathway. We conclude that the excitability and growth effects are completely separable genetically and thus have no causal relationship.

Figure 12. PI3K regulates synapse formation and axon growth via S6K, not Foxo.
A, Representative images of muscles 7 and 6 in the indicated genotypes. Larva were stained with anti-HRP (green). Scale bar = 50 \(\mu\)m.
B, Mean number (+/- S.E.M.s) of synaptic boutons normalized to the surface area of muscle 6 at abdominal segment...
A3 in the indicated genotypes. From left to right, n=6,8,6,6,7,6,11, respectively, for each genotype. Data for
$D42>PI3K^{DN}$ and $D42>+$ were taken from Figure 5. The following pairwise combination had a statistically
significant differences: $D42>+$ versus: $D42>PI3K-CAAX +$, p=0.0006, and versus $D42>S6K^{DN}$, p<0.0001. C,
Representative transmission electron micrographs of peripheral nerve cross sections. Axons are marked with arrows.
Scale bar = 2 µm. D, Mean axon diameter (+/- S.E.M.s) of the five largest axons from five different nerves (25
measurements total) for the indicated genotypes. The following pairwise combinations had statistically significant
differences: $D42>$ versus: $D42>PI3K-CAAX$, p<0.0001, versus $D42>PTEN$, p=0.0002, versus $D42>S6K^{DN}$,
p=0.0008.

Activity-dependent increase in synapse number requires PI3K activity: Depending on the system,
neuronal activity can either restrict or promote synapse formation). The Drosophila eag Sh double mutant, in which
two distinct potassium channel subunits are simultaneously disrupted, displays extreme neuronal hyperexcitability,
and a consequent increase in synapse number. This activity-dependent increase in synapse number does not require
mGluRA activity, suggesting that excessive glutamate release is not necessary for this excessive growth to occur.
To determine if PI3K activity is required for this overgrowth, we compared synapse number in wildtype larvae, in
larvae expressing dominant-negative transgenes for both eag (eag^{DN}) and Sh (Sh^{DN}) in motor neurons, and in larvae
co-expressing eag$_{DN}$, Sh$_{DN}$ and PI3K$_{DN}$. We found that co-expression of eag$_{DN}$ and Sh$_{DN}$ in motor neurons increased
synapse number similarly to what was observed previously, and that this increase was completely blocked by
simultaneous expression of PI3K$_{DN}$ but not by lacZ (Figure 13). Thus, the activity-dependent increase in synapse
formation requires PI3K activity. The observation that glutamate activation of mGluRA is not necessary for this
increase raises the possibility that another PI3K activator contributes to synapse formation at the larval nmj. Insulin
is a plausible candidate for such an activator because both insulin and insulin receptor immunoreactivity are present
at the nmj.

A mechanism for the glutamate-induced negative feedback of motor neuron excitability: The effects
on neuronal excitability of altered mGluRA, PI3K, and Foxo activities are consistent with a model in which
 glutamate released from motor nerve terminals as a consequence of motor neuron activity activates motor neuron
PI3K via mGluRA autoreceptors, which then downregulate neuronal excitability via inhibition of Foxo (Figure 14).
F0xo, in turn, might regulate excitability via transcription of ion channel subunits or regulators.

Figure 13. PI3K$_{DN}$ expression suppresses the synaptic overgrowth conferred by motor neuron expression of eag$_{DN}$ and
Sh$_{DN}$. The $D42$ Gal4 driver was used to induce motor neuron transgene expression.
A, Representative confocal images of muscles 7 and 6 in the indicated genotypes. Larvae
were stained with anti-HRP (green). Scale bar = 20 µm. B, Mean number (+/- S.E.M.s) of
synaptic boutons normalized to the surface area (Y axis) of muscle 6 at abdominal segment
A3 in the indicated genotypes (X axis). From left to right, n = 12, 6, 6 and 6 respectively, for each genotype. For
$D42>lacZ,eag_{DN}^{DN},Sh_{DN}^{DN}$ vs. $D42>PI3K^{DN},eag_{DN}^{DN},Sh_{DN}^{DN}$, p=0.0036.
INDIVIDUALS WHO HAVE BEEN FUNDED BY THIS GRANT

Philip Caldwell
Robert Cardnell
Rupsa Chaudhury
Veronica Hall
Eric Han
Samantha Hong
Eric Howlett
Cynthia Jara
Anushree Kumar
William Lavery
Curtin Chun-Jen Lin
Jason Mishaw
Ndubuisi Nebo
Alex Rottgers
Michael Stern
Magdalena Walkiewicz

KEY RESEARCH ACCOMPLISHMENTS

We report preliminary evidence that push acts in the peripheral glia to control perineurial glial thickness.

We published a paper (Lavery et al., 2007) describing the roles of PI3 Kinase and effectors Akt and FOXO in the nonautonomous regulation of perineurial glial growth.

We report preliminary evidence that the EGF ligand spitz might activate perineurial glial thickness.

Figure 14. A model for the negative feedback loop regulating motor neuron excitability. The transcription factor Foxo increases neuronal excitability through a mechanism possibly involving transcription of ion channel subunits or regulators. This increased excitability promotes glutamate release from motor nerve terminals, which then activates presynaptic DmGluRA in an autocrine manner. This activation, in turn, activates PI3K and the subsequent inactivation of Foxo by Akt-mediated inhibitory phosphorylation. Activated PI3K also promotes axonal growth and synapse formation via the Tor/S6K pathway.
We report that the Drosophila metabotropic glutamate receptor mGluRA regulates neuronal growth and excitability by activating PI3K in a glutamate-dependent manner; furthermore, the effects of mGluRA and PI3K on growth and excitability are genetically separable. PI3K regulates growth via the Tor/S6K pathway, whereas PI3K regulates excitability via Foxo.

REPORTABLE OUTCOMES

Presentation to the NNFF Consortium on NF1 and NF2, entitled "Evidence that PI3 Kinase mediates the effects of Ras on perineurial glial growth in Drosophila peripheral nerves" (Aspen, CO, May, 2004).

Presentation to the Drosophila research conference entitled "FOXO mediates the nonautonomous effects of Ras and PI3 Kinase on peripheral nerve growth", by William Lavery and Michael Stern (March, 2006, Houston, TX)

Presentation to the NNFF Consortium on NF1 and NF2 entitled "FOXO mediates the nonautonomous effects of Ras and PI3 Kinase on peripheral nerve growth", by William Lavery, Michael Stern (June, 2006, Aspen, CO).

Presentation to the NNFF Consortium on NF1 and NF2 entitled "Ral, but not Raf, enhances the nonautonomous effects of PI3K on perineurial glial growth in the fly peripheral nerve" by William Lavery and Michael Stern (June, 2007, Park City, UT).

Presentation to the Molecular Neurobiology of Drosophila meeting entitled "PI3K regulates neuronal excitability and axonal growth and arborization via distinct effector pathways", by Eric Howlett, Curtis Lin, William Lavery, Michael Stern. (October, 2007, Cold Spring Harbor, NY)

CONCLUSIONS

I tentatively conclude that push acts in the peripheral glia to control perineurial glial growth. Further experiments will test this conclusion definitively. We have completed and published our analysis demonstrating that Ras activates perineurial glial growth nonautonomously by inhibiting action of the transcription factor FOXO in a PI3K- and Akt-dependent manner. We show that the metabotropic glutamate receptor (mGluRA) regulates neuronal growth and excitability via PI3K-mediated regulation of Tor/S6K and Foxo, respectively. If mGluRA similarly regulates PI3K in glia, then this could have important implications for growth control within peripheral nerves.

REFERENCE

APPENDIX

1) Abstract of presentation to the NNFF Consortium on NF1 and NF2, entitled "Evidence that PI3 Kinase mediates the effects of Ras on perineurial glial growth in Drosophila peripheral nerves" (Aspen, CO, May, 2004).
2) Abstract of presentation to the Drosophila research conference entitled "FOXO mediates the nonautonomous effects of Ras and PI3 Kinase on peripheral nerve growth", by William Lavery and Michael Stern (March, 2006, Houston, TX)

3) Abstract of presentation to the NNFF Consortium on NF1 and NF2 entitled "FOXO mediates the nonautonomous effects of Ras and PI3 Kinase on peripheral nerve growth", by William Lavery, Michael Stern (June, 2006, Aspen, CO).

5) Abstract of presentation to the NNFF Consortium on NF1 and NF2 entitled "Ral, but not Raf, enhances the nonautonomous effects of PI3K on perineurial glial growth in the fly peripheral nerve" by William Lavery and Michael Stern (June, 2007, Park City, UT).

CONTACT INFORMATION:
Michael Stern
Dept. of Biochemistry MS-140
Rice University
PO Box 1892
Houston, TX 77251-1892
stern@rice.edu
(713) 348-5351
FAX: (713) 348-5154
ABSTRACT FORM

TOPIC: Signaling pathways in NF and TSC

TITLE: Evidence that PI3 Kinase mediates the effects of Ras on perineurial glial growth in Drosophila peripheral nerves

William Lavery, Michelle C. Wells and Michael Stern

Position of presenting author: PI

Affiliation: Dept. of Biochemistry and Cell Biology, Rice University
Address: Dept. of Biochemistry MS-140, Rice University, PO Box 1892, Houston, TX 77251.
Tel: (713) 348-5351 Fax: (713) 348-5154 Email: stern@bioc.rice.edu

Drosophila peripheral nerves comprise a layer of motor and sensory axons, wrapped by an inner peripheral glia (analogous to the mammalian Schwann cell) and an outer perineurial glia (analogous to the mammalian perineurium). We have been using these nerves as an assay platform to test the effects of mutations and transgenes on perineurial glial growth. It was previously shown that perineurial glial growth in third instar larval nerves is regulated by a number of genes including push, which encodes a large Zn$^{2+}$-finger-containing protein, amn, which encodes a putative neuropeptide related to PACAP, and NF1. We found that expression of the constitutively active RasV12 transgene specifically in peripheral glia increased growth within the perineurial glia. This result demonstrates that Ras activity is sufficient to promote perineurial glial growth, and that Ras can act cell nonautonomously. Surprisingly, we found that the NF1P2 null mutation suppresses these effects of RasV12, suggesting that NF1 has a relevant activity that promotes, rather than inhibits, perineurial glial growth. The possibility that activation of adenylate cyclase represents this second activity is supported by the observation that expression within peripheral glia of any of three genes expected to increase protein kinase A (PKA) activity (a constitutively active PKA, the amn-encoded PACAP-like neuropeptide, or a constitutively active Gα_s) strongly enhances the growth promoting effects elicited by RasV12 alone. These results are consistent with the possibility that a signalling pathway from the Amn neuropeptide through Gα_s, Neurofibromin, and PKA strongly potentiates the effectiveness of constitutive Ras activity on perineurial glial growth.

To identify the downstream components that mediate the effects of Ras, we tested the effects of constitutively active Raf and PI3 Kinase transgenes on perineurial glial growth. We found that expression of a constitutively active PI3 Kinase, but not a constitutively active Raf, strongly increased perineurial glial growth, suggesting the possibility that PI3 Kinase is an important mediator of the growth-promoting effects of Ras in peripheral nerves.
Drosophila peripheral nerves, structured similarly to their mammalian counterparts, comprise a layer of motor and sensory axons, wrapped by an inner peripheral glia (analogous to the mammalian Schwann cell) and an outer perineurial glia (analogous to the mammalian perineurium). We found that expression specifically within the peripheral glia of the constitutively active \(\text{Ras}^{V12} \) increases growth of the perineurial glial layer. This nonautonomous effect of \(\text{Ras}^{V12} \) is mediated by activation of the downstream effector PI3 Kinase (PI3K) because expression within the peripheral glia of the activated \(\text{PI3K-CAAX} \) also increases perineurial glial growth, and because the growth-promoting effects of \(\text{Ras}^{V12} \) are suppressed by loss of function mutations in \(\text{PI3K} \) or by co-expression within the peripheral glia of the dominant-negative \(\text{PI3K}^{D954A} \). The nonautonomous, growth-promoting effects of PI3K-CAAX are suppressed in a dose-dependent manner by loss of function mutations in \(\text{Akt} \), the kinase downstream of \(\text{PI3K} \), and are enhanced by co-expression within the peripheral glia of an \(\text{Akt}^+ \) transgene. These observations suggest that PI3K exerts its effects via activation Akt. Finally, we show that the growth-promoting effects of \(\text{PI3K-CAAX} \) are suppressed by co-expression within the peripheral glia of \(\text{FOXO}^+ \), a transcription factor that is inhibited by Akt-dependent phosphorylation. We conclude that Ras-PI3K-Akt activity in the peripheral glia promotes growth of the perineurial glia by inhibiting FOXO. In mammalian peripheral nerves, the Schwann cell releases several growth factors that can affect the proliferative and migratory properties of neighbors. Some of these factors are oversecreted in Schwann cells defective in \(\text{Nf1} \), which encodes the Ras-GTPase activator Neurofibromin and is the gene responsible for the disease type 1 Neurofibromatosis. Our results raise the possibility that peripheral nerve tumor formation in individuals with Neurofibromatosis might result at least in part from a Ras-PI3K-Akt-dependent inhibition of mammalian FOXO within Schwann cells.
Abstract

FOXO mediates the nonautonomous effects of Ras and PI3 Kinase on peripheral nerve growth. William Lavery, Michael Stern. Biochemistry and Cell Biology, Rice University, Houston, TX.

Drosophila peripheral nerves, structured similarly to their mammalian counterparts, comprise a layer of motor and sensory axons, wrapped by an inner peripheral glia (analogous to the mammalian Schwann cell) and an outer perineurial glia (analogous to the mammalian perineurium). We found that expression specifically within the peripheral glia of the constitutively active RasV12 increases growth of the perineurial glial layer. This nonautonomous effect of RasV12 is mediated by activation of the downstream effector PI3 Kinase (PI3K) because expression within the peripheral glia of the activated PI3K-CAAX also increases perineurial glial growth, and because the growth-promoting effects of RasV12 are suppressed by loss of function mutations in PI3K or by co-expression within the peripheral glia of the dominant-negative PI3KD954A. The nonautonomous, growth-promoting effects of PI3K-CAAX are suppressed in a dose-dependent manner by loss of function mutations in Akt, the kinase downstream of PI3K, and are enhanced by co-expression within the peripheral glia of an Akt$^+$ transgene. These observations suggest that PI3K exerts its effects via activation of Akt. Finally, we show that the growth-promoting effects of PI3K-CAAX are suppressed by co-expression within the peripheral glia of FOXO$^+$, a transcription factor that is inhibited by Akt-dependent phosphorylation. We conclude that Ras-PI3K-Akt activity in the peripheral glia promotes growth of the perineurial glia by inhibiting FOXO. In mammalian peripheral nerves, the Schwann cell releases several growth factors that can affect the proliferative and migratory properties of neighbors. Some of these factors are oversecreted in Schwann cells defective in Nf1. Our results raise the possibility that neurofibromas might be caused at least in part by a Ras-PI3K-Akt-dependent inhibition of FOXO within Schwann cells.
PI3K regulates neuronal excitability and axonal growth and arborization via distinct effector pathways. /Eric Howlett, William Lavery, Michael Stern./ Biochemistry & Cell Biology, Rice University, Houston, TX.

The phosphatidylinositol 3-kinase (PI3K)/AKT pathway controls cellular survival and growth and has been implicated as a contributor to a wide variety of cancers. In the mouse CNS, activation of this pathway through loss of function mutations in the gene encoding PTEN, the phosphatase that opposes the effects of PI3K, results in increased neuronal arborization and neuronal hypertrophy; this system has been proposed to be a model for autism. PI3K has also been shown to induce synaptogenesis in Drosophila at both the larval neuromuscular junction (NMJ) and in the adult brain (Martín-Peña et al. J. Neurosci., Oct. 4, 2006. 26(40):10199-10208). Here we show that PI3K regulates motor axon diameter in the larval peripheral nerve: activation of this pathway via transgene expression increases axon diameter, whereas suppression of this pathway confers the opposite effect. Additionally, altered PI3K activity in motor neurons causes electrophysiological defects at the larval NMJ. In particular, activation of PI3K decreases neuronal excitability and both spontaneous and evoked transmitter release, whereas inhibition of PI3K confers the opposite phenotypes. Although effects of PI3K on neuronal growth have been previously shown to be mediated by the Tor pathway, we have found that the effects of PI3K on neuronal activity appear to be mediated by the transcription factor FOXO, which negatively regulates PI3K-induced transcription, and is inhibited by Akt-dependent phosphorylation. In particular, overexpression of FOXO in motor neurons increases neuronal excitability and partially suppresses the decrease in excitability conferred by PI3K. Our results suggest that the effects of PI3K on growth and activity are mediated by distinct effector pathways. These results provide a previously uncharacterized role for PI3K in regulating the relative excitability of neurons in vivo.
Ral, but not Raf, enhances the nonautonomous effects of PI3K on perineurial glial growth in the fly peripheral nerve.

Drosophila peripheral nerves, structured similarly to their mammalian counterparts, comprise a layer of motor and sensory axons, wrapped by an inner peripheral glia (analogous to the mammalian Schwann cell) and an outer perineurial glia (analogous to the mammalian perineurium). We recently reported (Lavery et al., 2007) that expression specifically within the peripheral glia of the constitutively active RasV12 increases growth of the perineurial glial layer, and that this cell nonautonomous effect occurs through PI3-kinase (PI3K) and Akt-dependent inhibition of the transcription factor FOXO. Here we report that the growth-promoting effects of PI3K-CAAX are suppressed in flies expressing hypomorphic loss of function Ras alleles RasP24/RasE2F. Surprisingly, Ras is required in peripheral glia for this effect: expression of the dominant-negative RasN17 specifically in the peripheral glia also suppresses the effects of PI3K-CAAX, suggesting that Ras-mediated perineurial glial growth activation requires a downstream effector in addition to PI3K. In an effort to identify this downstream effector, we expressed within the peripheral glia gain-of-function or dominant-negative forms of Raf, either in an otherwise wildtype background or in combination with PI3K-CAAX.

We found that expression of these transgenes conferred only minor changes in perineurial glial thickness. Similarly, expression of the constitutively active RalV20 in peripheral glia in an otherwise wildtype background conferred no change in perineurial glial thickness. However, co-expression within the peripheral glia of PI3K-CAAX and RalV20 significantly enhanced the PI3K-induced growth effect on the perineurial glia. Therefore, we hypothesize that Ral in combination with PI3K activates perineurial glial growth nonautonomously.
PI3K regulates neuronal excitability and axonal growth and arborization via distinct effector pathways. Eric Howlett, Curtis Lin, William Lavery, Michael Stern. Biochemistry & Cell Biology, Rice University, Houston, TX.

The phosphatidylinositol 3-kinase (PI3K)/AKT pathway controls cellular survival and growth and has been implicated as a contributor to a wide variety of cancers. In the mouse CNS, activation of this pathway through loss of function mutations in the gene encoding PTEN, the phosphatase that opposes the effects of PI3K, results in increased neuronal arborization and neuronal hypertrophy; this system has been proposed to be a model for autism. PI3K has also been shown to induce synaptogenesis in Drosophila at both the larval neuromuscular junction (NMJ) and in the adult brain (Martín-Peña et al. J. Neurosci., Oct. 4, 2006. 26(40):10199-10208). Here we show that PI3K regulates motor axon diameter in the larval peripheral nerve: activation of this pathway via transgene expression increases axon diameter, whereas suppression of this pathway confers the opposite effect. Additionally, altered PI3K activity in motor neurons causes electrophysiological defects at the larval NMJ. In particular, activation of PI3K decreases neuronal excitability and both spontaneous and evoked transmitter release, whereas inhibition of PI3K confers the opposite phenotypes. Although effects of PI3K on neuronal growth have been previously shown to be mediated by the Tor pathway, we have found that the effects of PI3K on neuronal activity appear to be mediated by the transcription factor FOXO, which negatively regulates PI3K-induced transcription, and is inhibited by Akt-dependent phosphorylation. In particular, overexpression of FOXO in motor neurons increases neuronal excitability and partially suppresses the decrease in excitability conferred by PI3K. Our results suggest that the effects of PI3K on growth and activity are mediated by distinct effector pathways. These results provide a previously uncharacterized role for PI3K in regulating the relative excitability of neurons in vivo. In addition, we have observed that alterations in the Drosophila metabotropic glutamate receptor (DmGluRA) effect both neuronal excitability and synaptogenesis in a manner similar to what we observe with PI3K, confirming results published by Bogdanik et al. (J. Neurosci., Oct. 13, 2004. 24(41):9105-16). Since it has been demonstrated that mGlur can activate PI3K via the HOMER/PIKE scaffolding complex, this raises the possibility that glutamate released at the NMJ could feed back onto mGlur, thus activating PI3K in an inhibitory feedback loop regulating both growth and excitability at the nerve terminal.
Phosphatidylinositol 3-Kinase and Akt Nonautonomously Promote Perineurial Glial Growth in Drosophila Peripheral Nerves

William Lavery, Veronica Hall, James C. Yager, Alex Rottgers, Michelle C. Wells, and Michael Stern
Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251

Drosophila peripheral nerves, structured similarly to their mammalian counterparts, comprise a layer of motor and sensory axons wrapped by an inner peripheral glia (analogous to the mammalian Schwann cell) and an outer perineurial glia (analogous to the mammalian perineurium). Growth and proliferation within mammalian peripheral nerves are increased by Ras pathway activation: loss-of-function mutations in Nf1, which encodes the Ras inhibitor neurofibromin, cause the human genetic disorder neurofibromatosis, which is characterized by formation of neurofibromas (tumors of peripheral nerves). However, the signaling pathways that control nerve growth downstream of Ras remain incompletely characterized. Here we show that expression specifically within the Drosophila perineural glia of the constitutively active RasV12 increases perineural glial thickness. Using chromosomal loss-of-function mutations and transgenes encoding dominant-negative and constitutively active proteins, we show that this nonautonomous effect of RasV12 is mediated by the Ras effector phosphatidylinositol 3-kinase (PI3K) and its downstream kinase Akt. We also show that the nonautonomous, growth-promoting effects of activated PI3K are suppressed by coexpression within the peripheral glia of FOXO (forkhead box O) a transcription factor inhibited by Akt-dependent phosphorylation. We suggest that Ras–PI3K–Akt activity in the peripheral glia promotes growth of the perineural glia by inhibiting FOXO. In mammalian peripheral nerves, the Schwann cell releases several growth factors that affect the proliferative properties of neighbors. Some of these factors are oversecreted in Nf1 mutants. Our results raise the possibility that neurofibroma formation in individuals with neurofibromatosis might result in part from a Ras–PI3K–Akt-dependent inhibition of FOXO within Schwann cells.

Key words: neurofibromatosis; Ras; FOXO; cell growth; cell nonautonomy; Schwann cell

Introduction
Peripheral nerves in both Drosophila and mammals contain an inner layer of motor and sensory axons surrounded by an inner peripheral glial layer (termed the Schwann cell in mammals) and an outer, mesodermally derived perineurial glia (termed the perineurium in mammals). Proper growth, development, and function of peripheral nerves require intercellular signaling among the cell types present. For example, formation of the perineurial sheath requires Desert Hedgehog secretion from Schwann cells (Parmentier et al., 1999). In addition, neurons and glia interact reciprocally to regulate function, at least in part through the release of, and response to, small molecule neurotransmitters (Colomar and Robitaille, 2004; Yuan and Ganetzky, 1999).

Individuals with the autosomal-dominant genetic disorder of neurofibromatosis, which is caused by mutations in Nf1 (for review, see Cichowski and Jacks, 2001), form peripheral nerve tumors called neurofibromas at high frequency. Neurofibromas are thought to arise in individuals heterozygous for Nf1 after spontaneous loss of the Nf1– allele within Schwann cells (Kluwe et al., 1999; Serra et al., 2000). Nf1 encodes a Ras GTPase activator and thus negatively regulates Ras. Although at least some of the growth deficits of Nf1– cells result from Ras hyperactivation, the Ras effector pathways mediating the various growth defects have not been fully characterized. It was reported recently that phosphatidylinositol 3-kinase (PI3K), Akt, and the Akt-dependent kinase Tor (target of rapamycin) are hyperactivated in Nf1– deficient mouse or human cells and that this activation was required for proliferation of tumor cells in culture (Dasgupta et al., 2005; Johannessen et al., 2005). These results are consistent with the well-established role for the PI3K–Tor pathway in autonomous growth control (Hay and Sonenberg, 2004). However, there is much evidence that neurofibroma formation requires Schwann cell nonautonomous pathways (Sherman et al., 2000; Yang et al., 2003). For example, neurofibromas are heterogeneous at the cellular level and contain cell types that are not clonally related (i.e., Schwann cells and fibroblasts). This observation raises the possibility that neurofibroma formation requires the Nf1– dependent oversecretion of growth factors that...
increase the proliferation of heterozygous neighbors (Yang et al., 2003). The identity of the pathway(s) regulating nonautonomous growth has not been elucidated.

Here we use the Drosophila peripheral nerve to identify molecules acting within the peripheral glia that regulate growth nonautonomously. We find that expression of constitutively active RasV12 specifically within the peripheral glia increases perineurial glial thickness. We also show that this nonautonomous, growth-promoting effect is mediated by PI3K and Akt: PI3K and Akt activity within the peripheral glia are both necessary and sufficient to promote nonautonomous growth. Finally, we report that peripheral glial overexpression of FOXP (forkhead box O), which encodes a transcription factor inhibited by Akt-dependent phosphorylation and which antagonizes PI3K–Akt-dependent growth-promoting effects of activated PI3K. We conclude that the effect of Ras activity within the peripheral glia on perineurial glial growth is mediated by PI3K and Akt and suggest that this pathway promotes nonautonomous growth by inhibiting FOXP.

Materials and Methods

Drosophila stocks, mutations, and crosses. Gliotactin (gli–Gal4 and MZ709 express Gal4 in peripheral glia (Ito et al., 1995; Auld et al., 1995; Leiserson et al., 2000; Sepp and Auld, 1999) and were provided by Vanessa Auld (University of British Columbia, Vancouver, British Columbia, Canada) and Kei Ito (National Institute for Basic Biology, Okazaki, Japan), respectively; upstream activating sequence (UAS–PI3K–CAAX and UAS–PI3K295AA) express a constitutively active and dominant-negative PI3K, respectively, under the transcriptional control of Gal4 (Leevers et al., 1996) and were provided by Sally Leevers (Cancer Research Institute, London, UK); flies bearing UAS–RasV12 (strong) on chromosome III, UAS–RasV12 (Lee et al., 1996; Karim and Rubin, 1998), UAS–RasV12 (Brand and Perrimon, 1994), UAS–green fluorescent protein (GFP) nuclear localization signal (nls) (Shiga et al., 1996), and Akt62Ph (Perrimon et al., 1996) were provided by the Bloomington Drosophila Stock Center (University of Indiana, Bloomington, IN). Two independent UAS–Akt transgenes (A. Park, personal communication to FlyBase) were provided by the Bloomington Drosophila Stock Center via Exelixis (South San Francisco, CA). UAS–RasV12 (weak) on chromosome II (Karim and Rubin, 1998) was provided by Andreas Bergmann (M.D. Anderson Cancer Research Center, Houston, TX). UAS–RasV12 (Sawamoto et al., 1999) was provided by Hideyuki Okano (Tokyo, Japan). Two independent UAS–FOXPt transgenes (Junger et al., 2003; Hwangbo et al., 2004) were provided by Marc Tatar (Providence, RI). Flies bearing two loss-of-function alleles of PI3K: PI3K62fli and PI3K62d2 (Halffer et al., 2001), provided by Ernst Hafen (Zurich, Switzerland).

Standard Drosophila genetics techniques were used to establish the fly stocks and perform the crosses used in the experiments described. Because the PI3K and Akt loss-of-function alleles used confer either lethality or greatly reduced viability when homozygous, these alleles were maintained with balancers carrying the tubby Tb dominant marker, which can be scored in larvae. Third-instar larvae carrying the Akt or PI3K mutant alleles on both chromosomes, to be analyzed with electron microscopy, were recognized by their non-tubby appearance. For all experiments using either Gal4 or UAS transgenes, the appropriate larvae were obtained after a cross of the Gal4-containing fly line to the UAS-containing fly line. Because UAS–PI3K–CAAX is located on the X chromosome, only female larvae heterozygous for these transgenes were analyzed. In all cases, larvae bearing the Gal4 driver alone or the UAS-driven transgene alone were generated in parallel to the experimental larvae and used as controls.

Transmission electron microscopy. Larvae were grown to the wandering third-instar stage in uncrowded half-pint bottles at room temperature (22–23°C). Larvae were collected only during the first and second days after the initial third-instar larvae appeared. The dissections, fixations, and stainings were performed as described previously (Yager et al., 2001). Perineurial glial thickness was measured from the edge of the nerve to the axon-containing lumen and averaged from eight measurements made 12:00, 3:00, 6:00, and 9:00 and four positions in between. Measurements were not taken at positions in nerves in which a perineurial glial nucleus was encountered.

Fluorescence microscopy. Larvae were grown to the wandering third-instar stage as described above. These larvae were dissected with the protocol used for electron microscopy, except PBS was used for dissections. Dissected larvae were fixed in PBS containing 5% formaldehyde and 0.1% Triton X-100 for 15 min. Ventral ganglia and nerves were removed and placed in Vectashield (H-1000; Vector Laboratories, Burlingame, CA) containing a 1:1000 dilution of Hoechst stain (H-3570; Invitrogen, Carlsbad, CA). Nuclei were visualized with 4′,6-diamidino-2-phenylindole and GFP filters on an Axiosplan 2 epifluorescence microscope (Zeiss, Oberkochen, Germany) using MetaMorph software for micrograph acquisition (Molecular Devices, Palo Alto, CA).

Results

gli–Gal4 and MZ709: two Gal4 drivers that express in the peripheral glia but not the perineurial glia.

Drosophila peripheral nerves contain a layer of ~80 motor and sensory axons, wrapped by an inner peripheral glia, which forms the blood–nerve barrier (Auld et al., 1995) and an outer, mesodermally derived perineurial glia (Edwards et al., 1993). A transmission electron micrograph (TEM) of a peripheral nerve cross section is shown in Figure 1A. Each peripheral nerve contains approximately eight peripheral glial nuclei (Sepp et al., 2000). In addition, each mm of peripheral nerve contains ~20 peripheral glial nuclei (W. Lavery and M. Stern, unpublished observations).

To evaluate the role of Ras signaling in nonautonomous growth control within peripheral nerves, we used the Gal4/UAS system (Brand and Perrimon, 1993) to express wild-type and mutant transgenes specifically within the peripheral glia. Two Gal4 drivers, gli–Gal4 and MZ709, were reported to express in the peripheral glia but not the neurons of peripheral nerves (Ito et al., 1995; Sepp and Auld, 1999; Leiserson et al., 2000; Sepp et al., 2000). The gli–Gal4 driver is a particularly well characterized marker for peripheral glia. gli–Gal4 was generated via gene conversion from a gli–lacZ enhancer trap line (Auld et al., 1995; Sepp and Auld, 1999), which was reported to express specifically in peripheral glia, exit glia, and some midline glia. The gli–Gal4 driver was used to study peripheral glial dynamics during embryonic peripheral nerve development. This drive was also used to study peripheral glial anatomy during larval growth and at the mature third-instar larval neuromuscular junction and peripheral sensory structures (Sepp et al., 2000). These studies confirmed that gli–Gal4 is expressed in peripheral glia but not motor and sensory neurons.

To confirm that gli–Gal4 and MZ709 do not express Gal4 in the perineurial glia, we visualized the expression pattern of these drivers within peripheral nerves via induced expression of a nuclear-localized GFP. We also visualized the total complement of peripheral nerve nuclei (peripheral and perineurial glial) via the Hoechst DNA dye. As shown in Figure 1, B and D, there are ~20 nuclei per millimeter of peripheral nerve. Most of these are perineurial glial nuclei, whereas a few are peripheral glial nuclei. If gli–Gal4 and MZ709 express in the perineurial glia as well as peripheral glia, then we anticipate that, in gli–>GFP (nls) and MZ709> GFP (nls), most or all of these nuclei would contain GFP. In fact, as shown in Figure 1, C and E, we observe that only a few (presumably peripheral glial) nuclei from these larvae express GFP. Therefore, we conclude that neither gli–Gal4 and MZ709 expresses Gal4 in the perineurial glia. We generally observe GFP in fewer than eight peripheral glial nuclei, which presumably results from cell-to-cell variability in Gal4 expression levels, as
was reported previously for peripheral glia (Sepp et al., 2001). We also observed that each driver also expresses Gal4 within certain cells of the ventral ganglion (Fig. 1).

Expression of the constitutively active RasV12 allele in peripheral glia increases perineurial glial growth

In both mice and humans, neurofibroma formation appears to occur only when the Schwann cell component of the peripheral nerve is homozygous for Nf1 (Zhu et al., 2002; Kluwe et al., 1994). To identify the effector(s) responsible for transducing the nonautonomous growth activation conferred by RasV12, we expressed transgenes encoding the constitutively active Raf179, PI3K–CAAX, and RalV20 proteins (Brand and Perrimon, 1994; Leevers et al., 1996; Sawamoto et al., 1999) within peripheral glia using gli–Gal4. As shown in Figure 3B, we found that expression of Raf179 or RalV20 had no significant effect on perineurial glial thickness. However, expression of PI3K–CAAX increased perineurial glial thickness to ~3 μm (Fig. 3A, B). This thickness is significantly greater than both wild-type thickness and the increased thickness conferred by RasV12 expression. When UAS–PI3K–CAAX was expressed with a second peripheral glial driver, MZ709 (Ito et al., 1995) (Fig. 1), perineurial glial thickness was increased to the same extent as with gli–Gal4. These results suggest that Ras exerts its nonautonomous effects on perineurial glial growth via activation of PI3K. The observation that PI3K–CAAX exerts a stronger effect than RasV12 might indicate that PI3K levels are limiting in peripheral glia to promote perineurial glial growth. In this view, transgene-induced overexpression of PI3K–CAAX overcomes this limitation and enables a more robust growth effect to be observed.
PI3K activity in the peripheral glia is necessary to mediate the nonautonomous, growth-promoting effect of RasV12

The results shown in Figure 3 demonstrate that PI3K activation in peripheral glia is sufficient to increase perineurial glial growth. To determine whether PI3K activity is necessary for the nonautonomous growth-promoting effects of RasV12, we introduced the heterallelic PI3K loss-of-function combination PI3K2H1/PI3KA (Halfar et al., 2001) into gli/H11022 RasV12 larvae. This mutant combination was chosen because it decreases PI3K activity sufficiently to confer phenotypes but retains sufficient activity to permit viability to the third-instar larval stage. We found that PI3K2H1/PI3K2 significantly suppressed the growth-promoting effects of RasV12 (Fig. 4), which demonstrates that PI3K activity is necessary for this effect. To determine whether PI3K activity is necessary in peripheral glia rather than the perineurial glia, we blocked PI3K activity specifically in the peripheral glia by coexpressing RasV12 with a transgene encoding the dominant-negative PI3KD954A (Leevers et al., 1996). We found that peripheral–glial-specific expression of PI3KD954A blocked the growth-promoting effects of RasV12 (Fig. 4), suggesting that PI3K activity is required in the peripheral glia to promote perineurial glial growth. In contrast, as described above, coexpressing RasV12 with GFP did not suppress the growth-promoting effects of RasV12 (Fig. 2).

To confirm that PI3k2H1/PI3K2A suppressed the RasV12 phenotype by decreasing PI3K activity in the peripheral glia rather than the perineurial glia, we introduced PI3K2H1/PI3K2 into gli–Gal4 larvae. The extremely thick perineurial glia conferred by PI3K–CAAX was not significantly affected by the presence of PI3K2H1/PI3K2 (Fig. 4); thus, the perineurial glia in the PI3K2H1/PI3K2 mutant is fully competent to respond to growth-promoting signals from the peripheral glia, which

Figure 2. Expression of activated Ras in peripheral glia increases perineurial glial growth. A, TEMs of cross sections from representative peripheral nerves of the indicated genotypes. The gli–Ras V12 nerve is the same nerve cross section shown Figure 1 A. B, Perineurial glial thickness (y-axis) from the indicated genotypes (x-axis). Means ± SEMs are indicated. One-way ANOVA and Scheffé’s tests for multiple comparisons showed the following statistically significant differences, denoted by asterisks: gli–Ras V12 (strong) (2.08 ± 0.082 μm; n = 78), gli–Ras V12 (weak) (2.37 ± 0.236 μm; n = 20), gli–Ras V12 (strong), Ras V12 (weak) (2.28 ± 0.130 μm; n = 56), and gli–Ras V12 (strong), GFP (2.57 ± 0.17 μm; n = 43) versus gli–Ras+ (1.48 ± 0.048 μm; n = 99), gli–Gal4+ (1.46 ± 0.057 μm; n = 60), UAS–Ras V12 (strong)/+ (1.37 ± 0.068 μm; n = 45), and UAS–Ras V12 (weak)/+ (1.53 ± 0.088 μm; n = 22). For all such tests, p < 0.0001.
strongly suggests that the significant suppression of the RasV12 growth phenotype by PI3K2H1/PI3KA results from loss of PI3K activity in the peripheral glia.

The PI3K effector Akt mediates the nonautonomous effects of PI3K on perineurial glial growth

One PI3K effector is the protein kinase Akt (Scheid and Woodgett, 2001). Elevated PI3K activity promotes the ability of RasV12 to increase perineurial glial growth

Figure 3. Peripheral glial activity of constitutively active PI3K, but not constitutively active Ral or Raf, is sufficient to increase perineurial glial growth. A, TEMs of cross sections from representative peripheral nerves of the indicated genotypes. B, Perineurial glial thickness (y-axis) from the indicated genotypes (x-axis) from the indicated genotypes (x-axis). Means ± SEMs are indicated. One-way ANOVA and Scheffe’s tests for multiple comparisons showed the following statistically significant differences, denoted by asterisks: gli–Gal4/UAS–PI3K–CAAX (2.88 ± 0.35 μm; n = 11), p = 0.43.

Figure 4. RasV12 requires PI3K activity in the peripheral glia to increase perineurial glial growth. Histograms show perineurial glial thickness (y-axis) from the indicated genotypes (x-axis). Means ± SEMs are indicated. The increase in perineurial glial thickness observed in gli–>RasV12 (lane 1) is significantly suppressed by the heteroallelic loss-of-function combination PI3K2H1/PI3KA (lane 2). The gli–>RasV12 larvae analyzed for lane 1 were obtained from the PI3K recombinants when PI3KA was crossed onto UAS–RasV12, whereas the PI3K/PI3KA; gli–>RasV12 larvae analyzed were obtained from the PI3K recombinants from this cross; thus, the values for the genotypes shown in lanes 1 and 2 are paired. The following pairwise combinations had statistically significant differences (two-tailed, unpaired t test) denoted by asterisks: gli–>PI3K–CAAX (3.1 ± 0.14 μm; n = 53) was not significantly different from PI3K2H1/PI3KA; gli–>PI3K–CAAX (2.88 ± 0.35 μm; n = 11), p = 0.43.
the kinase PI3K-dependent kinase PDK1 to phosphorylate and activate Akt. To determine whether Akt activity was necessary for the growth-promoting effects of PI3K, we replaced either one or both copies of Akt+ with the strong hypomorphic Akt4226 allele (Perrimon et al., 1996) in gli\textgreater PI3K–CAAX larvae. We found that replacing one copy of Akt+ moderately suppressed, and replacing both copies of Akt+ profoundly suppressed, the effects of PI3K–CAAX (Fig. 5). These results demonstrate that Akt activity is required for the growth-promoting effects of PI3K. Akt activity can promote growth cell autonomously (Hay and Sonenberg, 2004). Thus, Akt4226 could suppress the growth-promoting effects of PI3K–CAAX by decreasing Akt activity in either the peripheral or perineurial glia. To determine whether Akt+ activity in the peripheral glia was sufficient to increase perineurial glial growth, we measured perineurial glial thickness in larvae expressing either of two UAS–Akt+ transgenes driven by gli–Gal4 and found no effect on the perineurial glia (Fig. 5). Because these Akt+ transgenes encode wild-type Akt, which requires activation by the PI3K-dependent kinase PDK1, it was possible that this lack of effect might result from low endogenous PI3K activity in the peripheral glia, which would lead to inability to activate Akt. To test this possibility, we activated Akt in the peripheral glia by using gli–Gal4 to co-overexpress UAS–Akt+ with UAS–PI3K–CAAX. We found a striking increase in perineurial glial thickness in this genotype compared with larvae expressing PI3K–CAAX alone (Fig. 5; note that the gli\textgreater PI3K–CAAX, Akt+ nerve pictured is an extreme nerve, not a typical nerve). This result suggests that, in the presence of activated PI3K, Akt levels within the peripheral glia become limiting for activating growth nonautonomously. In this view, increasing Akt levels by transgene expression serves to relieve this limitation and enable an additional increase in perineurial glial growth. We conclude that Akt activation in the peripheral glia is sufficient to increase perineurial glial growth.

In addition to the effect of gli\textgreater PI3K–CAAX, Akt on perineurial glial thickness, we observed a significant increase in thickness of the “axon bundle” (motor and sensory axons and peripheral glia) in this genotype. This increased thickness is attributable mostly to the presence of motor and sensory axons of increased diameter (Fig. 5). A more complete description of this phenotype will be presented in a future study. However, these observations suggest that extremely high levels of Akt activity can nonautonomously activate axonal growth as well as perineurial glial growth.

FOXO overexpression suppresses the growth-promoting effects of PI3K

One Akt effector is the forkhead-box transcription factor FOXO. FOXO inhibits PI3K- and Akt-dependent gene expression; this activity is lost during phosphorylation by Akt, which causes phospho-FOXO to be excluded from the nucleus (Brunet et al., 1999). To test the possibility that PI3K and Akt activity increase perineurial glial growth by inhibiting FOXO, we coexpressed PI3K–CAAX and either of two FOXO transgenes (Hwangbo et al., 2004) within the peripheral glia. We found that expression of either FOXO transgene significantly suppressed the growth-promoting effects of PI3K–CAAX (Fig. 6). In contrast, when we coexpressed PI3K–CAAX with a neutral UAS-driven transgene (UAS–GFP), we did not observe significant suppression (Fig. 6).
Thus, FOXO overexpression suppresses the growth-promoting effects of PI3K.

Our studies provide new mechanistic insights into the nonautonomous growth-promoting effects of peripheral glia (Schwann cells) in peripheral nerves. Our results are completely consistent with the possibility that these nonautonomous effects are mediated by a pathway in which the negative regulation of growth by FOXO is inhibited by its Akt-dependent phosphorylation. FOXO might directly or indirectly repress transcription of growth factors that recruit the growth of neighbors.

Discussion

We report the effects of altered activity of Ras and downstream effectors on growth within Drosophila peripheral nerves. We found that activating Ras specifically within the peripheral glia was sufficient to increase growth of the perineurial glia. In addition, we found that activating the Ras effector PI3K (Rodriguez-Viciana et al., 1994), but not Raf or Ral, within the peripheral glia was sufficient to increase perineurial glial growth and that inhibiting PI3K activity in the peripheral glia, but not perineurial glia, suppressed the growth-promoting effects of activated Ras. We also found that activity within the peripheral glia of the PI3K-activated kinase Akt (Franke et al., 1995; Scheid and Woodgett, 2001) was both necessary and sufficient to mediate the growth-promoting effects of PI3K. Finally, we found that overexpression within the peripheral glia of FOXO, the forkhead-box transcription factor that is phosphorylated and inactivated by Akt-dependent phosphorylation (Brunet et al., 1999), was sufficient to suppress the growth-promoting effects of PI3K. Together,

Figure 7. Model for the nonautonomous control of perineurial glial growth by the PI3K pathway. Peripheral and perineurial glial cells are indicated. The experimental evidence reported here demonstrates that Ras–PI3K–Akt activity in the peripheral glia increases growth of the perineurial glia and suggests that this activation occurs by the inhibition of FOXO (solid arrows and boxes). We hypothesize (dashed arrows and boxes) that FOXO directly or indirectly inhibits expression of a growth factor that activates perineurial glial cell growth. PIP3, Phosphatidylinositol (3,4,5)-trisphosphate; P, phosphate.
these results suggest that Ras activity in the peripheral glia activates nonautonomous growth via the PI3K and Akt-dependent inhibition of FOXO (Fig. 7). This observation is consistent with the previous observations that Nf1−/− mouse Schwann cells secrete growth factor(s) that cause increased recruitment of mast cells into the peripheral nerve (Yang et al., 2003) and is consistent in part with the observation that the proliferation defects of Nf1−/− mutant mouse or human cells require hyperactivation of Tor in a PI3K- and Akt-dependent manner (Dasgupta et al., 2005; Johannessen et al., 2005).

Regulation of peripheral nerve growth by a neuron–glia signaling pathway
Yager et al. (2001) reported that perineurial glial growth in Drosophila peripheral nerves is regulated by several genes. These genes include Nfi1, which is the Drosophila ortholog of human Nf1, push, which is thought to encode an E3 ubiquitin ligase and two genes implicated in neurotransmitter signaling: amnesiac, which is thought to encode a neuropeptide similar to vertebrate pituitary adenylate cyclase-activating polypeptide (Feany and Quinn, 1995), and inebriated (ine), which encodes a member of the Na+/Cl−-dependent neurotransmitter transporter family (Soehnge et al., 1996). Some of these genes might regulate perineurial glial growth via the activity of Ras or PI3K within peripheral glia. For example, mutations in push, but not ine, enhance the perineurial glial growth phenotype of RasV12 expressed in peripheral glia (Lavery and Stern, unpublished observations). These observations are consistent with the possibility that the activity of ine regulates Ras-GTP levels within peripheral glia. In contrast, push might regulate PI3K in a Ras-independent manner or act in the perineurial glia to regulate sensitivity to peripheral glial growth factors. Additional experiments will be required to distinguish between these possibilities.

Regulation of peripheral nerve growth by Schwann cell nonautonomous mechanisms
There are several lines of evidence from mice and humans suggesting that cell nonautonomous growth regulation, as a consequence of intercellular signaling, underlies neurofibromatosis. First, although neurofibromas arise in individuals heterozygous for Nf1−/− after loss of Nf1−/− from cell(s) within peripheral nerves, neurofibromas are heterogeneous and contain cells that are not clonally related, such as Schwann cells, perineurial cells, and fibroblasts. These observations suggest that neurofibromas arise when a core of Nf1−/− cells cause overproliferation of their heterozygous neighbors via nonautonomous means. Second, neurofibromatosis type 1 (NF1) is regulated nonautonomously by the mammalian Schwann cell.

Regulation of peripheral nerve growth by Ras effectors
By hyperactivating Ras, Nf1 mutations could in principle cause tumors via any of several Ras effector pathways. In addition, the diverse types of tumors observed in individuals with neurofibromatosis (for review, see Cichowski and Jacks, 2001) could result from hyperactivation of distinct Ras effector pathways. The Raf pathway has been viewed previously as a more relevant effector pathway than the PI3K pathway, mostly because the importance of Ras in the activation of PI3K under physiological conditions remains controversial. In particular, although it is clear that the oncogenic RasV12 mutant is sufficient to activate PI3K (Rodriguez-Viciana et al., 1994), it has sometimes been difficult to demonstrate that wild-type Ras is necessary for PI3K activation (Prober and Edgar, 2002). Presumably, this difficulty reflects the fact that PI3K can be activated by Ras-independent as well as Ras-dependent mechanisms, such as direct activation by activated receptor tyrosine kinases or by PIKE-L (phosphatidylinositol kinase enhancer) (Escobedo et al., 1991; Rong et al., 2004). However, more recently, it has been demonstrated that PI3K and Akt are hyperactivated in several Nf1−/− mutant cell types and that this hyperactivation is Ras dependent (Dasgupta et al., 2005; Johannessen et al., 2005). Furthermore, PI3K activation plays an essential functional role in Nf1−/−-mediated growth defects, as was demonstrated by the observation that PI3K- and Akt-dependent Tor activation was necessary for the proliferation defects of Nf1−/− mutants to occur: application of rapamycin, a Tor inhibitor, attenuated the ability of Nf1−/− mutant cells to proliferate (Johannessen et al., 2005). These observations demonstrate that PI3K and Akt play key roles in at least some aspects of Nf1−/−-induced tumor growth.

Our results are consistent with these observations. By comparing the effects on perineurial glial growth of peripheral- and glial expression of activated Raf, PI3K, or Rap, we were able to demonstrate that activation of PI3K, not Rap or Raf, was sufficient to promote perineurial glial growth and that PI3K activity in the peripheral glia was necessary to observe the nonautonomous effect of activated Ras on perineurial glial growth. We similarly showed that Akt activity was necessary and sufficient to mediate the growth-promoting effects of PI3K. However, whereas Dasgupta et al. (2005) and Johannessen et al. (2005) observed that Tor activation was critical for the PI3K- and Akt-dependent growth regulation of Nf1−/− mutant cells, we observed a critical role for the PI3K- and Akt-dependent inhibition of the transcription factor FOXO. It is possible that the phenotype observed by Dasgupta et al. (2005) and Johannessen et al. (2005) reflects the well characterized ability of PI3K–Tor to activate growth cell autonomously (Hay and Sonenberg, 2004), whereas the phenotype we report reflects nonautonomous growth regulation. In this view, PI3K and Akt regulate autonomous and nonautonomous growth via the Tor and FOXO pathways, respectively.
FOXO presumably inhibits the growth-promoting effects of PI3K and Akt by transcriptional regulation of target genes. Candidate FOXO target genes include those encoding the molecules overexpressed by Nf1−/− Schwann cells (Yang et al., 2003), whereas other targets might be represented in the distinct transcript profiles exhibited by Nf1−/− Schwann cells (Mashour et al., 2001) or malignant peripheral nerve sheath tumors (Miller et al., 2006) compared with wild-type Schwann cells. For example, Schwann cells from neurofibromas, but not normal Schwann cells, express the epidermal growth factor (EGF) receptor (DeClue et al., 2000). Other potential targets include genes encoding growth factors, although ectopic expression within the peripheral glia of two candidate genes, Hedgehog and the EGF ligands spitz and gurken, failed to induce perineurial glial growth (Lavery and Stern, unpublished observation). Additional experiments will be required to identify the FOXO targets that regulate nonautonomous growth in peripheral nerves.

References

Parsey345678

