Attacks and Defenses Utilizing Cross-Layer Interactions in MANET

John S. Baras and Svetlana Radosavac

Department of Electrical and Computer Engineering
Institute for Systems Research
University of Maryland College Park

NATO Cross-Layer Workshop
NRL, June 2-3, 2004
<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 DEC 2007</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attacks and Defenses Utilizing Cross-Layer Interactions in MANET</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Electrical and Computer Engineering Institute for Systems Research University of Maryland College Park</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>UU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
</tr>
</tbody>
</table>
Motivation

• Possibility of Denial of Service (DoS) attacks in the MAC layer
• MAC and routing layers interact
• Current protocols offer insufficient cross-layer interaction
• Possible to cause an attack by manipulating traffic in the MAC layer and propagate attack to the routing layer
• Need for additional interaction between MAC and routing:
 – MAC needs to pass information to routing in case of congestion
 – Routing decides on new routes that are not affected by congestion;
 – IDS makes sure the new routes don’t contain malicious nodes
• Goal: Detect the intrusion, minimizing detection time t_D and the number of false alarms, while maximizing the probability of detection P_D
MAC Layer Issues

• Issues:
 – How to differentiate between an attack and congestion in wireless networks?
 – Randomness of Contention Window (CW) brings additional uncertainty in detection process
 – How long a node can stay malicious without being detected? What does it do in case of collision?
 – Is it realistic to assume the existence of stealthy attacks?
 – What is the number of nodes needed for attack detection, in particular partition detection?
 – Which parameters MAC and routing need to measure and exchange for efficient cross-layer Intrusion Detection Scheme?
Routing issues

• Routing does influence the performance of MAC
• Routing chooses routes independently of MAC
• MAC only forwards the packet to the given node → may lead to failures
• Due to congestion and interference, MAC may not be able to deliver the packet
• Routing uses alternate route which is in vicinity of existing one → most likely unsuccessfully!
• Solution: let MAC and routing interact with each other and with the IDS
• IDS: has past behavior patterns and information from both MAC and routing;
 • Delivers final decision
 • Communicates with routing and MAC
MAC issues

- Even without attacks MAC suffers from several problems:
 - RTS/CTS propagation
 - Unfairness due to exponential backoff
 - Path interference – can lead to chain reaction _if attacked this way, not likely to find the attacker!

- Solution:
 - Avoid _interfering paths_

- How?
 - Conflict graphs
Possible Attacks

Attack 1

M “blocks” D from communicating

Attack 2

Two colluding attackers M_1 and M_2
First transmission $M_1 \rightarrow A$
X has to defer

Second transmission $M_2 \rightarrow B$
X has to defer
M_1, M_2 synchronize
D is “blocked” from communicating
Node classification

• **Normal**
 – Obeys the rules of MAC layer protocols when both sending and receiving packets.
 – Will not behave selfishly and will reply to RTS requests from other nodes.
 – Will update their CW, NAV etc. according to the rules of the protocol.

• **Misbehaving**
 – **Goal**: gain priority in the network or disrupt already existing routes.
 – Usually change the value of CW, NAV value, Duration/ID field in the packet, etc.

• **Malicious**
 – All communication done following the MAC layer protocol.
 – Will employ legitimate communications which result in DoS in one or multiple nodes and attack propagation through the network.

• **Issues:**
 – best strategy for detection of misbehaving nodes.
 – How long a malicious node can stay malicious? Will it eventually collide with normal node?
 – What is the best strategy to stay undetected?
 – What about colluding nodes?
Formal Model

- MAC protocols easier to model than routing
- Represent MAC protocols in the form of EFSMs
- Need to impose time constraints
- In combination with logic useful as addition to IDS

T_RTS: transmit RTS
R_RTS: receive RTS
T_DATA: transmit data
WFCTS: wait for CTS
WFACK: wait for acknowledgement
R_ACK: receive ACK
TO: counter timed out
Cross-layer scheme

- Routing sends several choices to MAC
- MAC uses: local detection, interference information, information from the physical layer,…
- MAC delivers the result back to routing _ subset of original routes
- Consults IDS if necessary->global detection
Detection scheme in MAC

- Input: local information
- Local detection: use Neyman-Pearson rule to detect the attack
- If not able to decide forward to IDS and let it decide
- Issue local (global) response and exchange the information with routing
Local Detection

\[P(\text{Receiver} = \text{busy}|\text{Sender} = \text{busy}) = 1 \]
\[P(\text{Receiver} = \text{busy}|\text{Sender} = \text{idle}) = p \]

Hypothesis testing:

\[H_0 = \text{Sender is normal} \]
\[H_1 = \text{Sender is malicious} \]

Log-likelihood defined as:

\[L = \frac{P_{H_1}}{P_{H_0}} = \begin{cases} H_1 > \eta \\ H_0 < \eta \end{cases} \]
Local Detection

Due to channel conditions the receiver may not count the backoff correctly

\[B_S : \text{the actual backoff of sender} \]
\[B_r : \text{backoff observed at the receiver side} \]
\[B_t : \text{threshold for backoff} \]

Two cases:

\[B_r \geq B_t : P_{H_0} = 1 \land P_{H_1} = 0 \]
\[B_r < B_t : P_{H_0} = P(B_s > B_t | B_r < B_t) = P(\text{making more than } B_t - B_r \text{ errors}) \]
\[P_{H_1} = P(B_s < B_t | B_r < B_t) = P(\text{making } [0, B_t - B_r) \text{ errors}) \]
Local Detection

- For $B_r < B_t$ log-likelihood ratio becomes:

$$p_{H_1}^{B_r} > \eta' \quad \eta' = f(\eta, B_t, \text{assigned backoff})$$

- Decision rule:

$$H_1 : B_r < \eta'$$

$$H_0 : B_r > \eta'$$

H_1 with probability $\gamma : B_r = \eta'$
Tradeoffs

• If B_r is increased, the number of errors is decreased (probability of correct, fastest detection increases).
• Log-likelihood ratio decreases with B_r increasing.
• When B_r increases the probability of classifying the node as normal increases.
• But the probability of false alarm increases
• Concerned about the probability of false alarm
• When backoff not fixed even normal nodes can transmit after a small number of idle slots.
• When backoff fixed, concerned about colluding nodes and malicious nodes listening to my transmission
Distributed detection

• Helps in decreasing number of false alarms and missing attacks

• **NP rule for distributed detection:**
 – For a predetermined probability of false alarm, $P_F = ___$, find optimum local and global decision rules $\Gamma = (\gamma_0, \gamma_1, \ldots, \gamma_N)$ that minimize the global probability of miss

• Vector of local observations: $B_o = \{b_{o1}, \ldots, b_{oN}\}$

• Each node makes decisions based on local observations and sends its log-likelihood ratio to IDS

• **Local decision vector:** $u = \{u_1, \ldots, u_N\}$

• **Global decision vector:** $u_0 = \gamma_0(u), u_0 = \{0, 1\}$
Distributed Detection

- Optimal test given by:

\[
\Lambda(u) = \frac{P(u \mid H_1)}{P(u \mid H_0)} = \begin{cases}
> \lambda_0, & \text{decide } H_1 \\
= \text{decide } H_1 \text{ with prob. } \gamma \\
< \lambda_0, & \text{decide } H_0
\end{cases}
\]

- Special case: \(P_D \) of all nodes are identical and \(P_F \) of all nodes are identical

- The optimal decision rule becomes:

\[
k > \eta' \quad \text{if } H_1 \\
< \eta' \quad \text{if } H_0
\]

\(k \): number of nodes choosing \(H_1 \)

\[
\eta' = f(P_D, P_F, N, \eta)
\]
• For detection of more sophisticated attacks we formulate **theorems** (series of rules a fault-free MAC protocol cannot violate)
 – e.g. cannot violate exponentially growing contention window w.r. to next successful transmission time
• For **attack detection** Automatic Model Checking is executed with input of the relevant rule (theorem) parameters from the nodes under examination
• Non-allowed behaviors of system denoted as σ_i
• **Safety behavior**: σ
• σ is satisfied when $\models \sigma_1 \land \models \sigma_2 \land \ldots \land \models \sigma_n$ are satisfied
• If there is σ_i s.t. the safe behavior is violated, the model checker goes backwards and saves the time history together with values of related variables
• This scheme can be used for **automatic attack/fault generation**
Attack Detection

• The *vulnerable period* of IEEE 802.11 MAC is in RTS/CTS exchange

• We formulate the following theorem:
 – *Two processes cannot be in their critical section at the same time:*

\[
AG(\neg(P_i.s = c \land P_j.s = c))
\]

- *A process that wants to enter its critical section is eventually able to do so:*

\[
AG(P_i.s = A \Rightarrow AF(P_i.s = c))
\]

• First rule helpful in case when other nodes assign backoff to sender!
Results

Attacks propagate from MAC to routing disabling key nodes:

Attack 1 results:

Attack 2 results:
Conclusions

• Need to implement cooperation between MAC and routing to be able to detect attacks more efficiently
• Other attacks apart from CW misuse exist: NAV, other kinds of backoff counter abuse, …
• MAC can be modeled using Formal Models
• Duration of malicious behavior depends on the traffic
• Stealthy attacks exist in short term, long-term existence depends on traffic and interference
• Conflict graphs good approach for solving problems of interference
• Need to simplify the problem since it’s NP-complete!
Future Work

- Construct an Intrusion Detection System with ability to detect and classify known attacks using techniques presented and detect unknown attacks using a database of attack features
- How to detect anomalies in wireless networks?
- Model other MAC protocols using EFSMs
- Use the system for online attack generation that are passed to IDS and added to existing database of attacks
- Event ordering and correct timing have crucial roles in MAC protocols: necessary to use ordered models of execution with explicit timings
- Define the ordered model of execution with multiple goals
- Describe changes in state variables that lead to certain states
Future Work (cont.)

• Enable *automatic attack generation* using EFSM models of MAC layer

• Challenges:
 – Range of attacks is much wider in wireless than in wired networks;
 – How to distinguish between an attack and high volume of traffic?
 – *Which parameters to exchange between layers* to achieve efficient intrusion detection?
 – How to detect unknown attacks *without high false positive rate*?
 – Lack of data for testing; collaboration with industry and DoD Labs

• Potential approach - combination of model checking and theorem proving techniques.

• Plan to use a combination of analytical techniques from graph theory, dynamic games, distributed detection, temporal logic, hybrid automata