An Integrated Mobile Ad-hoc QoS Framework

Cross-Layer Design for Data Accessibility in Mobile Ad Hoc Networks

Klara Nahrstedt

Department of Computer Science
University of Illinois at Urbana-Champaign (USA)

klara@cs.uiuc.edu
http://cairo.cs.uiuc.edu

Joint work with Samarth Shah, Kai Chen, Yuan Xue
1. REPORT DATE
01 DEC 2007

2. REPORT TYPE
N/A

3. DATES COVERED
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

4. TITLE AND SUBTITLE
Cross-Layer Design for Data Accessibility in Mobile Ad Hoc Networks

6. AUTHOR(S)
Department of Computer Science University of Illinois at Urbana-Champaign (USA)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
8. PERFORMING ORGANIZATION REPORT NUMBER

10. SPONSOR/MONITOR’S ACRONYM(S)
11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified
 b. ABSTRACT
 unclassified
 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
 UU

18. NUMBER OF PAGES
 23

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)

Prescribed by ANSS Std Z39-18
Cross-Layer Design

1. Cross-Layer for Data Access
2. Cross-Layer for Bandwidth Management

Cross-layer information
- Shares the state of the nodes such as location, resources, etc.
- QoS signaling between upper layer, routing layer, MAC for flow adaptations.
Cross-Layer for Data Accessibility

- **Scenario**
 - Mobile users create multimedia data and share them with others.

- **Problems**
 - Users should learn about each other’s data and its location.
 - Network can become partitioned, which leads to missing data.
 - We need middleware services and routing services to collaborate for effective data accessibility.
Data Advertising and Lookup (Middleware Services)

- **Advertising message**
 - Broadcasted from each node periodically
 - Let other nodes learn about its data and location.
 - Rate adaptation based on the size of the group for scalability.
 - Format
 - Node info: `<sender_address, free_space, power_left, etc.>`
 - List of data: `<data_id, data_description>`

- **Data availability lookup table**
 - Each node derives the table from the advertising messages.
 - Format: list of `<data_id, data_description, data_locations>`
 - Soft-state: each entry has to be refreshed otherwise data is inactive.
Predictive Data Replication

- **Predict group partitioning**
 - Obtain information from the *predictive location-based routing layer*
 - Each node’s location, movement, and transmission range.
 - Linear motion prediction of group partitioning
 - Replicate data to the other partitions
 - Before group partitioning occurs
 - Selects the best destination based on the capability of the nodes.

Partitioning will occur here.
Data Accessibility Results

Comparison of data availability information based on advertising.

Comparison of data accessibility based on replication.
QoS Routing is **difficult**:
1. Locations may change
2. Resource availability can vary
3. Routes become obsolete quickly
4. Heterogeneous nodes and links

Solution:
Predictive Location-based QoS Routing
Location-Resource Updates

- **Updates** flooded over the network
 - **Message Format**: `<timestamp, co-ordinates, direction of motion, velocity, resource information, motion stability parameter>`
 - **Resource information**: battery power, queuing space, transmission range, etc.
 - **Motion stability**: probability of continuing its motion pattern

- **Updates** are generated
 - **Type I**: periodically with period varying with velocity or distance
 - **Type II**: if there is a change in the pattern of motion
Predictions

--- based on the location-resource updates

- **End-to-end delay** in reaching other nodes is predicted based on the end-to-end delay experienced by their recent updates.

- **Prediction of location** of the receiving node is needed at the instant it is to receive the packet.
 - For nodes moving along a straight line, **one previous update** is sufficient.
 - For nodes moving along an arc, **three previous updates** are required to fit a curve to the arc and predict future location.

- Resource info in the updates is used to compute a **cost function** used in admission control which proceeds hand-in-hand with route computation.
Route Computation

Protocol:

- **Source** x finds
 - Which of its neighbors has **sufficient resources** to satisfy the QoS requirement of the connection, and the node lies **closest to the destination** (y) at the time of receiving the packet
 - If there is no such candidate, then reject connection! Else, choose this node as next **hop** p
- Repeat the above from p until **destination** y is reached (source routing)
- QoS route is now established
- At every future update, check if the route is about to be broken
 - If some node is going to move out of the range of its next hop neighbor, re-compute route using above mechanism.
- If a future update indicates degradation in resource availability, re-compute route.
Results of Location-Resource Updates

Accuracy of location + delay prediction for various type I inter-update intervals.

Comparison of cumulative prediction errors with different location deviations in type II updates.
Cross-Layer Design

Cross-layer information
- Shares the state of the nodes such as location, resources, etc.
- QoS signaling between upper layer, routing layer, MAC for flow adaptations.

1. Cross-Layer for Data Access
2. Cross-Layer Bandwidth Management
Cross-Layer Bandwidth Management

- **Scenario**
 - Mobile nodes share multimedia data in a single-hop environment.

- **Problems**
 - Wireless channel is shared, hence to achieve predictive bandwidth allocation for multimedia data is difficult
 - We need middleware services and MAC services to collaborate for effective bandwidth allocation
Bandwidth Management Architecture

- CLIENT
 - Application Level
 - flow1
 - flow2
 - ... flowN
 - RA1
 - RA2
 - ... RAN
 - Cross-Layer Interaction
 - Total Bandwidth Estimator
 - flow1, perc. bw. Bp(1)
 - flow2, perc. bw. Bp(2)
 - ...
 - flowN, perc. bw. Bp(N)
 - IEEE 802.11
 - Link Level

- BANDWIDTH MANAGER
 - Flow Table
 - flowid, sockid, pmin, pmax, pa
 - BW Mgmt. Protocol

APPROVED FOR PUBLIC RELEASE
Total Bandwidth Estimator (TBE) (MAC Service)

- Per-node, link level measurement, for every flow originating at this node
- Measure continuously the total perceived bandwidth $B_p(f)$ for each flow
- If $B_p(f)$ changes, RA of f renegotiates channel time proportion of f
- Take average over a period fed back to RAs through /proc interface
- Take into account contention for medium and errors causing re-xmit
Bandwidth Estimation

- Measured BW = \(\frac{S}{(t_r - t_s)} \)
 - Running average with decay/Average over an interval
 - More contention? More time channel sensed as busy, more RTS/CTS collisions, higher backoffs => BW estimate smaller
 - More channel errors? Bit-errors in RTS/DATA cause RTS/DATA retransmission => BW estimate smaller
 - Only successfully transmitted MAC frames used in estimate
Rate Adaptor
(Middleware Service)

- Per-flow
- Obtain max. and min. bandwidth requirements \((B_{\text{max}}(f)\) and \(B_{\text{min}}(f))\) from flow
- \(p_{\text{max}}(f) = B_{\text{max}}(f) / B_p(f)\) : Max. channel time proportion \(p_{\text{max}}(f)\)
- \(p_{\text{min}}(f) = B_{\text{min}}(f) / B_p(f)\) : Min. channel time proportion \(p_{\text{min}}(f)\)
- Channel time proportion (CTP): what fraction of unit time does this flow “own” the channel?
- Send CTP requirements to BM
- Receive reply containing CTP granted \(p_a(f)\)
- Transmission rate = \(p_a(f) * B_p(f)\) bits per sec.
Bandwidth Manager
(Middleware Service)

- Admission Control:
 - for all flows g in the set of previously registered flows
 - If $1 - g p_{\text{min}}(g) \geq p_{\text{min}}(f)$ true, then admit flow f, else reject

- Once f is admitted BM redistributes channel time within the new set of admitted flows, i.e., $p_{\text{rem}} = 1 - f p_{\text{min}}(f)$ for all admitted f must be fairly re-distributed
Performance Results using Simulation

- Scenario 1: 25 nodes, 10 CBR flows
- Maximum requirement 200kbps (~48pkts/s)
- Minimum requirement 100kbps (~24pkts/s)
- 33% loss rate with base 802.11
- 8% lesser overall throughput using bandwidth management
Conclusion and Contacts

■ Summary
- MAC, Routing and middleware benefit from cross-layer design, sharing location, QoS, etc., due to avoidance of work duplication.
- QoS routing shows feasible results when using predictive location-based routing protocol.
- Data accessibility improves significantly with predictive replication.
- Data quality improves significantly with MAC-aware bandwidth management

■ Research funded by
- ONR MURI grant under grant number 1-5-21394
- NSF EIA 99-732884EQ grant under grant number 1-5-31744

■ Contacts
- PI: Prof. Klara Nahrstedt <klara@cs.uiuc.edu>
- RA: Samarth Shah <shshah@cs.uiuc.edu>
- RA: Kai Chen <kaichen@cs.uiuc.edu>
- Project/Publications URL: http://www-monet.cs.uiuc.edu/adhoc

APPROVED FOR PUBLIC RELEASE
Publications on Cross-Layer

Publications on Cross-Layer

- Kai Chen, Klara Nahrstedt, Nitin Vaidya, “The Utility of Explicit Rate-Based Flow Control in Mobile Ad Hoc Networks”, accepted to IEEE Wireless Communications and Networking Conference (WCNC 2004), 2004
Publications on Cross-Layer