Critical Temperature for the Onset of Spacecraft Charging,
The Full Story

Shu T. Lai

Air Force Research Laboratory /RVBXT
29 Randolph Road
Hanscom AFB, MA 01731-3010

Approved for Public Release; distribution unlimited.

The onset of spacecraft charging at geosynchronous altitudes occurs at a critical value of the space plasma electron temperature for a given spacecraft surface. Observations on LANL satellites show that the onset of charging occurs at a critical temperature in almost every charging event, no matter which satellite, which year and which month. The critical temperature values remain the same no matter in eclipse or sunlight. The satellite observations have confirmed the existence of critical temperature and the order of magnitude of the temperature values. Surface properties in space and in the laboratory are uncertain.

Spacecraft charging Space plasmas Critical temperature Geosynchronous altitudes

UNCL UNCL UNCL UNL 11

Shu T. Lai
Critical Temperature for the Onset of Spacecraft Charging, The Full Story

Shu T. Lai

Air Force Research Laboratory, Space Vehicles Directorate, Hanscom AFB., MA 01731

The onset of spacecraft charging at geosynchronous altitudes occurs at a critical value of the space plasma electron temperature for a given spacecraft surface. Observations on LANL satellites show that the onset of charging occurs at a critical temperature in almost every charging event, no matter which satellite, which year and which month. The critical temperature values remain the same no matter in eclipse or sunlight. The satellite observations have confirmed the existence of critical temperature and the order of magnitude of the temperature values. Surface properties in space and in the laboratory are uncertain.

Nomenclature

A = dipole strength normalized by K
E = electron energy
k = Boltzmann's constant
K = monopole strength
f(E) = electron velocity distribution with velocity expressed in terms of E
r = distance from the center of a spacecraft
T = electron temperature
T* = critical electron temperature
Tc = Kappa temperature
δ = secondary electron coefficient
η = backscattered electron coefficient
Γ = gamma function
κ = kappa parameter
φ = spacecraft surface potential
θ = sunlight angle (normal at 0°)

I. Introduction

Spacecraft charging has adverse effects. It may interfere with telemetry signals, disturb scientific measurements onboard, and cause discharges. It may be harmful to the onboard electronics. In severe cases, it may affect the navigation system and even spacecraft survivability.

Spacecraft charging began to receive attention in the 1970s. In 1979, Air Force Geophysics Laboratory and NASA launched the SCATHA satellite dedicated to the study of spacecraft charging. The results obtained from SCATHA invigorated research related to this area. Today, spacecraft charging has become a field of its own.

What causes spacecraft charging? Spacecrafts receiving excess electrons from the ambient plasma charge to negative voltages. Whether in space plasmas or laboratory plasmas, the electron flux exceeds the ion flux by two orders of magnitude because of their mass difference. The flux difference does not guarantee negative voltage charging. This is because, for every incoming electron of energy E, there is a probability δ(E) of secondary electron emission and a probability η(E) of a backscattered electron emission from the surface. In a certain energy range, typically from about 50 to 1500 eV depending on the surface material, δ(E) exceeds unity. η(E) is small (<<1) at all energies except very near zero energy. The functions δ(E) and η(E) are commonly called secondary electron and backscattered electron yields respectively. Secondary electrons have typically a few eV in energy but a

1 Senior physicist, Space Weather Center of Excellence, Mail Stop: RVBXT; Associate Fellow AIAA

American Institute of Aeronautics and Astronautics

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.
The backscattered electron may be nearly as energetic as that of the incoming electron. The balance of the incoming and outgoing electron currents determine whether spacecraft charging occurs. As a remark, charging to positive voltages by outgoing electrons can occur but to a few volts only, which is not important. Secondary electrons, with only a few eV, would be attracted back to the surface if the charging exceeds a few positive volts.

Where does spacecraft charging occur? It occurs mostly in the geosynchronous environment, where the ambient plasma varies in energy from a few eV to several keV sometimes. Most communication and surveillance satellites are there.

II. Onset of Spacecraft Charging

The onset of spacecraft charging at equilibrium is determined by the balance of incoming and outgoing electron fluxes.

\[\int d^3 \mathbf{v} v_n F(v) = \int d^3 \mathbf{v} v_n [\delta(E) + \eta(E)] F(v) \]

where \(F(v) \) is the ambient electron velocity distribution, \(v_n \) is the normal component of the electron velocity, and both sides are definite integrals. In spherical coordinates, one integrates eq(1) over the energy and two angular variables. For normal incidence, the angles on both sides of the equation cancel out. After some simple algebra, one obtains the following equation:

\[\int dE E f(E) = \int dE E [\delta(E) + \eta(E)] f(E) \]

where \(f(E) \), which is obtained from \(F(v) \) by using \(E = (1/2)mv^2 \), is the electron distribution with the velocity expressed in terms of energy. For Maxwellian distribution, \(f(E) \), is given by

\[f(E) = \left(\frac{n}{2mkT} \right)^{3/2} \exp(-E/kT) \]

where \(n \) is the electron density, \(m \) the electron mass, \(T \) the electron temperature, and \(k \) the Boltzmann constant. Note that eq(3) is a velocity distribution, and not an energy distribution. In statistical mechanics, the energy distribution is defined differently [1] but we need not use it. Another way to write the onset condition, eq(2), is as follows:

\[\frac{\int dE E f(E) [\delta(E) + \eta(E)]}{\int dE E f(E)} = 1 \]

or simply

\[<\delta + \eta> = 1 \]

where \(< > \) denotes averaging in the sense of eq(4).

For arbitrary angular dependence of electron incidence, one has to integrate over the angles numerically. For simplicity, we will consider normal incidence only in this paper.

Substituting eq(3) into eq(2), one readily sees that the electron density \(n \) cancels out on both sides. Thus, the onset of spacecraft charging does not depend on the ambient electron density \(n \). Eq(2) has one unknown, \(T \), only. The solution \(T^* \) is the critical temperature.

To solve eq(2), one needs to use explicit formulæ of \(\delta(E) \) and \(\eta(E) \). Using the \(\delta(E) \) formulæ of Ref.[2], and the \(\eta(E) \) formulæ of Ref.[3], one obtains the results in Table 1.

From time to time, there appear in the literature new empirical formulæ or new laboratory measurements of \(\delta(E) \) and \(\eta(E) \). For example, see Figure 1, where the \(\delta(E) \) formulæ of [2,4,5,6,7] are plotted. Often, a new one claims to be better than all previous ones. They are different from each other. Even the same author may publish different results. We will not side track into this area at this time. The formulæ affect the numerical values of the critical temperature. There is no consensus at this time for the best empirical formulæ. When a

![Figure 1. Secondary yield of gold by various authors.](image-url)
really improved formula of $\delta(E)$ or $\eta(E)$ becomes available, one can always substitute it in eq(2) for updating the numerical value of T^*. When new observational results with known surface materials on a spacecraft are available, one can update the validation of the theoretical values.

There has been a common question about the definitions of temperature. In eq(3), T is the temperature defined in a Maxwellian distribution. In statistical mechanics, temperature can be defined in terms of the moment of the distribution. In a Maxwellian plasma, these two temperatures are identical [Appendix A]. Another common question is whether temperature remains invariant as the charging level varies. The temperature is shown to be invariant [Appendix B].

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>ISOTROPIC</th>
<th>NORMAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg</td>
<td>0.4</td>
<td>---</td>
</tr>
<tr>
<td>Al</td>
<td>0.6</td>
<td>---</td>
</tr>
<tr>
<td>Kapton</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Al Oxide</td>
<td>2.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Teflon</td>
<td>2.1</td>
<td>1.4</td>
</tr>
<tr>
<td>Cu-Be</td>
<td>2.1</td>
<td>1.4</td>
</tr>
<tr>
<td>Glass</td>
<td>2.2</td>
<td>1.4</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>2.6</td>
<td>1.7</td>
</tr>
<tr>
<td>Silver</td>
<td>2.7</td>
<td>1.2</td>
</tr>
<tr>
<td>Mg Oxide</td>
<td>3.6</td>
<td>2.5</td>
</tr>
<tr>
<td>Indium Oxide</td>
<td>3.6</td>
<td>2.0</td>
</tr>
<tr>
<td>Gold</td>
<td>4.9</td>
<td>2.9</td>
</tr>
<tr>
<td>Cu-Be (Activated)</td>
<td>5.3</td>
<td>3.7</td>
</tr>
<tr>
<td>MgF$_2$</td>
<td>10.9</td>
<td>7.8</td>
</tr>
</tbody>
</table>

Unit of temperature T^*(keV) is for kT.

III. Observational Results

The first evidence (Figure 2) of critical temperature was manifest in the data observed on the ATS-5 satellite [8]. If one plots a straight line through the data points, one can see the intercept at a temperature of about 1.5 keV. At that time, it was before the advent of the theory of critical temperature. The present theory of critical temperature for the onset of spacecraft charging was first presented at an AGU meeting in Philadelphia [9] and, two weeks later, in Europe [10]. At that time, there was no coordinated data of surface charging and electron temperature for verifying the theory [11,12,13].

At the turn of the century, the Los Alamos National Laboratory (LANL) geosynchronous satellite charging data became available. The data show abundant evidence of the existence of critical temperature [14,15]. Below a critical temperature value, charging does not occur. Above it, charging occurs (Figure 3, 4). This phenomenon persists on each of the several LANL satellite on every day, month, season, and year with no exception.

At the present, one still cannot use the LANL data to validate the exact numerical values of critical temperature calculated, because the surface materials are unknown. However, the observed critical temperature values are indeed in the ball park (low keV) of the calculated values for typical surface materials [Table 1].

![Figure 2](ATS-5_DATA.png)
Figure 2. First evidence for the existence of critical temperature. Data [Ref. 8] observed on ATS-5 showed no charging below a finite temperature.
Figure 3. Evidence of critical temperature. Data were taken from Spacecraft LANL-97A. Below the critical temperature, no charging occurs. Above it, the charging level increases with the electron temperature. [Ref.14]

Figure 4. Spacecraft potential and electron temperature measured on Spacecraft LANL-1991-080 during periods 14-29 September 1994-2001. [Ref.15]
IV. Charging in Sunlight

The outgoing photoelectron flux from surfaces exceeds the incoming ambient electron flux. Therefore, charging to negative voltages is impossible for a conducting spacecraft. However, for spacecraft with dielectric surfaces, charging to negative voltages occurs on the shadowed side as if in eclipse. The sunlit side may charge to positive voltages. But, since photoelectrons are of a few eV in energy, any positive charging by photoemission is at most a few V only. The high negative potential of the shaded side wraps around the sunlit side forming a potential barrier, which blocks some photoelectrons from escaping. As a result, a monopole-dipole potential configuration [16] is formed.

\[\phi(\theta, r) = K \left(\frac{1 - A \cos \theta}{r^2} \right) \]

(6)

where \(K \) is the monopole strength, \(r \) is the distance from the satellite center, \(A \) is the dipole strength normalized by \(K \). The angle \(\theta = 0^\circ \) is the normal sunlight direction.

For unit radii satellite, the radial distance \(r = 1 \) at the satellite surface, and \(K = \phi (90^\circ, 1) \) equals the monopole potential. The potential barrier is located at \(r_s \), where the potential is the maximum for \(\theta = 0^\circ \).

\[\left[\frac{d\phi(0^\circ, r)}{dr} \right]_{r=r_s} = 0 \]

(7)

which gives \(r_s = 2A \). Therefore, \(A > \frac{1}{2} \), otherwise the barrier would be located inside the spacecraft. The barrier height \(B \) is given by

\[B = \phi(0^\circ, r_s) - \phi(0^\circ, 1) = K \frac{(2A-1)^2}{4A} \]

(8)

Since the photoelectron temperature is low, a very small barrier height would block most of the photoelectrons. For high level charging, the ratio \(B/K \) of the barrier potential to the monopole potential is usually nearly zero. Substituting \(B/K \approx 0 \) in eq(8) gives \(A \approx \frac{1}{2} \). As a result, the ratio of the sunlit surface potential to that of the shaded surface is given by:

\[\frac{\phi(0^\circ, 1)}{\phi(180^\circ, 1)} = \frac{1-A}{1+A} = \frac{1-1/2}{1+1/2} = \frac{1}{3} \]

(9)

Observations on all LANL geosynchronous satellites showed that the satellite potential data in eclipse and in sunlight form two branches [17,18]. Their ratios are approximately 0.3 for each of the LANL satellite (Figure 5).

Figure 5. (Upper branch) Charging in eclipse and (lower) in sunlight. The data are quantized because of the discrete flux channels. The centroids of the temperature at every quantized level is shown as triangles. The ratio of the two branches is about 0.3. [Ref.18]
V. Onset of Charging in Kappa Plasma

The kappa distribution is sometimes a good description of the space plasma in non-equilibrium [17,18]. It is of the following form:

\[f_\kappa(E) = n \frac{\Gamma(\kappa+1)}{\Gamma(3/2)\Gamma(\kappa-1/2)} \left[\frac{\kappa - 3/2}{2} \right]^3 \left[1 + \frac{E}{(\kappa-3/2)T_\kappa} \right]^{-(\kappa+1)} \] (10)

where \(\Gamma \) is the gamma function, \(\kappa \) is the kappa parameter, and the kappa temperature \(T_\kappa \) is related to the usual temperature \(T \) by

\[T_\kappa = \frac{\kappa}{(\kappa-3/2)} T \] (11)

Note that \(3/2 < \kappa < \infty \). In the limit \(\kappa \to \infty \), one recovers the Maxwellian distribution.

In analog to eq(2), the onset of spacecraft charging in a kappa plasma by using the following current balance equation:

\[\int_0^\infty dE E f_\kappa(E) = \int_0^\infty dE E f_\kappa(E) \left[\delta(E) + \eta(E) \right] \] (12)

The equation, eq(12), can be solved numerically to obtain the critical kappa temperature \(T_\kappa^* \). The results \(T_\kappa^* \) for copper-beryllium (non-activated) as a function of \(\kappa \) is shown in the Figure 6. In the figure, one recovers the Maxwellian result \(T^* \) at the asymptote of \(\kappa \to \infty \). If the ambient plasma is nearly Maxwellian, there is little difference between the critical kappa temperature and the usual temperature. Harris [21] fitted some LANL satellite electron distribution data with kappa function instead of Maxwellian. Using the results of Harris [21] for copper-beryllium (non-activated), we have plotted Figure 6. Harris’s work showed that there is little difference between kappa and Maxwellian critical temperatures for the onset of spacecraft charging. At the critical temperature (a few keV), the distribution often does not deviate too much from being Maxwellian.

![Figure 6. Critical kappa temperature \(T_\kappa^* \) for copper-beryllium (non-activated).](image)
VI. Summary and Conclusion

The ATS-5 charging results showed that charging to negative potentials occurred above a critical temperature of the ambient electrons. Above it, the spacecraft potential increased with the electron temperature. The results were obtained before the theory of critical temperature. The theory is based on the balance of incoming and outgoing electron currents. The results of the theory are (1) the onset of spacecraft charging is independent of the ambient electron density, and (2) there exists a critical temperature T^* for the onset of spacecraft charging. The calculated values of T^* for typical spacecraft materials are about a few keV. The voltage configuration around a non-conducting spacecraft charging in sunlight resembles a monopole-dipole. The theoretical results show that the ratio of the potentials in sunlight and in eclipse is about 1/3. All of the above theoretical features appear to be supported well by the LANL results.

However, one still cannot use the LANL data to validate the results numerically because the surface materials are unknown, even though the existence of T^* is persistent throughout the data available of all years. The laboratory measurements and empirical results of secondary and backscattered emissions are also different in different papers by different authors. Even an author may publish different measurements and formulae at different time. This problem is well worthy for further studies. When better laboratory data of secondary and backscattered yields are available, one can substitute them in eq(4) for updating the theoretical critical temperature values. Likewise, when new space measurements with known surface materials are available, one can update the validation of the theoretical values.

Finally, if the ambient plasma deviates from being Maxwellian, the results would be different. For a double Maxwellian plasma, the densities can not be neglected [13, 22]. One can plot parametric domains delineating the areas of negative charging, positive charging, and triple-root charging [13, 22]. For a kappa plasma, the thesis of Harris [21] showed that the onset of charging on the LANL satellites occurred at a critical kappa temperature very near the critical Maxwellian temperature. At high temperatures, well above the critical temperature, the kappa distribution deviates significantly from being Maxwellian.

There is much more for further studies. Imagine an island of knowledge in a sea of unknown. “The more one knows, the longer is the perimeter of the unknown.”

Appendix A. Definition of Temperature

This section comments on two temperature definitions. We have defined temperature T as the temperature T in the Maxwellian distribution, eq(3). In statistical mechanics, temperature T_M can also be defined more generally in a moment equation as follows:

$$\frac{3}{2} k T_M = \frac{1}{n} \int d^3 v \left[\frac{1}{2} m (v-V) (v-V) f(v) \right]$$ \hspace{1cm} (A1)

where V is the mean velocity in a drifting distribution. For an isotropic system, the mean velocity V is zero, and the temperature T_M becomes:

$$\frac{3}{2} k T_M = \frac{1}{2n} \int d^3 v v^2 f(v)$$ \hspace{1cm} (A2)

For a Maxwellian distribution, one substitutes eq(3) in eq(A2) and obtains

$$\frac{3}{2} k T_M = \frac{m}{2} \left(\frac{m}{2\pi k T} \right)^{3/2} \int_\beta d^3 v v^2 \exp \left(-\frac{mv^2}{2kT} \right)$$

$$= \frac{m}{2} \left(\frac{m}{2\pi k T} \right)^{3/2} \int_\beta d^3 v \frac{\partial}{\partial \beta} \exp \left(-\beta v^2 \right)$$ \hspace{1cm} (A3)

where $\beta = m/(2kT)$.

$$\frac{3}{2} k T_M = -\frac{m}{2} \left(\frac{m}{2\pi k T} \right)^{3/2} \frac{\partial}{\partial \beta} \Pi \left(\frac{\pi}{\beta} \right)^{1/2}$$ \hspace{1cm} (A4)

where Π is the Gamma function.
\[\frac{3}{2} kT_M = \frac{m}{2} \left(\frac{m}{2\pi kT} \right)^{3/2} \left[\pi^{3/2} \frac{3}{2} \left(\frac{2kT}{m} \right)^{3/2} \right] = \frac{3kT}{2} \]

Since both sides of eqs(A5,A6) are equal, we can equate the two temperatures:

\[T_M = T \]

We have shown that the two definitions of temperature are identical for a Maxwellian plasma.

Appendix B. Invariance of Temperature at Different Spacecraft Potentials

There has been a question whether the definition of temperature changes as the spacecraft potential changes. This appendix shows that the temperature of the ambient electrons in a Maxwellian distribution is invariant at different spacecraft potentials. Let us define temperature by using the moment equation:

\[\frac{3}{2} kT_M = \frac{1}{n} \int d^3v \frac{1}{2} m(v - V)(v - V)f(v) \]

where the notations are as in eq(A1). In the frame of reference in which the drift velocity is zero, eq(B.1) can be written as

\[\frac{3}{2} kT_M = \frac{1}{2n} \int d^3v m v^2 f(v) \]

For non-zero (negative) spacecraft potential φ, eq(B.2) can be written as

\[\frac{3}{2} kT_\phi = \frac{1}{2} \int d^3v m v^2 f(v) \exp(-e\phi/kT) \]

where the Boltzmann factor \(\exp(-e\phi/kT) \), multiplied to the Maxwellian distribution \(f(v) \), accounts for the electron repulsion. Since the two Boltzmann factors cancel with each other, we can use the same method in Appendix A to show that the two temperatures \(T_\phi \) and \(T \) are equal.

Combining Appendix A and B, we have the conclusion:

\[T_M = T = T_\phi \]

The temperature defined by means of the Maxwellian distribution is not only the same as that defined by means of the moment equation but also is invariant under electron repulsion at non-zero spacecraft potentials.

Acknowledgments

The author is grateful to M. Tautz for many years of fruitful collaboration and D. Cooke for a discussion on the accuracy of Ref[2]. The Los Alamos Magnetospheric Plasma Analyzer (MPA) measurements were obtained from the CDADWeb data service at NASA Goddard Space Flight Center. The author thanks M.F. Thomsen for permission to use the MPA data.

References

