The HUGIN AUV for Force Protection in the Littorals

Per Espen Hagen and Nils J Størkersen
Norwegian Defence Research Establishment (FFI)
P O Box 25
NO-2027 Kjeller
NORWAY
per-espen.hagen@ffi.no / nils-j.storkersen@ffi.no

ABSTRACT

With their low cost and large destructive power, sea mines have the potential to become a weapon of choice for terrorists and rogue nations. The post-cold war mine threat differs from the traditional in a number of ways. Devising ways of countering this threat, ideally without risking own personnel, should be seen as an important task.

As a small nation with a very strong dependence on the sea, Norway has always had a need for efficient systems to protect its maritime zone and assets. The HUGIN Autonomous Underwater Vehicle (AUV) programme was initiated in the 1990s to deliver an efficient capability for mine countermeasures (MCM). Since 2001/02, the Royal Norwegian Navy has operated HUGIN AUVs on a regular basis.

In order to correctly classify mine-like targets in highly cluttered environments (such as the Norwegian littorals), very high resolution imaging is required. Synthetic aperture sonar (SAS) is a key technology for obtaining good classification performance over a wide swath. With the emerging threat of terrorist mining, recognition of traditional mine shapes such as cylinders and truncated cones becomes insufficient. Very high resolution imagery will substantially improve the ability to detect and classify improvised explosive devices.

1.0 INTRODUCTION

1.1 The “new” mine threat

Sea mining has always been an asymmetric threat, in that the cost of procuring and laying one or even a large number of sea mines can be very small compared to the consequence to an opposing force. Probably the clearest example of this was the US Navy frigate USS Samuel B Roberts, which struck a $1,500 Iranian mine in 1988 and suffered major structural damages and injuries to 69 crew members. The repairs took more than a year and cost approximately $96 million [1].

Traditionally, the main purpose of mining is not to destroy ships, but to deny an adversary access to a given port or shipping lane or at least slow him down. With terrorist mining, this is no longer necessarily the case. While one strategy may be to disrupt commerce by e.g. placing a mine in a major port, the destruction of a random military vessel could also be seen as a major victory by the terrorists. The same can be true for rogue nations. There are many indications that terrorist organisations are acquiring this capability. Several terrorist groups have attempted to acquire mini-submarines, stealthy boats, and expertise in diving and underwater explosive handling [2]. Mine laying can also be as simple as dropping a mine from a bridge.
**The HUGIN AUV for Force Protection in the Littorals**

Norwegian Defence Research Establishment (FFI) P O Box 25 NO-2027 Kjeller NORWAY

Approved for public release, distribution unlimited

See also ADM202493. RTO-MP-SCI-180, Papers presented at the Systems Concepts and Integration Symposium held in Ottawa, Canada, on 25-27 September 2006., The original document contains color images.
As terrorists are likely to deploy only a very small number of mines, such mining is most effective in confined areas or narrow straits. Furthermore, the minefield is likely not to be declared, meaning that the force seeking entry would need to rely on intelligence regarding possible terrorist mining – or perform a thorough survey of the area before entering with high-value assets.

A further complicating factor is that these devices may be quite different from ordinary sea mines. In the extreme, every oil drum, refrigerator or other piece of debris may be an improvised explosive device (IED). This emphasises the value of route surveying, where areas of interest are surveyed regularly. This technique immensely simplifies the detection of any new suspicious objects in the area.

1.2 Autonomous underwater vehicles

The state of the art of autonomous underwater vehicles (AUVs) has progressed tremendously over the last decade, and such systems have now successfully transitioned into several applications, civilian as well as military. Many of these involve searching relatively large areas with sensors that allow detection and classification of small objects – whether the application is seabed surveying to plan an oil pipeline route, mine hunting, or covert underwater reconnaissance.

Among the principal advantages of AUVs are their ability to collect a rich, high-quality data set covertly and rapidly, without risk to personnel. Bringing the sensors onboard a stable platform, away from the difficult surface layers and closer to the targets, means that AUV sensor data is often superior to that collected by even much more expensive near-surface sensors.

AUVs are often compared to unmanned aerial vehicles (UAVs), which perform a similar role in the air-land battlefield. Compared to their flying cousins however, AUVs require a high degree of onboard autonomy and intelligence, as real-time underwater communications is slow and restrictive and full remote control is thus not feasible.

2.0 THE HUGIN AUV PROGRAMME

The HUGIN AUVs have been developed by FFI and Kongsberg Maritime since the early 1990s, and 10 vehicles have been sold to civilian and military customers. Although the HUGIN programme initially
The HUGIN AUV for Force Protection in the Littorals

...gained more momentum in the offshore oil and gas industry, military uses were taken into account from the beginning. A recognised national shortfall in deep water mine hunting led to the establishment of the HUGIN MRS programme, the primary goal of which is to deliver an efficient AUV capability for forward mine countermeasures (MCM) [3]. In the following years, the programme has expanded to include other applications such as rapid environmental assessment (REA). A preliminary capacity, the HUGIN 1000 pilot system, was delivered to the RNoN in early 2004, and a full-capability prototype called HUGIN 1000-MR is due for delivery in late 2006. Basic system specifications are listed in Table 1.

<table>
<thead>
<tr>
<th>Table 1: Basic specifications of the HUGIN 1000 AUV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
</tr>
<tr>
<td>Dry weight</td>
</tr>
<tr>
<td>Depth rating</td>
</tr>
<tr>
<td>Endurance</td>
</tr>
<tr>
<td>Speed range</td>
</tr>
</tbody>
</table>

The main difference between the two RNoN vehicles is the payload. The pilot system features a side scan sonar or a simple synthetic aperture sonar (SAS). The SAS provides higher resolution imagery, but requires a time-consuming post-processing step. HUGIN 1000-MR will feature a very high resolution interferometric SAS. While post-processing is needed also for this system, it will be tightly integrated with the display and analysis system and should not slow down post-mission analysis [4]. Table 2 lists key performance figures for all three sonars.

<table>
<thead>
<tr>
<th>Table 2: HUGIN 1000 main imaging sensor comparison.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
</tr>
<tr>
<td>Sonar</td>
</tr>
<tr>
<td>Range resolution</td>
</tr>
<tr>
<td>Along-track resolution</td>
</tr>
<tr>
<td>Swath width at 4 knots speed</td>
</tr>
<tr>
<td>Area coverage rate (net)</td>
</tr>
</tbody>
</table>

2.1 Operational experience examples

A major component of the RNoN’s AUV programme has been to evaluate the concept and technology through participation in national and international exercises and operations. The first operations took place in 2001, with the FFI-owned HUGIN I test and development AUV. The Navy’s first dedicated HUGIN 1000 AUV took over after delivery in 2004. After the HUGIN 1000-MR vehicle (with the new HISAS sonar) is delivered late this year, the RNoN will operate both vehicles concurrently. In parallel, two RNoN MCMVs and one support vessel have been modified and upgraded for AUV operations. This includes a launch and recovery system (see Fig. 1) that facilitates safe handling at sea states up to 4.

Over the past 4-5 years, the RNoN has used HUGIN vehicles in more than 30 campaigns, adding up to well over 100 dives. Some examples are given in the following.
In September 2003, HNoMS Karmoy and HUGIN I performed an REA operation for the NATO exercise *Northern Light* in Luce Bay in southwestern Scotland. The task was to collect imagery, bathymetry and environmental data from a 12-nmi amphibious landing route. The operations took place in shallow water (10-15 metres water depth in half the area, 15-25 in the other half), with transverse currents of up to 2-3 knots. Due to tidal variations of around 5 metres, the HUGIN operations had to be performed during the periods of high tide. Within 48 hours, HUGIN performed four 6-hour missions, interspersed with 6-hour battery recharge bouts. The data was handed to a shore lab operated by NATO Undersea Research Centre (NURC) for immediate post-processing [5].

![Figure 2: Multibeam bathymetry of a 300x300 m area with sand ripples, recorded by HUGIN I during Northern Light 2003. DTM cell size 30x30 cm, water depth 19-25 m. The depth has been exaggerated by a factor 5 for this display.](image-url)

In May 2004, the newly delivered HUGIN 1000 was used in the *Blue Game 04* NATO exercise. One of the tasks completed was a harbour protection survey outside the town of Arendal in southern Norway. The survey took place in a narrow strait – in places just 100-200 metres wide – with water depths of 20-30 m, and numerous obstacles such as jetties, anchorages and buoys. The 15-nmi mission was executed autonomously in 4 hours at night, and the data processed and analysed onboard the following hours [5].

In late 2005, the RNoN HUGIN 1000 system was transported to Italy for participation in two sea trials with the NATO Undersea Research Centre (NURC); MX3 and SWIFT. During the MX3 trials, HUGIN was used in a Percentage Clearance trial in a 1.5 km² area at 20-45 m water depth. After a 3.5 hour survey and 2 hours of post-mission analysis, the RNoN crew had correctly classified all 8 exercise mines laid, with a handful of false calls [6].

While the bulk of the operations have used the AUV as a remote sensor platform organic to its host MCM vessel, experimentation has also started with using the AUV in a network based defence concept, where data is collected for and delivered to “customers” outside the MCM task group. Over-the-horizon delivery of AUV data in real time was first demonstrated at the 2005 Azalea Festival, when HUGIN data was transferred via acoustic links and satellite from a fjord in Norway to Norfolk, VA in the USA [7].
Figure 3: Example responses from 2 m long cylindrical exercise mines with EdgeTech SAS during NURC MX3 trial, November 2005. Range to targets 25, 66, and 69 m, resolution 7x14 cm.

More information on the HUGIN programme can be found in [8].

3.0 HIGH-RESOLUTION SAS

The Norwegian littorals are characterised by rocky seafloor and rough bathymetry. In order to correctly classify mine-like targets in highly cluttered environments, very high resolution sensors are required. High-resolution synthetic aperture sonar (SAS) is a key technology to obtain good classification performance over a wide swath, and SAS systems have been operated on HUGIN AUVs since 2003 [9].

With possible terrorist mining, recognition of traditional mine shapes such as cylinders and truncated cones becomes insufficient. However, any mine would need to contain a certain volume of explosives to be effective, which constrains its size. Very high resolution imagery will substantially improve the ability to detect and classify improvised explosive devices.

The following images illustrate the quality of data provided by a high-resolution synthetic aperture sonar. All data is recorded with a prototype HISAS sonar installed on a HUGIN AUV, configured to emulate the HISAS 1030 sonar intended for HUGIN 1000-MR [10].

Figure 4: HISAS prototype SAS image of a fishing boat. AUV depth 175 m, altitude 20 m, range displayed 20-60 m, resolution 3x3 cm.
Figure 5: HISAS prototype SAS images of small objects. 
Left: A ladder at 88 m range; right: A rock and an oil drum at 50-55 m range.

It is also important to note that a high-end interferometric SAS offers many data products in addition to high-resolution sonar images like those displayed here. Multi-aspect image sequences, decimetre-level bathymetry, acoustic colour and other techniques provide complementary information and will substantially improve target classification performance [4][10].

4.0 AUVS IN THE FORCE PROTECTION ROLE

AUVs can be deployed from a craft of opportunity with relative ease, or be an organic component of e.g. an MCMV or a submarine. Quay launch and recovery, using a crane or containerised L&R system, is also feasible.

As described earlier in this article, a HUGIN 1000-MR type vehicle can cover as much as 50 km² in a single mission. If covertness is required, the AUV can be launched e.g. 20 nmi away, transit to the operations area in 5 hours, cover a 25 km² area, and return to its base. The AUV mission is executed autonomously and can be repeated as often as necessary with little cost. Change detection techniques (manual, semi-automatic or fully automatic) can be used to locate any new objects in the area. In many cases, the SAS image quality will be sufficient to identify the objects. Otherwise, a second AUV mission may be executed to reacquire and visually identify a set of objects, typically using a still image camera or a laser scan system.

It was noted in Section 1.1 that terrorist groups would most likely be capable of laying only a very small number of mines. These are in turn likely to be relatively simple. Consequently, it may often be possible to plan a safe route around any suspicious objects found, and a mine disposal capability may not be necessary. Should clearance be required, an MCMV, clearance divers or some other appropriate unit can be called to the area. One such unit could then provide sufficient clearance capacity for a very large area.

Clearly, the AUV technology can be used also for other aspects of force protection; against more conventional threats. One example is de-risking of submarine operations: AUVs can be used to carry out covert precursor surveys, accurately mapping the sea floor, assessing any mine threat, etc. before a manned submarine enters the area. AUVs can also be equipped with radiation sensors to determine the safety of entering areas where radioactivity is suspected, etc.
5.0 CONCLUSIONS

Sea mines, always a dangerous weapon, can with relative ease be employed by terrorists or rogue nations not for its traditional purpose of sea denial, but to disrupt commercial shipping or to damage or sink naval vessels. AUVs with high-quality sensors provide a way to detect and classify mines and improvised explosive devices – without risking lives in the process. A very high resolution SAS can provide contact information bordering on inspection quality for a very wide swath, allowing sufficient coverage of areas of up to 2.5 km² per hour. If possible mines are detected, a viable strategy will often be to plan a safe route around them, as terrorist-laid mine fields would most likely consist of a very small number of mines. Thus, no mine clearance capability may be required. This makes it much easier to have the capability for protection against such a threat available within a force.

6.0 REFERENCES


The HUGIN AUV for Force Protection in the Littorals

Per Espen Hagen

NATO RTO SCI-180 Symposium
Ottawa, Canada
26.09.2006
Outline

- The “new” mine threat
- Autonomous underwater vehicles
- The HUGIN AUV programme
- Synthetic aperture sonar and AUVs
- AUVs in the Force Protection role
- Conclusions
Sea mines – asymmetric by nature

• 18 US warships sunk or seriously damaged after WW2: 14 of them because of mines
• USS Princeton and USS Tripoli damaged by Iraqi mines during the 1991 Gulf War
• USS Samuel B Roberts struck a $1,500 Iranian SADAF-02 mine in 1988
  – Major structural damages, injuries to 69 crew members
  – Repairs took more than a year and cost $96,000,000
  – Damage vs. weapon cost ratio 64,000:1
• Even if laying hundreds of mines and adding substantial cost of training and laying, potential damage ratio >>1:1
Terrorist mining

- Traditional purpose: Sea denial
- Potential purpose:
  - Disruption of commerce
  - Destruction of random military vessels
  - Mine field likely to not be declared

- Terrorist organisations may be reaching for this capability
  - Attempts to acquire mini-sub and stealthy boats known
  - Terrorists have kidnapped diving instructors
  - Al Qaeda members trained in underwater explosive handling
  - Abundance of sea mines available in the world
  - Even WW1 mines can be highly effective if not expected
Autonomous underwater vehicles

- AUVs have been in routine commercial use for 6-7 years
- Several navies have started experimenting with AUVs
- Main purpose: Seabed mapping
  - Plan and document offshore oil and gas installations
  - Mine hunting
  - Covert reconnaissance
- Main advantages:
  - Reduce or eliminate threat to personnel
  - Clandestine operations
  - Cost savings
  - High data quality
  - Efficiency

Nile Delta AUV survey
Courtesy Fugro NV
The HUGIN programme

- Dual use development:
  - Develop systems and technologies suitable for civilian and military applications
  - Shared funding, shared benefits
  - Gain experience and build credibility through commercial AUV operations
- 10 vehicles sold to civilian and military customers in Norway, USA and the Netherlands
- Commercial operations since 1997
  - Approaching 100,000 line km billed; from the Barents Sea to Brazil and Australia
- Military operations since 2001/02
  - In NATO exercises since 2003

1993: AUV demo
1997: First commercial survey
2001: Military demonstrations
2003: In NATO exercise
2004: MCMFONORTH deployment

100,000 line km
## Operational military experience

<table>
<thead>
<tr>
<th>Year</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td><strong>December:</strong> Operational demonstrations, Oslo Fjord</td>
</tr>
<tr>
<td></td>
<td><strong>August:</strong> Permanent installation of HUGIN infrastructure on MCMV</td>
</tr>
<tr>
<td></td>
<td><strong>September:</strong> Testing and training and demonstrations, Oslo Fjord</td>
</tr>
<tr>
<td></td>
<td><strong>November:</strong> Route survey, Northern Norway</td>
</tr>
<tr>
<td>2002</td>
<td><strong>February:</strong> Testing and training, Western Norway</td>
</tr>
<tr>
<td></td>
<td><strong>August:</strong> MCM training, Western Norway</td>
</tr>
<tr>
<td></td>
<td><strong>September:</strong> Covert REA survey for NATO exercise Northern Light, UK</td>
</tr>
<tr>
<td></td>
<td><strong>October - December:</strong> Deployment in MCMFORNORTH (Denmark, Germany, Lithuania, Latvia)</td>
</tr>
<tr>
<td>2003</td>
<td><strong>January:</strong> AUS Navy demo, Western Norway</td>
</tr>
<tr>
<td></td>
<td><strong>March:</strong> NATO exercise Cold Response, Northern Norway</td>
</tr>
<tr>
<td></td>
<td><strong>May:</strong> REA and route survey, Western Norway</td>
</tr>
<tr>
<td></td>
<td><strong>June:</strong> Joint Winter, Northern Norway</td>
</tr>
<tr>
<td>2004</td>
<td><strong>February:</strong> Testing and training, Western Norway</td>
</tr>
<tr>
<td></td>
<td><strong>March:</strong> NATO exercise Blue Game, Southern Scandinavia</td>
</tr>
<tr>
<td></td>
<td><strong>May:</strong> Signature measurements, FORACS range</td>
</tr>
<tr>
<td></td>
<td><strong>October - December:</strong> Deployment in MCMFORNORTH (Denmark, Germany, Lithuania, Latvia)</td>
</tr>
<tr>
<td></td>
<td><strong>November:</strong> MCM training, Western Norway</td>
</tr>
<tr>
<td></td>
<td><strong>December:</strong> Deployment in MCMFORNORTH (Denmark, Germany, Lithuania, Latvia)</td>
</tr>
<tr>
<td>2005</td>
<td><strong>January:</strong> AUS Navy demo, Western Norway</td>
</tr>
<tr>
<td></td>
<td><strong>February:</strong> Testing and training, Western Norway</td>
</tr>
<tr>
<td></td>
<td><strong>March:</strong> NATO exercise Cold Response, Northern Norway</td>
</tr>
<tr>
<td></td>
<td><strong>April:</strong> Azalea Festival, Norway/USA</td>
</tr>
<tr>
<td></td>
<td><strong>May - June:</strong> MCMOPLAT, Latvia</td>
</tr>
<tr>
<td></td>
<td><strong>August:</strong> U-864 mercury contamination survey</td>
</tr>
<tr>
<td>2006</td>
<td><strong>March:</strong> NATO exercise Cold Response, Northern Norway</td>
</tr>
<tr>
<td></td>
<td><strong>August:</strong> Submarine rescue exercise, Sweden</td>
</tr>
<tr>
<td></td>
<td><strong>September:</strong> Signature measurements, Herdla range</td>
</tr>
<tr>
<td></td>
<td><strong>October - November:</strong> Submarine interoperability CDE trials</td>
</tr>
<tr>
<td></td>
<td><strong>November - December:</strong> NURC MX3 and SWIFT trials, Italy</td>
</tr>
</tbody>
</table>
Synthetic Aperture Sonar

- Coherent combination of pings to synthesise a long transducer array
- Can increase along-track resolution by a factor of 10 – 100 compared to traditional side scan sonars
- Principle published 1978; demonstrated in practice 1992
- Requires very accurate navigation and substantial computing power
The SENSOTEK programme

• Joint FFI/Kongsberg Maritime development project, 2000-2005

• Goal: Develop sensor technology for AUV based mine hunting

• Main tasks:
  – Interferometric SAS system design (KM/FFI)
  – Prototype sonar production and AUV integration (KM)
  – Development of complete SAS processing suite (FFI)

• End state:
  – Kongsberg HISAS product family
  – FFI FOCUS SAS processing toolbox

Range 20-160 m
Depth 50 m
Altitude 15 m
Range 15-130 m
Depth 2 m
Altitude 11 m
Range 13-93 m

Manta mine shape
Range 84 m
HISAS prototype: SAS bathymetry
**The HUGIN 1000-MR AUV**

- Multi-role AUV designed for RNoN
  - General and detailed route surveys
  - Rapid environmental assessment
  - Mine mapping for exploratory and clearance MCM ops
  - High quality bathymetric mapping
- Main sensor: HISAS 1030
  - 400 m swath width (at 4 knots AUV speed)
  - Image resolution better than 5x5 cm (theoretical: 2x2 cm)
  - Typical bathymetry resolution 10x10 cm
  - 30° multi-aspect capability
  - Prototype version in use on HUGIN since March 2005
- To be delivered Q1 2007
- Very similar system offered to Finnish Navy (MCMV 2010)

Range 20-160 m
AUVs in Force Protection

- Detection, classification and identification of mines

- De-risking of submarine operations
  - Covert precursor surveys to map the sea floor, detect obstacles, assess the mine threat, get environmental data, etc

- NBC safety
  - Determine safety of entering areas with suspected chemical or radioactive activity
  - Gradient tracking to determine source location
Countering terrorist mining with AUVs

- A single AUV with a long-range, high-resolution sensor can cover large areas (tens of km²) in one day
- Operation from dedicated vessel, craft of opportunity (COOP) or shore
- Any suspicious objects can be investigated further using optical sensors – or routed around, if possible
- Clearance units (divers, MCMV, helicopter based systems) can be called to the area as necessary
HUGIN 1000-MR example

- Prepare and launch from COOP or shore
- Autonomous, covert survey:
  - Transit 20 nmi to op area: 5 hours
  - Survey 25 km²: 10-15 hours
  - Transit 20 nmi back: 5 hours
- Process and analyse data at base
- Locate new objects using change detection
- If new objects detected, perform second survey for EOID
- Repeat survey as often as necessary
Change detection

50x70 m area at 07:30
From HUGIN mission in Finland 2003

Same area at 20:30
(after mine deployment)
**Conclusions**

- Sea mines can be acquired and deployed with relative ease by terrorists or rogue nations
- Scenario differs from traditional sea-denial mining
- New generation of AUVs are very well suited to survey large areas
  - covertly,
  - rapidly,
  - safely,
  - with high probability of detection and correct classification
- Provides massive force multiplication of traditional mine hunting assets
Questions?

www.ffi.no/hugin