4. TITLE AND SUBTITLE

Patos Lagoon Outflow Within the Rio de la Plata Plume Using an Airborne Salinity Mapper: Observing an Embedded Plume

6. AUTHOR(S)

Derek M. Burrage, Joel C. Wesson, Carlos Martinez, Tabre Perez, Osmar Moller, Jr., A. Piola

14. ABSTRACT

Using brightness temperature T_b measurements from L-band airborne microwave radiometers, with independent sea surface temperature (SST) observations, sea surface salinity (SSS) can be remotely determined with errors of about 1 psu in temperate regions. Nonlinearities in the relationship between T_b, SSS, and SST produce variations in the sensitivity of salinity S to variations in T_b and SST. Despite significant efforts devoted to SSS remote sensing retrieval algorithms, little consideration has been given to deriving density D from remotely sensed SSS and SST. Density is related to S and T through the equation of state. It affects the ocean's static stability and its dynamical response to forcings. By chaining together two empirical relationships (flat-sea emissivity and equation of state) to form an inversion algorithm for sea surface density (SSD) in terms of T_b and SST, we develop a simple L-band SSD retrieval algorithm. We use this to investigate the sensitivity of SSD retrievals to observed T_b and SST and infer errors in D for typical sampling configurations of the airborne Salinity, Temperature, And Rough...
Patros Lagoon outflow within the Río de la Plata plume using an airborne salinity mapper: Observing an embedded plume

Derek Burrage a,*, Joel Wesson b, Carlos Martinez c, Tabare Pérez c, Osmar Möller Jr. d, Alberto Piola e

a Ocean Sciences Branch, Naval Research Laboratory (NRL), Stennis Space Center, MS 38529, USA
b Programa de Ciencias del Mar y de la Atmósfera (PCMYA), Sección Oceanología, Facultad de Ciencias, Universidad de la República, Uruguay
c División de Investigacion y Desarrollo, CITMPSA, Montevideo, Uruguay
d Fundação Universidade Federal do Rio Grande (FURG), Campus Carreiros, 96201-900 Rio Grande, RS, Brazil
e Departamento Oceanografía, Servicio de Hidrografía Naval, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina

ABSTRACT

Major river systems discharging into continental shelf waters frequently form buoyant coastal currents that propagate along the continental shelf in the direction of coastal trapped wave propagation (with the coast on the right/left, in the northern/southern hemisphere). The combined flow of the Uruguay and Paraná Rivers, which discharges freshwater into the Río de la Plata estuary (Lat. ~36°S), often gives rise to a buoyant coastal current (the 'Plata plume') that extends northward along the continental shelf off Uruguay and Southern Brazil. Depending upon the prevailing rainfall, wind and tidal conditions, the Patos/Mirim Lagoon complex (Lat. ~32°S) may also produce a freshwater outflow plume that expands across the inner continental shelf. Under these circumstances the Patos outflow plume can be embedded in temperature, salinity and current fields that are strongly influenced by the larger Plata plume. The purpose of this paper is to present observations of such an embedded plume structure and to determine the dynamical characteristics of the ambient and embedded plumes.

We describe selected results of coincident airborne remote sensing and shipboard in-situ surveys of the salinity distribution and extent of the Plata and Patos/Mirim Lagoon plumes conducted under contrasting winter (2003) and summer (2004) conditions. The surveys were carried out in the context of a comprehensive multi-disciplinary study of the Plata plume and its response to prevailing seasonal weather conditions. The objective was to map the surface salinity distribution of the Plata plume at synoptic scales under representative winter and summer conditions. Additionally, the airborne survey included finer-scale mapping of specific features including the Río de Plata estuarine front and the Patos Lagoon plume, with the objective of determining the distribution and behavior of the plumes in the estuaries and on the continental shelf. The airborne survey was conducted with an aircraft carrying an infrared and microwave radiometer system, the Naval Research Laboratory’s (NRL) Salinity, Temperature and Roughness Remote Scanner (STARRS). A series of broadscale flights over the continental shelf off Argentina, Uruguay and Brazil were made using STARRS to determine the spatial extent of the Plata plume, and detailed mapping flights were undertaken in the vicinity of Río de la Plata Estuary and Patos/Mirim outflows to observe estuarine features.

The results of the airborne surveys were compared with shipboard hydrographic data obtained from a conductivity, temperature and depth (CTD) profiler. The combined ship and aircraft data were used to estimate parameters of dynamical classification schemes. These schemes were used to characterize the gross behavior and dynamics of the ambient Plata plume and embedded Patos plume. The Plata plume was highly asymmetric with along-shelf development towards the north and it behaved dynamically like a buoyant coastal boundary current, with an approximately geostrophic across-shelf momentum balance. The Patos plume, on the other hand, maintained its integrity as a relatively symmetric, ageostrophic, frictionally dominated plume with significant across-shelf, and modest along-shelf, development.
The dynamical implications of the embedding of the smaller scale Patos plume within the larger-scale ambient Plata plume were explored, and it was concluded that the ambient plume could exert a significant dynamical influence on the behavior of the embedded plume.

Published by Elsevier Ltd.

1. Introduction

We report here a remote sensing and in-situ observational and dynamical study of the river plume debouching from Lagoa dos Patos (hereafter, Patos Lagoon, and hence Patos Plume) in Southern Brazil, and its embedding within the larger scale plume emanating from the Rio de la Plata, which lies between Uruguay and Argentina (Fig. 1). In the context of the circulation of the western South Atlantic, the domain of the Rio de la Plata plume (henceforth Plata Plume), which generally propagates northward along the Uruguayan and Southern Brazil coast, spans the west boundary of the confluence region of the poleward flowing Brazil Current (BC) and the equatorward Malvinas Current, and also intersects the associated sub-tropical shelf front, described below.

The literature investigating river plume kinematics and dynamics is extensive, so we give only a brief survey here. Investigations generally fall into three groups. The first uses observations to determine plume distribution and evolution, or to

Fig. 1. Map spanning Plata and Patos study domains, with larger scale map of South America and Plata domain inset. The map shows schematically the major ocean currents (dashed lines), the Brazil Current (BC) and Malvinas Current (MC) which merge in the Brazil Malvinas Confluence (BMC), the Brazil Coastal Current (BCC), and representative locations of the Sub-Tropical Shelf Front (STSF, bold dotted line), and the Plata and Patos plumes (light dotted line). The four Plata CTD transects that span the Patos study domains are also indicated (solid lines). (Based on schematics and text presented by Souza and Robinson (2004) and Piola et al. (2005, 2008)).
The large-scale oscillation of the South Atlantic Subtropical Front set-down oscillatory response separated by a mid-Lagoon nodal driving mechanism for the along-shelf currents from surface wind forcing. In any case, the steady-state barotropic numerical hydrodynamic model. They described current measurements made over the shelf during a northern position, near Lat. southward, further offshore. The BC appears over the southern peak discharges of Brazil Coastal Current have been observed. Seasonal means range from discharges in late winter and early spring and low to moderate drifters and AVHRR sea surface temperature Satellite or airborne remote sensing can provide more extensive during the summer, when the winds are mostly upwelling upon river discharge rate, bathymetric slopes and the plumes along-shore during the winter, when the prevailing winds are processes of the Rio de la Plata salinity front using a 3-D baroclinic model to determine factors influencing its seasonal location. River discharge and the wind are the primary factors (Möller et al., 2008). According to Wells and Daborn (1997), the annual mean inflow from the combined Paraná and Uruguay Rivers is 25,000 m3/s (over the period 1983–1992), which is 30% higher than it was during the period 1887–1975. The mean discharge of the Paraná River (1884–1975) is 17,000 m3/s with a maximum of 22,000 and a minimum of 8000 m3/s. The mean discharge of the Uruguay River (1916–1975) is 4700 m3/s with a maximum of 14,300 and a minimum of 800 m3/s. Since these rivers peak at different times during the year, the seasonal variation of the combined discharge tends to be small (5% of the annual mean).

The results of previous studies in the region (Soares and Möller, 2001; Hubold, 1980a b) show large seasonal variability of the Plata water distribution, with a tendency for equatorward propagation along-shore during the winter, when the prevailing winds are downwelling favorable, and a tendency for offshore spreading during the summer, when the winds are mostly upwelling favorable. Plata water may reach as far north as Lat. 23°S, or nearly 1500 km northward during El Niño winter seasons (Campos et al., 1996). The recognition of the extent of the Plata influence, combined with the fact that no synoptic surveys of the entire plume domain have previously been performed, provided motivation for the development of the international NICOP/PLATA project, of which this study is a part.

The hydrology and oceanography of the Patos Lagoon plume, has also been closely investigated. This Lagoon is 250 km long, 40 km wide and approximately 5 m deep and is connected to the South Atlantic Ocean by a natural channel (modified by training walls) that is about 1 km wide and 12 m deep (Möller et al., 2001). The Lagoon drains a 200,000 km2 hydrological basin formed primarily by the Guaiaba and Camaquã Rivers, which exhibit high discharge in late winter and early spring and low to moderate discharge in summer and autumn. The mean annual discharge is 2000 m3/s (Vaz et al., 2006) but peaks of 12,000–25,000 m3/s have been observed. Seasonal means range from 700 m3/s in summer to 3000 m3/s in spring (Möller et al., 2001). Fernandes et al. (2002) citing unpublished work by Möller, reported that peak discharges of 8000 and 12,000 m3/s have been observed during El Niño events. They reproduced a Radarsat image recorded in April, 1998 showing the plume with a bulge extending 20 km offshore covering an area of 1500 km2, while Zavialov and Möller (2000), found the plume propagation may extend 50 km from the estuary mouth.

Möller et al. (1996) studied the summertime circulation and dynamics of the Lagoon by analyzing time series of freshwater discharge, wind stress and water level and results from a quasi-steady-state barotropic numerical hydrodynamic model. They found that the longitudinal wind stress generated a set-up and set-down oscillatory response separated by a mid-Lagoon nodal line with a period set by the passage of atmospheric fronts.
The longitudinal momentum balance was dominated by setup equilibrium (wind stress opposing pressure gradient) in the deeper water and by friction in the shallower water, while the lateral momentum balance tended to be geostrophic in both these regions. The wind-forced circulation displayed separate cells in the sub-basins, with downwelling current near the margins and upwind return flows in the central areas. The tidal signal was only important near the coastal entrance.

Möller et al. (2001) studied the influence of local versus non-local forcing effects on the Lagoon subtidal circulation. Using spectral analysis of river discharge, sea level and wind observations they found that the local wind was responsible for most of the observed water level variance in the central and inner parts of the Lagoon, while the non-local winds tended to drive the exchanges between the estuarine area and the adjacent continental shelf. Freshwater discharge, however, dominated the dynamics of the entire Lagoon during high flood periods.

Zavialov et al. (2003) reported results of a hydrographic cruise that mapped salinity and temperature features connected with freshwater discharges of the Plata River and Patos Lagoon. They observed a belt of low salinity water, 10 psu fresher than ambient shelf waters extending hundreds of kilometers northward from the Plata River. They also observed strong temperature inversions in the upper layer caused by a combination of advection and surface cooling during winter (Möller et al., 2008, found similar features). A fine-scale survey conducted in late autumn, 2002 revealed a modest Patos Lagoon plume extending at least 10 km offshore but with an area of only 700 km². This plume was characterized by salinities of 27 psu near the coast with a sharp salinity front of 2–3 psu contrast near the Lagoon entrance. Despite the training walls that direct the outflow initially toward the south (poleward), the plume penetrated less than 5 km in this direction. Instead, it was immediately detached from the coast and veered offshore and toward the east.

Fernandes et al. (2004) studied the attenuation of tidal and subtidal oscillations in the Patos Lagoon estuary. Using spectral analysis, they found that both high-frequency (tidal) and low-frequency (sub-tidal) oscillations decreased progressively inside the Lagoon, but were less attenuated during summer than during winter, when freshwater inflows and wind effects tended to dominate. The sub-tidal oscillations were also less attenuated than the tidal oscillations. The entrance channel thus acts as a filter for tidal, and to a lesser extent, sub-tidal signals.

Much is known about the hydrological and hydrographic characteristics of the Plata river basin, estuary and ocean outflow plume, including its response to river discharge and wind stress variations. The hydrological characteristics of Patos Lagoon are also relatively well known, but there are important gaps. For example, the inflow from the Mirim Lagoon complex can be a significant source of freshwater and sediment, but it is not gauged. The remaining mean discharge is a small fraction (about 1/10th) of that of the Plata, and is subject to greater seasonal and interannual variability. The hydrodynamics of the Lagoon, including its response to discharge, wind and tide has been well studied, and there is some knowledge of the estuarine zone, including water mass exchange with the continental shelf. A limited number of observational studies provide a basic description of the circulation on the continental shelf. However, the separate impact of the two plumes on the shelf circulation and the interaction between the Plata and Patos outflow plumes have not been studied. This paper seeks at least a partial remedy to this deficiency, by investigating the kinematics and dynamics of the two plumes and their interaction, using airborne and in-situ observations.

Section 2 describes the observational methods and classification schemes used in the study. Section 3 describes the plume kinematics. Section 4 classifies the plumes dynamically based on observable parameters. Section 5 discusses the dynamical implications of plume embedding and Section 6 summarizes the conclusions.

2. Methods

The Rio de la Plata and Patos Lagoon plumes were surveyed in winter and summer 2003–4 using a combination of airborne remote sensing and shipboard in-situ measurements of surface and sub-surface temperature and salinity. The two methods are mutually complementary. The in-situ conductivity, temperature and depth (CTD) measurements are more accurate and more precise than the airborne microwave radiometer measurements, and they provide sub-surface profiles at specific locations. They allow a 2D vertical section of near and sub-surface temperature, salinity and density to be constructed from data acquired over a period of one to several days. In contrast, the remotely sensed data have the advantage of rapid spatial coverage of surface fields. They allow horizontal transects, or 2D maps, of temperature, salinity and density to be constructed on nearly synoptic scales, over a period of several hours. The combined hydrographic data from the aircraft and ship platforms were used to characterize the river plume and to determine parameters describing plume size and shape, that could not be obtained from surveys conducted exclusively using ships.

2.1. Airborne salinity mapping

Airborne mapping of sea surface salinity was carried out using the Naval Research Laboratory (NRL) Salinity, Temperature and Roughness Remote Scanner (STARRS), mounted on a Uruguayan Air Force Casa 212 Aviocar twin-engined aircraft. STARRS is a system comprising L and C-band microwave radiometers for remotely sensing surface salinity and roughness, respectively, and an infra-red radiometer to determine SST. The technology, performance, and installation and deployment of STARRS during the Plata project are described, respectively, in Burrage et al. (2002a) and Miller and Goodberlet (2004), Burrage et al. (2006) and Pérez et al. (2006). A laboratory calibration of STARRS was carried out prior to and following each of the two surveys using methods similar to those described by Przyt et al., 2002 for an earlier generation of instrument, the Scanning Low Frequency Microwave Radiometer, SLFMR. The resulting brightness temperature accuracy is considered to be approximately ±1.0 K, which corresponds to a salinity accuracy of about ±2 psu.

The research involved two missions that were synchronized with oceanographic cruises conducted in August 2003 during the austral winter (Piola et al., 2003, Martinez, 2003; Pérez et al., 2006), and in February 2004 during the austral summer (Möller and Piola, 2004). Both extensive line-transect surveys and intensive mapping surveys were conducted. The extensive surveys (Martinez, 2003) closely followed the ship tracks (Piola et al., 2003). Each mission lasted approximately 10 days, and reasonable synchronicity with the ship operations was achieved. In this paper, we focus mainly on the results of the wintertime survey, during which the Plata and Patos plumes were well developed.

2.2. Ship hydrosurveys

Shipboard hydrosurveys were conducted using a Sea Bird Electronics 911 Plus CTD calibrated by the manufacturer, along with various other oceanographic instruments (Piola et al., data report & URL). The first cruise, of the Argentine Navy
Fig. 2. Plata plume extensive airborne salinity survey conducted using STARRS in winter 2003. The plume, indicated by low salinity water north of Lat. 37.5°S extends approximately 1100 km along the coast from the Rio de la Plata estuary separating Uruguay and Argentina to Itaí in southern Brazil. The across-shelf salinity contrast is approximately 10 psu. A lower salinity patch of water off Rio Grande indicates the embedded Patos plume (See Fig. 3).

oceanographic research vessel Puerto Deseado, was conducted from 20 August 2003 to 2 September 2003. The second, on the Brazilian Navy research vessel Antares, was conducted from 1 to 19 February 2004. Meteorological observations were also recorded manually from the bridge and from the ship's meteorological instruments. Key results of these hydrosurveys are presented by Piola et al., 2003 and Müller et al., 2008. Only those results that are pertinent to the Plata and Patos plume sea surface salinity remote-sensing surveys are presented in this paper.

2.3. Plume data acquisition

Nearly synoptic airborne scale surveys (or flight legs, Fig. 2) were conducted over three different sections of the Plata plume during the evenings of 20 August (Leg 1), 31 August (Leg 2) and 2 September, 2003 (Leg 3). Each leg, which comprised 4 across-shelf transects and 3 along-shelf transects was completed during a 7–8 h flight. Together the three legs spanned the period of the wintertime cruise of the Puerto Deseado. A similar survey was conducted during the summer using the Casa 212 and Antares. However, the Patos outflow plume was not extant during that survey. The salinity values shown were computed using a preliminary calibration of the STARRS L-band brightness temperature data, following the method described by Burrage et al., 2002c, and should not be regarded as accurate in the absolute sense. Comparison with the shipboard near-surface CTD data, which are derived from typical depths of 3–4 m (Piola et al., 2003), shows that STARRS surface salinities acquired during the extensive survey were fresher by about 6 psu, which could suggest the existence of a STARRS calibration bias. This could also be a reflection of near-surface stratification, since the depth of penetration of the STARRS L-band measurement is only a few centimeters, while the CTD data are acquired, as noted, from depths of several meters. In spite of the apparent inaccuracy, we believe the STARRS data are sufficiently precise to give a good indication of relative salinity values (Burrage et al., 2006). Thus, the salinity difference across the plume boundary should be well represented.

The Patos Plume was mapped using STARRS during the intensive survey on the evening of 1 September 2003 (Fig. 3), which was conducted in the region surrounding the entrance to Patos Lagoon. In the intensive survey, the salinity bias was removed by adjusting the salinity offset to approximately match the salinity measurements available from the ship observations.

2.4. Plume classification schemes

As a starting point in the analysis of the embedding of the Patos plume within the Plata plume, and to provide a basis for a numerical modeling study of the plume embedding and merger process (Burrage et al, in preparation), it is useful to determine the gross features of the observed plumes, and use these to determine their major dynamical characteristics. A generalized description of plume dynamics might allow certain simplifications to be made in assessing the influence of the larger ambient plume on the smaller embedded plume, and should provide useful guidance in interpreting numerical model results.

The plume dynamics may be systematically described using various diagnostic schemes. These have been developed for particular combinations (subsets) of the full set of terms in the
parameters describe plume aspect ratio (elongation) and tendencies to respond to stresses imposed at the surface (wind) and bottom (bed friction).

The scheme of Garvine (1999), or G99, focuses on along-shelf penetration of the plume under the influence of river discharge, but ignores the influence of the wind. Analytically, the along- and across-shelf penetration are determined by five non-dimensional parameters that describe the source transport, inlet width, bottom slope, tidal current intensity and the inlet aspect ratio. However, the scheme comprises an analysis of numerical model behavior and this introduces two additional, empirical and somewhat arbitrary, terms due to vertical and horizontal eddy diffusivity.

The classification scheme of Avicola and Huq (2002), A&H, reveals the extent to which a plume may be considered bottom-trapped (deep) or surface-advected (shallow) according to whether the non-dimensional ambient depth parameter, h/H, is high or low, respectively (here, h is plume scale depth and H is ambient ocean depth). It also reveals the extent to which its width at the base, where it intersects the bed, is compressed or expanded horizontally across-shelf, relative to its scale width, the internal Rossby radius, R. This is determined according to whether its (non-dimensional) bottom slope parameter, R/y_b (where y_b is the offshore extent of the bottom-trapped layer), respectively, high or low. According to the scheme, a plume with a high/low slope parameter value, being compressed/expanded at its base, has a stronger/weaker internal pressure gradient, and thus steeper/shallower isopycnal slopes and stronger/weaker geostrophic currents.

The combined effect of winds and river discharge is represented in the scheme of Whitney and Garvine (2005), W&G, in which a wind strength index, W_s, determines whether the plume flow is primarily wind or buoyancy driven, while a tilt time scale, t_{tilt}, determines how quickly the plume circulation responds to the wind-driven Eckman forcing. The relative size of these two parameters determines the tendency of the plume to narrow or...
expand in width, in response to downwelling and upwelling favorable winds.

Chao (1988, C88, used his scheme to study the development, maintenance and dissipation of river plumes both with and without a seaward sloping bottom. He classified plumes on the basis of an empirical Froude number, V_{mf}/C_0, and a dimensionless phase speed C/C_0, that determines the influence of dissipation. Here, V_{mf} is the inflow speed at the estuary mouth, C_0 is inviscid internal gravity wave phase speed, and C is instantaneous intrusion speed downstream of the mouth. Four plume classes were identified: supercritical, subcritical, diffusive-supercritical and diffusive-subcritical. A supercritical plume has an excursive bulge near the inlet and a relatively narrow coastal jet downstream; the excursion tends to be enhanced by seaward bottom slope. For subcritical plumes, the bulge is reduced to a width comparable with that of the coastal jet. For diffusive plumes, mixing tends to retard the plumes intrusion and limit the bulge's seaward excursion, regardless of its criticality.

3. Plume kinematics

Here we describe results obtained from the ship and aircraft measurements that can be used to infer the plume's geometric and internal properties on near-synoptic time and space scales. The results are used in Section 4 to determine non-dimensional parameters for the various plume classification schemes, and the magnitudes of terms in the steady-state momentum balance of the plume.

3.1. Plata plume

The aircraft survey of the Plata plume (Fig. 2) shows a band of low salinity water flowing equatorward along the coast from the northern side of the Rio de la Plata estuary (Lat. 35°S) to Itajai (28°S), a distance of about 1200 km. This feature was similarly observed by the ship. A relatively sharp salinity front marked, for this preliminary calibration, by the 24 psu isohaline can be traced along the inner shelf. This originates from inside the estuary and its shape shows that the plume thickness varies along the coast, being widest just south of Rio Grande (in Leg 2), near the entrance to Patos Lagoon, and narrower elsewhere, except near Itajai, where it terminates near the coast. In the shipboard data this frontal line closely follows the 32 psu isohaline. If, instead, the 27 psu STARRS isohaline is taken to define the plume boundary, the width appears to change in the same manner but it naturally appears wider. In the shipboard data this line closely follows a 2 psu front separating isohalines of 34 and 36 psu. In this case it is not clear whether some of the fresher water surrounding the entrance to the estuary originates in the Rio de la Plata, or is derived from further south. The most saline water detected by STARRS and the ship was, respectively, 30 and 36 psu. This lies near the shelfbreak where the freshwater influence is likely minimal. Surface mixing is likely enhanced, and the near surface stratification should be weak. Here STARRS exhibits the -6 psu bias mentioned earlier, and the additional -2 psu difference in the frontal zone is likely accounted for by surface freshening. As a general rule, Piola et al. (2008) define the Plata frontal boundary to coincide with the 33 psu isohaline, which in our shipboard survey lies about 130 km (70 Nm) offshore at Rio Grande (Fig. 4). Allowing for the bias, this would coincide with the 27 psu STARRS isohaline, described above, which extends further seaward than the ship 33 psu line. Due possibly to surface freshening, the front detected by STARRS, virtually at the surface, thus indicates a wider plume than that indicated by the ship's (subsurface) 33 psu isohaline. In any case, based on these findings the surface front of the Plata plume appears to have an average width of about 185 km (100 Nm), giving the plume an aspect ratio, of width to length, of approximately 1:11.

3.2. Patos plume

The Patos plume may be identified in the extensive survey (Fig. 2) by a small patch of extremely low salinity (-15 psu) water situated immediately offshore from Rio Grande (Lat. 32°S, Long. 52°W). Although the absolute accuracy of this survey should be regarded as uncertain, it is clear from the inner shelf location of the survey that the Patos plume is fully embedded within the Plata plume, as observed in the intensive aircraft and ship surveys. Since the minimum near-surface salinity observed in the Plata plume from the ship (at the inshore end of transects located south of the Patos Lagoon entrance) was about 27 psu (Piola et al., 2003), this could be adopted as an indicator for the maximum salinity associated with the Patos plume. Based on this definition, the plume has a maximum width of about 33 km (18 Nm) and salinity contrast of 12 psu (range 15–27). Since the south-western plume boundary was not mapped, it is not possible to accurately determine its length. However, if we assume the plume is approximately symmetrical, as suggested by the locus of the 19 psu isohaline, the length of the eastern half suggests a total length of about 100 km (55 Nm). This gives an aspect ratio of about 1:3, which is smaller than that of the Plata plume by a factor of nearly 4.

The Patos Plume was not observed in any detail by the shipboard survey, but its presence is indicated in the vertical salinity section obtained along the Rio Grande transect (see Fig. 4c), which coincides closely with that obtained from the STARRS across-shelf transect (Leg 2) in Fig. 2. An additional contribution of freshwater, possibly derived from the Patos plume, is evident in the downstream direction at the more northerly Solidão ship transect, which shows a freshening near shore relative to the upstream Albardão transect. The latter is likely influenced exclusively by the Plata plume.

3.3. Shelf hydrography

In these wintertime vertical sections, the salinity (Fig. 4a, c, e) and temperature (Fig. 4b, d, f) in the deeper water compensate in their effect on density and the salinity strongly dominates the density field (Fig. 5a, c, e). Offshore in water deeper than about 40 m, the structure of the temperature appears similar to that of the salinity field (the fields are correlated). In these waters there is a large retrograde frontal structure, the STSF (Piola et al., 2008; Möller et al., 2008) which, if associated with the Plata plume, would indicate that the latter is both continuously stratified (rather than sharply layered), and attached to the bottom. In waters shallower than 40 m, which lie on the inner continental shelf, the temperature field appears vertically well mixed. This tendency for homogeneity in the temperature field from Punta del Diablo, north to Rio Grande is a characteristic of the Plata plume water in winter (Möller et al., 2008). In contrast, the salinity field shows a retrograde frontal structure in both the Solidão (Fig. 4a) and Albardão (Fig. 4e) sections, but in the Rio Grande section (Fig. 4c), which is dominated by the presence of the Patos plume, and in waters shallower than 20 m, it appears vertically homogeneous. The strong horizontal density gradient (Fig. 5c) that appears near the coast off Rio Grande (barely resolved spatially at the left side of the plot) is dominated by the low salinity Patos Lagoon plume (rather than temperature, which varies over larger scales).
While the horizontal resolution is limited by the relatively large CTD station spacing, this vertical homogeneity suggests that the Patos plume is not only bottom attached, but unstratified close to the Patos Lagoon entrance. Mixing associated with strong tidal currents (~2 m s⁻¹) through the narrow Lagoon entrance might account for this effect (Fernandes et al., 2004). Strong seaward flow has been observed during NE wind events associated with high river discharge (Möller and Castaing, 1999). However, wind does not appear to be a significant factor in the nearshore mixing at the time of our observations. Winds were only 5–10 m s⁻¹ near the shore during the conduct of the Alvardao, Rio Grande and Solidao survey transects. However, they were 10–20 m s⁻¹ offshore (Fig. 6) and stronger at the time the Solidao transect was conducted. This might account for the relatively deep mixed layer evident over the outer shelf in that transect. In contrast, the relatively shallow Punta del Diablo transect (not shown, located south of the Alvardao transect, see Fig. 1) was conducted during strong winds 15–25 m s⁻¹, and it appears vertically well-mixed across the shelf.

Geostrophic velocities computed from the density field, using the surface as reference, indicate southward flow relative to the surface, both at depth and offshore (Fig. 5b, d, f). With mean surface drift equatorward in winter (Zavialov et al., 2002; Souza and Robinson, 2004), the negative relative velocities indicate vertical and horizontal shear with either weaker (equatorward) or reversed (poleward) flows at depth, and seaward. Southward tending current cores appearing in these sections might be due to seaward flow has been observed during NE wind events the BC, or associated mesoscale eddies which tend to encroach on the shelf in the northern part of the domain as observed by Piola et al. (2008). Whether the geostrophic shear that appears on the inner shelf in all three sections (0.35 m s⁻¹ off Solidao and 0.25 m s⁻¹ off Alvardao and Rio Grande) is associated with these boundary current features, the Plata plume, or both, they are expected to add significant, mainly cyclonic, vorticity to the Patos plume.

4. Dynamical classification

Dimensional parameters for the Patos and Plata plumes are presented in Table 1, in which their relevance to particular classification schemes is marked by an "X". These parameters
were determined using a combination of the aircraft and ship temperature and salinity surveys (for determining plume geographic scales and sea water densities), shipboard wind data, assumptions made by the scheme authors (e.g., the bottom friction coefficient from Garvine, 1995), or values obtained from the literature (along-shelf velocity scale from Soares and Müller, 2001). Classification based on the non-dimensional parameters of the Garvine (1995) (G95) scheme (Table 2, Fig. 7) places the Patos and Plata plume near the lower and upper levels of the bulk Kelvin number, K, range, for the cases that he considered (see Garvine, 1995 and his Table 1). For the Plata plume, we found K and F values of 5.3 and 0.04, respectively, which are comparable with values of 7.7 and 0.02 found by Soares (2003). For the Patos plume our Froude number, F was -0.1. Soares (2003) found a larger F—1, but with a discharge larger by a factor of 2 than the annual average value of $2000\, m^3\, s^{-1}$, he used, his estimated plume current velocities were probably higher. A few of Garvine’s entries of order one) are balanced by a combination of wind, bottom stress, rHU terms are larger, implying greater frictional influence (Fig. 7). The resulting momentum balance (Table 3) reinforces this interpretation. In the along-shelf momentum balance, the internal pressure gradients of the plume (assumed in G95 to be of order one) are balanced by a combination of wind, bottom friction and Coriolis force in decreasing order of importance. The across-shelf balance is similar, but the stress terms are of lesser importance, due to the dynamical influence of the aspect ratio on currents.

Fig. 5. Vertical sections of Sigma-\(\tau\) and geostrophic velocity (relative to the surface) corresponding to the temperature and salinity sections of Fig. 4: (a) Solidao Sig_Theta (kg/m^3), (b) Solidao Gvel (m/s), (c) RioGrande Sig_Theta (kg/m^3), (d) RioGrande Gvel (m/s), (e) Albardao Sig_Theta (kg/m^3), (f) Albardao Gvel (m/s).
The Plata plume K value falls between those of the Norwegian and Scottish coastal currents, showing that the Plata is dynamically larger in scale than the Patos. As pointed out by Garvine (1995), this is not necessarily indicative of large physical scale (the Mississippi plume, which is physically large, has a low Kelvin number), but rather emphasizes the importance of rotation, consistent with semi-geostrophic dynamics. The secondary parameters of the Plata (plotted against the primary parameter, Fig. 7) show similar tendencies to those of the Patos plume, with smaller rotation terms (K, KF) and larger stress terms ($\rho_\text{v}/\rho_\text{H}, r_\text{fH}$) than its companions in the table, but the inverse aspect ratio is intermediate, so in contrast to the Patos plume, its elongation is consistent with its companions rather than reduced. The momentum balance is consistent with this interpretation, tending toward geostrophy in both the along- and across-shelf directions, but with significantly more frictional influence in the along-shelf momentum balance. The Plata appears therefore to be essentially semi-geostrophic like its companions. However, with some momentum unaccounted for, it might not be entirely geostrophic even in the across-shelf direction (the order 1 pressure term appears to dominate the sum of all other terms).

Non-dimensional parameters for the classification scheme of Avicola and Huq (2002) are given in Table 4. These are derived from the corresponding dimensional parameters (cols 3-6). The Ambient Density Parameter h/H (col 1) indicates the extent to which the plume is bottom trapped (deep) or surface advected (shallow). The Bottom Slope parameter, R/y_b (col 2), indicates the extent to which its width at the base, where it intersects the bed, is compressed or expanded across the shelf. In a plot of h/H versus R/y_b (Fig. 8), plumes with high or low h/H values (vertical axis) tend to be bottom-trapped or surface-advected, respectively, while, plumes with high or low R/y_b (horizontal axis) tend to have steeper or shallower isopycnal slopes, respectively. Thus, as a general rule, those plumes plotting along the solid line delimiting coastal current existence are subject to stronger bottom trapping and horizontal compression than those plotting below that line, including our Patos and Plata plume realizations.

In Table 4, results based on our field data are bolded, and parameter values of other plumes given by Avicola and Huq (2002) are reproduced for comparison. Their tabulated results for the Plata plume (denoted A&H) are different from ours apparently because they used source parameters (inlet depth and density) appropriate to the head, rather than the mouth of the estuary. We excluded the estuary zone because its dynamics are ageostrophic, and thus inconsistent with their scheme's basic assumption that the plume is semi-geostrophic. However, for comparison, we include a calculation for the Plata plume using our data, but their assumed source characteristics (also denoted A&H).

The table rows and plot legend are sorted into a range of R/y_b values spanned by the Gaspe and the Rhine River plumes. On this scale, the Plata and Patos have only moderate isopycnal tilt. The Gaspe and Rhine plumes also span the h/H range, with the exception of the Patos, which is more extremely surface-advected than the Gaspe, unless the source conditions are those of the estuary head, in which case it resembles the Columbia or the Hudson. Both the Plata and Patos plumes thus classify as horizontally compressed at the base (with steep isopycnal slopes). The Patos is classified as surface-advected, while the Plata, being more inclined to bottom-trapping, classifies as intermediate. It is broader at its base than the Patos plume and has weaker geostrophic currents. The latter comparison is questionable, however: To the extent the Patos is ageostrophic (see Table 3), it may fail a key assumption of the A&H scheme. The Plata plume is also dimensionally deeper and broader than the Patos plume. This contrast holds whether the estuary head or mouth source parameters are used for the analysis. In terms of the non-dimensional parameters, the Plata closely resembles the Hudson plume dynamically, although in dimensional terms, it is actually deeper and broader, while the Patos resembles the Columbia plume, but is actually shallower and narrower. Depending upon source assumptions, the non-dimensional parameters imply that the Patos plume surface layer is only 1–2 m thick and feels the
D. Burrage et al. / Continental Shelf Research 28 (2008) 1625-1638

1635

Fig. 7. The dynamical characteristics of various river plumes are shown using the Kelvin number, \(K \), the primary parameter of the Garvine (1995) plume classification scheme. For each plume, \(K \), a non-dimensional horizontal plume scale, is plotted against the various secondary parameters representing (a) Coriolis effect, (b) aspect ratio, (c) Ekman transport and (d) basal friction.

Table 3
Momentum balance (non-dimensional) based on G95 parameters from their Table 4

<table>
<thead>
<tr>
<th>Plume</th>
<th>Advecc. accel.</th>
<th>Coriolis accel.</th>
<th>Pressure gradient</th>
<th>Wind stress</th>
<th>Bottom stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along-shelf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patos</td>
<td>0.01</td>
<td>0.22</td>
<td>1</td>
<td>0.69</td>
<td>0.43</td>
</tr>
<tr>
<td>Plata</td>
<td>0</td>
<td>0.19</td>
<td>1</td>
<td>0.09</td>
<td>0.11</td>
</tr>
<tr>
<td>Across-shelf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patos</td>
<td>0</td>
<td>0.22</td>
<td>1</td>
<td>0.23</td>
<td>0.05</td>
</tr>
<tr>
<td>Plata</td>
<td>0</td>
<td>0.19</td>
<td>1</td>
<td>0.02</td>
<td>0</td>
</tr>
</tbody>
</table>

Pressure gradient is of order one, by definition.

Table 4
Non-dimensional parameters (cols. 2-3) derived from dimensional parameters (cols. 4-7) using A&H classification scheme (given to at least 2 significant figures)

<table>
<thead>
<tr>
<th>Plume</th>
<th>(h/H)</th>
<th>(R/yb)</th>
<th>(h) (m)</th>
<th>(H) (m)</th>
<th>(R) (km)</th>
<th>(yb) (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaspe</td>
<td>0.12</td>
<td>8.6</td>
<td>12.9</td>
<td>111</td>
<td>9.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Columbia</td>
<td>0.21</td>
<td>4.7</td>
<td>6.3</td>
<td>30</td>
<td>8.2</td>
<td>1.8</td>
</tr>
<tr>
<td>Patos (A&H)</td>
<td>0.25</td>
<td>4.1</td>
<td>1.2</td>
<td>4.8</td>
<td>6.8</td>
<td>1.7</td>
</tr>
<tr>
<td>Patos</td>
<td>0.09</td>
<td>3.8</td>
<td>1.6</td>
<td>18</td>
<td>5.6</td>
<td>1.5</td>
</tr>
<tr>
<td>Tsugaru</td>
<td>0.26</td>
<td>3.8</td>
<td>80.4</td>
<td>304</td>
<td>16</td>
<td>4.3</td>
</tr>
<tr>
<td>Plata A&H</td>
<td>0.41</td>
<td>2.4</td>
<td>3.9</td>
<td>9</td>
<td>13.4</td>
<td>5.5</td>
</tr>
<tr>
<td>Hudson</td>
<td>0.25</td>
<td>1.9</td>
<td>4.7</td>
<td>19</td>
<td>6.8</td>
<td>3.6</td>
</tr>
<tr>
<td>Plata</td>
<td>0.25</td>
<td>1.8</td>
<td>6.6</td>
<td>27</td>
<td>10.8</td>
<td>6</td>
</tr>
<tr>
<td>Chesapeake</td>
<td>0.59</td>
<td>0.7</td>
<td>9.7</td>
<td>17</td>
<td>6.5</td>
<td>9.7</td>
</tr>
<tr>
<td>Soya</td>
<td>1.8</td>
<td>0.6</td>
<td>69</td>
<td>39</td>
<td>14.1</td>
<td>24.7</td>
</tr>
<tr>
<td>Delaware</td>
<td>0.6</td>
<td>0.51</td>
<td>8.7</td>
<td>14</td>
<td>6.4</td>
<td>12.4</td>
</tr>
<tr>
<td>Rhine</td>
<td>0.92</td>
<td>0.15</td>
<td>10.6</td>
<td>12</td>
<td>5.5</td>
<td>37.2</td>
</tr>
</tbody>
</table>

Selected results reproduced from Avicola and Huq (2002) and their Table 1 and Fig. 11, which span the values of the Patos and Plata plumes, are included for comparison. Entries are sorted by decreasing \(R/yb \) value.

bottom only within 1–2 km of the shore and typically lies in water 5–20 m deep. In comparison, the Plata plume surface layer is 4–7 m deep, feels the bottom at most 5–6 km from shore and typically lies in water 10–30 m deep. These results are only partially supported by the shipboard CTD observations (Fig. 5a, c and e), which indicate a stronger tendency toward bottom trapping in both the Patos and Plata plumes. Plata plume isopycnal slopes indicate bottom trapping out to about 20 km offshore from Alvardão and Rio Grande, but detachment from the bottom off Solidão. The Patos plume is not well resolved, but it appears to be bottom trapped close to the entrance. This observation is consistent with Avicola and Huq’s Patos plume source scaling, but not with ours.
Under the circumstances in which we observed it, the Patos plume might be difficult to classify accurately. Firstly, it was only observed while already embedded in the Plata plume; the latter might have modified its characteristics in comparison with a corresponding isolated state. Secondly, the plume could have been producing a recirculation bulge, although this is less likely if the inflow is anticyclonic, frictional forces are active, or there was significant equatorward along-shelf flow, either buoyancy or wind driven (Nof and Pichevin, 2001; Fong and Geyer, 2002). The estimated inlet Rossby number, \(\text{Ro} = u r f / f \) (Fong and Geyer, 2002, see their Fig. 8 for corresponding model runs) is 0.54 and 0.00054 for the Patos and Plata plume, respectively. This implies a bulge on the Plata would be quite ‘flat’ with the bulk of the freshwater discharge going into the coastal current (75% for their model). For Patos, the bulge would be semi-circular, with about half going into the coastal current (45% in the model).

Given that the Patos plume along-shelf development was quite limited, the presence of a recirculation gyre would make it difficult to scale the resulting coastal current. The Patos plume shape suggests the presence of a recirculation gyre, with a large offshore bulge and short, but relatively narrow, equatorward coastal current. If the pattern of plume development is observed, the theory of Avicola and Huq (2003) can be used to predict the presence of such a gyre. If we use the observed plume width, at its maximum offshore extent (33 km) as an indicator of maximum separation distance, \(d \), and compute the inertial turning radius, \(u / f \), where \(f \) is the Coriolis parameter and \(u \) is the inlet velocity, we can calculate their separation parameter, \(d / u f \). Calculating \(u \) from the volume discharge rate and entrance geometry, we obtain a parameter value of about 30, which greatly exceeds their criterion (0.5) for recirculation gyre formation. However, this value must be regarded as uncertain because we are using climatological, rather than actual discharge (2000 m\(^3\) s\(^{-1}\)), and it is likely an overestimate because we did not observe the plume at the time of its initial formation (and impact at the coast). If indeed a gyre has been formed, by the time of the survey it may well have grown considerably in extent, which would inflate the \(d \) estimate. On the other hand, if a gyre had not formed, a large bulge would not be evident and the plume width outside the entrance would not exceed, or at most would only slightly exceed, the coastal current width. Given this separation parameter estimate and observed plume shape, with a hook-shaped appearance indicating anticyclonic rotation, it seems likely that a recirculation gyre was present at the time of the survey.

The theory of Avicola and Huq (2002) avoids the issue of a bulge by assuming the plume discharge is parallel to the coast, which is not the case for the Patos, particularly since its training walls direct the plume immediately offshore, and even slightly upcoast (i.e. to the south, in the opposite direction to Kelvin wave propagation). We can, at least partially, account for the training wall effect by employing the inlet Kelvin number, \(K_s \), following Garvine (1999), which scales the actual inlet width (0.75 km) by the internal Rossby radius. For the Plata and Patos plume, defining the inlet width at the mouth of the estuary, \(K_s \) is estimated to be, respectively, 0.05 and 13.5. These are extreme values indicating, respectively, a plume that is greatly expanded along-shelf (Plata) versus one that has very limited along-shelf penetration (Patos). The latter implies the Patos will have a surface anomaly map (\(K_s = 0.1 \), Garvine, 1999 and his Fig. 8) resembling that of a plume located very close to the equator, although the reason for this with the Patos plume, is the small inlet width, rather than a low value for the Coriolis parameter \(f = -7.7 \times 10^{-5} \text{s}^{-1} \), at Lat. 32°S. In either case, this implies very limited rotation influence, and is consistent with a plume that is almost symmetric with limited along-shore extent. This picture appears consistent with the Patos plume salinity field, as observed by STARRS (Fig. 3).

The model results given by Soares (2003) suggest that with a small \(K_s \) value the Patos estuarine outflow will be little affected by the Coriolis force, and will, instead, tend to be deflected by the coastal current. However, on a larger time scale, the river water will tend to mix with the seawater forming a large body of low salinity water that will obey the rotational dynamics of larger plumes. Soares (2003) considers that during the high discharge season, the plume resembles the supercritical diffusive type described by Chao (1988); it becomes supercritical during strong and short period high discharge events (> 4000 m\(^3\) s\(^{-1}\)) typical of the winter/spring season and ENSO events. The plume is not formed for typical summer river discharge values, which are lower than 700 m\(^3\) s\(^{-1}\). Indeed, the Patos plume was absent during our subsequent summer (February, 2004) STARRS survey (results not shown). Instead, it was replaced by an ‘inverted plume’ with no freshwater outflow, but higher salinity shelf water penetrating the Lagoon.

The G99 scheme, which is based on a large number of numerical hydrodynamic model predictions, was less successful in predicting the observed along- and across-shelf penetration of the plumes (Patos and Plata penetrations were significantly overestimated and underestimated, respectively), for reasons as yet undetermined, so those results are omitted here. This might have been due, at least in part, to significant wind stress influence, which is not incorporated into the G99 scheme.

Whitney and Garvine (2005) explicitly account for wind effects, using their wind strength index, \(W_s \), a measure of the extent to which a plume's along-shelf flow is predominantly wind \((W_s > 1) \) or buoyancy driven \((W_s < 1) \). Our estimated value of \(W_s \) for the Patos and Plata plume is 1.9 indicating that wind influence dominates the effect of discharge on plume velocity. The significance of wind influence can also be gauged by employing the wind tilt time scale \(t_{\text{tilt}} \) of W&G, which is a measure of how long winds must persist to cause a significant change in the isopycnal tilt of the plume. \(t_{\text{tilt}} \) is estimated to be about 1 h and 2.5 day for the Patos and Plata plume, respectively. Thus, the Patos plume will respond almost immediately to wind changes, while the Plata will respond on time scales longer than one inertial period, i.e. within the weather band.

5. Discussion

Our observations and the resulting plume classification have a number of interesting implications, and coupled with our knowledge of the plume climatology, they raise several questions to guide further research.

During its winter and springtime extension in the equatorward direction, the Plata river typically penetrates beyond the entrance to the Patos Lagoon, while the Patos plume is relatively strong, at least in Spring. This, together with the greater geographic extent of the Plata plume and the discrepancy between their relative mean discharges (25,000 m\(^3\) s\(^{-1}\) for the Plata compared to 2000 m\(^3\) s\(^{-1}\) for Patos), means that the winter and probably also the springtime Plata plume will likely fully embed, or otherwise merge with or overwhelm, the Patos plume.

Our observations show that, at least in the 2003 winter, the Patos plume maintained its integrity as a relatively symmetric, frictionally dominated plume with significant along-shelf, and modest along-shelf, development. The Plata plume on the other hand was highly asymmetric. Its along-shelf development was almost entirely confined to the equatorial side of its source region (the Rio de la Plata) and it behaved dynamically like a buoyant coastal boundary current, with an approximately geostrophic across-shelf momentum balance. Both plumes were surface advected, but the Plata plume was deeper and broader.
This embedding of a small-scale plume (both in the sense of smaller physical size, and little rotation influence) within a larger-scale (physically larger, and rotationally dominated) plume has several implications.

Firstly, the embedded plume will be subject to advection by the larger plume and its dynamics will likely respond (at least to first order) as a small-scale plume debouching into an ambient long-shore current. This means, for example, that if the embedded plume tends to balloon to seaward (as the Patos appears to do, especially under high El Nino discharge conditions), forming a recirculation bulge (Nof and Pichevin, 2001; Fong and Geyer, 2002), the embedding (Plata) plume’s coastal current will moderate this effect, by enhancing the downstream embedded (Patos) plume’s coastal current, and decreasing its bulge growth rate. Secondly, the embedded plume will be subject to geostrophic current shear due to the tilt of the ambient plume isopycnal slopes (thermal wind). This will tend to enhance the equatorward coastal current nearer the surface and coast and (relatively speaking) diminish the flow (or reverse it) seaward and at depth, thus distorting the plume in the along-shelf direction by enhancing its (cycloidal) relative vorticity.

Both these effects would likely increase the aspect ratio of an embedded plume relative to one with otherwise similar parameters, which is not embedded. This suggests a need to modify the classification schemes that depend on this parameter (e.g., G95), to account for ambient shear.

Thirdly, being particularly susceptible to wind and bottom stress forcing, the Patos plume will be subject to advection and shear associated with changes in the effectiveness of wind and bottom stress as a function of water depth. Since the dynamics are essentially linear (the advective acceleration terms are negligible, see Table 2), any wind-driven advection and shear will add to the effects of the coastal current and background geostrophic shear associated with the ambient plume. The relative magnitude of the ambient buoyancy and wind-driven circulations will thus determine their relative influence on the embedded plume advection and shape.

6. Conclusions

Application of data from near-coincident airborne and in-situ surveys of the Plata and Patos plumes to dynamical classification schemes has elucidated the gross behavior and dynamics of the plumes, and has enabled likely implications of their mutual interaction to be identified. The Plata plume is dynamically of large scale, exhibiting a semi-geostrophic momentum balance, and responding primarily to seasonal, rather than weather-scale wind shifts. The Patos plume is only weakly affected by earth rotation, being dominated instead by weather-scale surface wind and bottom stress. In summer, the Patos plume is typically absent or only weakly developed, and the Plata plume is reduced in long-shelf extent, so that interaction between the plumes in this season is unlikely. In winter, prevailing downwelling favorable south-westerly winds cause the Plata plume to propagate northward, past the entrance to Patos Lagoon. The Patos plume, typically well developed in the spring, is found embedded in the hydrographic and current fields of the larger-scale Plata plume. The Plata plume will modify the environment of the embedded Patos plume by enhancing along-shelf advection and increasing ambient vertical and horizontal shear. Both these effects will tend to stretch and elongate the normally compact Patos plume in the along-shelf direction, but the likely intensity of this effect is yet to be determined. We hope to resolve this by comparing hydrodynamic model simulations of the Patos plume that are run both with and without an ambient Plata plume.

While the classification schemes account only for steady state forcing, studying various levels of forcing intensity can provide some insight into the likely transient response. An analysis of the momentum balance of the plumes shows that the advective acceleration terms are weak for the Patos and negligible for the Plata plume, suggesting that the dynamics are linear. Thus, to first order, the effects of independent forcings are additive. However, shear enhancement due to the ambient Plata plume could cause weak non-linear behavior in the Patos plume.

Without suitable current meter data, effects of transients could not be investigated empirically (e.g., by scaling the local acceleration), so the impact of rapid wind shifts and other forcing transients are unknown. However, the tilt time scale computed using the W&G scheme indicates that the shallow, frictionally dominated, Patos plume is likely to respond rapidly, on a time scale of about 1 h, to such transients. The deeper and larger Plata plume, being semi-geostrophic, will respond relatively slowly to wind transients. It will accelerate its along-shelf flow and adjust its across-shelf sea level gradient and isopycnal tilt, on time-scales of 2–3 days, to maintain geostrophic balance in the across-shelf direction. This would tend to enhance the ambient shear of an embedded Patos plume.

Our observations essentially comprise a snapshot of the Patos plume embedded within the wintertime Plata plume structure. The process by which the plumes actually merge and ultimately separate as the Plata plume expands in winter, engulfs the Patos plume and ultimately retracts in summer has not been observed. Numerical hydrodynamic model tests are presently being conducted to study the transient behavior of the plumes. These tests, which use realistic transient wind forcing are capable of simulating the merger and separation process. It is anticipated that they will yield significant useful insights into the mechanisms and dynamics of these processes. The implications for mixing between the two plume water masses and their ultimate fate as they are incorporated into the larger-scale deep ocean circulation are subjects for future investigation.

Acknowledgments

The Uruguayan Air Force (Brigada de Mantenimiento, Servicio de Sensores Remotos y Aeroespaciales, and Escuadrón de Transporte No. 3), provided aircraft, crew and logistics, and adapted the aircraft to STARRS. CITMPSA provided additional equipment and Aluminios del Uruguay donated mounting materials. Funding was provided by the Inter-American Institute for Global Change Research (IAI—Grant CRN-061), which is supported by the US National Science Foundation (Grant GEO-0452325), the Office of Naval Research Global (ONRG) and various academic and private institutions of Argentina, Brazil and Uruguay. Project leadership and coordination by Edmo Campos (University of Sao Paulo, Brazil) and Jerry Miller (formerly of NRL) are gratefully acknowledged. This paper is dedicated to the memory of Professor Richard W. Garvine, University of Delaware, and gratefully acknowledges his many enlightening contributions to the field of coastal ocean dynamics.

References

Masse.
Hubold.
Guerrem.
Garvine. R.W.
Garvine. R.W.
Framinan. M.B.
Brown,
Fong,
Fong.
Femandes,
Campos,
Burrage. D.M.
Wesson,
Burrage.
Burrage. D.M.
Heron. M.L.