The Holy Grail of Time-Certain Development

16 June 2008

Dr. Peter Hantos
Software Acquisition and Process Department
Software Engineering Subdivision

Prepared for:
Space and Missile Systems Center
Air Force Space Command
483 N. Aviation Blvd.
El Segundo, CA 90245-2808

Contract No. FA8802-04-C-0001

Authorized by: Engineering and Technology Group

PUBLIC RELEASE IS AUTHORIZED; DISTRIBUTION UNLIMITED
The Holy Grail of Time-Certain Development

16 June 2008

Dr. Peter Hantos
Software Acquisition and Process Department
Software Engineering Subdivision

Prepared for:
Space and Missile Systems Center
Air Force Space Command
483 N. Aviation Blvd.
El Segundo, CA 90245-2808

Contract No. FA8802-04-C-0001

Authorized by: Engineering and Technology Group

PUBLIC RELEASE IS AUTHORIZED; DISTRIBUTION UNLIMITED
The Holy Grail of Time-Certain Development

Approved by:

Dr. Leslie J. Holloway, Director
Software Acquisition and Process Department
Software Engineering Subdivision
Computers and Software Division
Engineering and Technology Group

Donna M. Speckman, Director
Research and Program Development Office
Engineering and Technology Group
The Holy Grail of Time Certain Development

Cross-Program Lesson Sharing Forum

March 5, 2008

Dr. Peter Hantos

Senior Engineering Specialist
Computers & Software Division
SES/SAAD
The Aerospace Corporation
All Rights Reserved.
© 2008
Acknowledgements

- This work would not have been possible without the following:
 - **Reviewers**
 - Suellen Eslinger, Software Engineering Subdivision
 - Mary Jo Gura, Software Architecture and Engineering Department
 - Dr. Leslie J. Holloway, Software Acquisition and Process Department
 - Mary A. Rich, Software Engineering Subdivision
 - **Sponsor**
 - Michael Zambrana, USAF Space and Missile Systems Center,
 Directorate of Systems Engineering
 - **Funding source**
 - Mission-Oriented Investigation and Experimentation (MOIE) Research
 Program (Software Acquisition Task)
 - **Inspiration**
 - All I really need to know about estimation I learned in kindergarten and
 from Dr. Barry Boehm...
Agenda

- Objectives
- Defense Acquisition Performance Assessment (DAPA)
- "Back to Basics" Air Force Initiative
- Time Certain Development
 - The reasons behind Time Certain Development
 - Perspectives on Time Certain Development
 - Perspectives on making time a Key Performance Parameter
- Confidence in a Software Estimate
 - Estimating software size
 - Cone of Uncertainty
 - Life cycle phase dependency
 - Risks of cost estimation risk-reduction approaches
 - Technology Readiness Implications for Time Certain Development
 - Iron Triangle Fallacies
- The Experts' Voices
- Conclusions
- Acronyms
- References
Objectives

- Explain the context and background of the DAPA recommendation for Time Certain Development
- Contrast acquisition management and engineering perspectives on Time Certain Development
- Explore the underlying estimation issues impacting successful implementation of the recommendation
- Emphasize software issues related to the acquisition of software-intensive systems
What is DAPA?

- The DAPA project is an integrated assessment of every aspect of military acquisition, including requirements, organization, legal foundations, decision methodology, oversight, and checks and balances.

- It is a response to a 2005 DOD Directive by Mr. Gordon England, then Acting Deputy Secretary of Defense.

- The DAPA report is the result of this project.

- Developed by a panel lead by Lieutenant General Ronald Kadish (Retired), USAF.

- 107 experts and 130 other government and industry acquisition professionals were interviewed.

- The full report is available at [DAPA 2006].
DAPA Recommendations To Be Discussed

• Budget
 - Transform and stabilize the PPBE (Planning, Programming, Budgeting, and Execution) process
 - Adjust program estimates to reflect high confidence
 - High confidence programs defined as a program with an 80% chance of completing development at or below estimated cost
 - Major acquisition programs would be fully funded at a level that would cover the program from Milestone A through the first delivery of low rate production

• The Acquisition Process
 - Establish Time Certain Development as the preferred acquisition strategy for major weapons system development
 - Time Certain Development adds “time” as a factor critical to the discussion of the need to balance cost and performance
 - Deliver useful military capability within a constrained period of time
 - Make time a KPP (Key Performance Parameter)
The Reasons Behind Time Certain Development

- Tension between the DOD acquisition culture and the needs of Combatant Commanders
 - The prevalent culture is to strive initially for the 100% solution in the first article delivered to the field
 - On the other hand, Combatant Commanders have urgent needs that are tied to ongoing operations
- Making time a KPP seems to be the vehicle to express this customer urgency to the Developer
 - Making time a KPP is a value statement of the Customer
“Back to Basics” Air Force Directive

- Relevant elements of the March 14, 2007 Memorandum by the Under Secretary of the Air Force*
 - Delivery times should be based on a Time Certain Development principle
 - A specific time frame must be established in which a specific block of capability will be fielded, starting at Key Decision Point B (KDP B)
 - Program estimates should be based on an 80% confidence level by KDP-B

* Undersecretary of the Air Force Memorandum, Subject: “Back to Basics” and Implementing a Block Approach for Space Acquisition, March 14, 2007.
What is Time Certain Development?

<table>
<thead>
<tr>
<th>National Security Space (NSS)</th>
<th>Systems Acquisition</th>
<th>Sustainment</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSS Space Acquisition Policy 03-01 (December 24, 2004)</td>
<td>PHASE A Approval</td>
<td>1st Launch</td>
</tr>
<tr>
<td>Pre KDP-A Concept Studies</td>
<td>PHASE B Approval</td>
<td>Upgrade Decision</td>
</tr>
<tr>
<td>PHASE A Concept Development</td>
<td>PHASE C Approval</td>
<td>IOC</td>
</tr>
<tr>
<td>PHASE B Preliminary Design</td>
<td>PHASE C Complete Design</td>
<td></td>
</tr>
<tr>
<td>SRR SDR</td>
<td>PDR CDR</td>
<td></td>
</tr>
</tbody>
</table>

80% (“High Confidence”) Estimate

Time-to-Need

80% (“High Confidence”) Estimate

Time-to-Need
Acronyms:

- **CDR:** Critical Design Review
- **DOD:** Department of Defense
- **DODI:** Department of Defense Instructions
- **IOC:** Initial Operational Capability
- **NSS:** National Security Space
- **PDR:** Preliminary Design Review
- **SDR:** System Design Review
- **SRR:** System Requirements Review

Notes:

* DODI 5000.2 has a single acquisition life cycle model only. The chart compares the DOD model to the NSS' *Small Quantity System Model*, showing the first acquisition increment.
A Little Hair-Splitting...

- The DAPA text says “Adjust program estimates to reflect high confidence, defined as a program with an 80% chance of completing development at or below estimated cost”
 - What they probably mean is **budget** the program at the 80/20 level (i.e., having an 80% chance of completion at or below budget,) and not adjusting the estimate
 - We need to separate the **estimation** considerations from **budgeting** considerations (See next slide)
Elements of the Total Cost Framework

• Software Cost (Effort) estimation is usually done via the use of Cost Estimation Relationships (CERs) – See next slide
 ▶ The process yields a **point estimate** on the basis of
 - Software size
 - Cost Drivers
 - Development Life Cycle Model
 - Work Breakdown Structure or Architecture
 ▶ The comprehension of cost estimation risk sources yields a **probability distribution**
 - CER error
 - Cost Driver/Configuration uncertainty

• **Budgeting/Funding decisions**
 ▶ Effort loading is based on **affordability**
 - Uncertainty arises from phasing, inflation, etc.

Discussion is based on [Covert 2007]
Detour #1 - CER Basics for Software Estimation

Step 1: Effort Estimation

![Graph showing effort vs. size with CER1]

Step 2: Time (Schedule) Estimation

![Graph showing time vs. effort with CER2]
Detour #2: Introduction to Key Performance Parameters

Measures of Effectiveness (MOE)
A qualitative or quantitative measure of a system's performance or a characteristic that indicates the degree to which it performs the task or meets a requirement under specified conditions.

Measures of Performance (MOP)
A quantitative measure of the lowest level of physical performance (e.g., range, velocity, throughput) or physical characteristic (e.g., height, weight, volume, frequency).

Key Performance Parameters (KPP)
Minimum or threshold attributes or characteristics considered most essential for an effective military capability; KPP's are not considered for further trade-off.

Technical Performance Measures (TPM)
Selected key, high-risk, performance requirements or design characteristics. The System Specification and the KPPs are used to negotiate the selected TPMs with the System Developer Contractor.
Perspectives on Making Time a Key Performance Parameter

- **Customer Perspective**
 - If something is important then the best, forceful way to express its importance is to designate it as a KPP [Boudreau 2003]
 - The DAPA recommendation represents the same philosophy: Having the availability of a capability on time is important, hence make time a KPP

- **Acquisition Management Perspective**
 - The previous slide illustrates that the term “performance” supposed to refer to attributes of the objective system and not to the performance of the contract
 - In reality, Cost and Schedule are neither “performance parameters” nor “variables” (Like in CAIV and SAIV)
 - Cost and Schedule are constraints
Everything is Always Important …

• There has always been an “Important Issue of the Day”
 ▶ CAIV (Cost As Independent Variable)
 – “In establishing realistic objectives, the user shall treat cost as a military requirement” [DODI 2003]
 ▶ R-TOC (Reduction of Total Ownership Cost)
 – “Serious consideration must be given to elevating TOC to KPP status” [Boudreau 2003]
 ▶ Mission Success
 – “Re-establish mission success (quality) as primary criteria in managing acquisition process” [Young 2003]

• Selecting Time as a Key Performance Parameter is not helpful
 ▶ KPP’s are more than simply important planning considerations
 – Note how they become manageable on a practical level via the decomposition into supporting Technical Performance Measures
 - Their progression and the progression of the dependent TPM’s are closely tracked and monitored during development
Perspectives on Time Certain Development

- Contractor perspective on Time Certain Development:
 - Still only means schedule constraints, regardless of the
 noble intentions
- Prevailing misconceptions:
 - It is Timebox Development
 - It is SAIV (Schedule As Independent Variable)
- It is neither:
 - Both approaches are based on adaptive project
 management principles
 - They might be helpful but do not ensure success
 - The main challenge is still providing a “High Confidence”
 Estimate at the front-end
 - Adaptive or agile project management strategies can only
 provide minor corrections and/or the renegotiation of
 customer requirements during the course of development

Key issue: Renegotiating requirements without jeopardizing the mission!
Software Size Is Always Chronically Underestimated

- **Software cost estimation’s “dirty little secret”:**
 - For most parametric cost estimation models software size is a major driver but size estimation accuracy is not part of the published cost estimation model accuracies
 - Software Cost Estimation Model accuracy data assumes a 100% software size accuracy
- **Estimating software size is actually quite difficult**
 - The following Actual/Estimate KSLOC (Thousand Source Lines Of Code) data was published for three different datasets [Bozoki 2005]:

<table>
<thead>
<tr>
<th>Datasets* Of Examined Programs</th>
<th>Actual Size Range for Accepted Software (KSLOC)</th>
<th>Ratio of Mean Actual/Estimate KSLOC Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6 - 71</td>
<td>1.61</td>
</tr>
<tr>
<td>B</td>
<td>45 - 320</td>
<td>2.38</td>
</tr>
<tr>
<td>C</td>
<td>8.7 - 877</td>
<td>1.49</td>
</tr>
</tbody>
</table>

Note that actual program details are hidden due to confidentiality reasons
Cone of Uncertainty in Software Cost Estimation*

Accepted Software

Development and Test

Detailed Design

Product Design

Plans and Requirements

Feasibility

Software Development Life Cycle Phases

Relative Variability of Estimate

*Based on [Boehm 1981]

CPLS 2008 - Peter Hantos

Slide 19
Accuracy Dependency on the Development Life Cycle Phase

- E.g., the COCOMO II (Constructive Cost Model) family of models* distinguishes between three different estimation strategies/objectives associated with life cycle phases:
 - **Early prototyping** stage
 - The objective is to estimate the cost of early risk-reduction activities.
 - **Early design** stage
 - The objective is to explore the cost of alternative software/system architecture options and the concept of operations.
 - **Post-architecture** stage
 - The objective is to estimate the cost of actual development for the software product.

- **Caveats:**
 - The number of available data-points for calibration (and consequently the estimation accuracy) is low for the early stages
 - The models can only be used successively, and their use is dependent on facts learned and design decisions made in prior stages

* Source [Boehm 2000]
Risks of Cost Estimation Risk-reduction Approaches

- The common "recipes" to reduce estimation risks:
 - Pay close attention to calibration issues:
 - Choose models that were calibrated with more data points
 - Carry out a local calibration of the model
 - Try using models that were calibrated in the appropriate domain
 - Estimate on lower levels of the Work Breakdown Structure and do a bottom-up integration of estimates
 - This approach can also build on the domain calibration idea
- Caveats:
 - Estimating on lower levels improves the component estimation accuracy but creates difficulties for estimating integration efforts
 - Estimation of developmental phasing* of concurrent efforts is not in scope for parametric models
 - Methods to estimate integration, test, and rework efforts are not as accurate and effective as the methods used for estimating routine development activities
 - Past organizational performance is no guarantee of future success
 - With respect to organizational capability (see [Ferguson 2002])
 - Past organizational performance might be irrelevant
 - E.g., the estimation of the impact of technology risks (See next few slides)

* Not to be confused with phasing concerns related to budgeting
Technology Readiness

- Technology Readiness Assessment (TRA) is a key element of the Milestone B decision
- TRA Process
 - The Program Manager is responsible for identifying Critical Technology Elements (CTEs)
 - A TRA is conducted by an independent entity on the basis of the information provided by the Program Manager
 - The result of the TRA is a TRL (Technology Readiness Level) rating for all identified CTEs
- Per DOD 5000.2, the entry criteria for entering into System Development & Demonstration Phase (Milestone B decision) is TRL ≥ 6 for all CTEs
 - The equivalent National Security Space Acquisition Policy statement is that the entry criteria for entering into System Preliminary Design (KDP-B decision) is TRL ≥ 6 for all CTEs

* Reference: [DUSD 2005]

CPLS 2008 – Peter Hantos Slide 22
The program's Critical Technology Elements are assessed and a Technology Readiness Level (TRL) is determined:

- **TRL 1**: Basic concepts observed and reported
- **TRL 2**: Technology concept and/or application formulated
- **TRL 3**: Analytical and experimental critical function and/or characteristic proof-of-concept
- **TRL 4**: Component and/or breadboard validation in laboratory environment
- **TRL 5**: Component and/or breadboard validation in relevant environment
- **TRL 6**: System/Subsystem model or prototype demonstration in relevant environment
- **TRL 7**: System prototype demonstration in an operational environment
- **TRL 8**: Actual system completed and mission qualified
- **TRL 9**: Actual system proven through successful mission
Implications for Time Certain Development

- TRLs represent milestones of the technology development life cycle in the Technology Development phase
 - Essential characteristics of this life cycle:
 - Technology development is a learning process:
 - Steps are strictly sequential – can not be executed concurrently
 - Success of steps depends on the success of preceding steps
 - Most activities are un-precedented
 - The routine, repetitive part is insignificant
 - No historical data; estimation must be based on heuristics

The presence of any technology uncertainty jeopardizes the accuracy of estimates obtained at KDP-A
The Iron Triangle in Theory

- **Fallacies:**
 - Pick two of the Cost, Requirements, Schedule triad and negotiate the third factor
 - This "negotiation" can be carried out as a seamless trade
 - During early project negotiations
 - Continually, during project execution
The First Fallacy of the Iron Triangle is that it is a Triangle...

- Abusive approaches to quality with serious estimation consequences:
 - It is viewed “free” or it is “expected” without quantification
- Quality must be explicitly considered and quantified
 - Quality is integral part of mission success
 - However, it is difficult to determine the cost of quality or explicitly design for quality
 - It is more than just cost of non-conformance, as Crosby defined it in his seminal book [Crosby 1980]
- Crosby - Cost of Quality or Price of Nonconformance:
 - External failure cost - customer-related
 - Internal failure cost - scrap, rework, re-inspection, re-test, etc.
 - Inspection (appraisal) cost - evaluating quality
 - Prevention cost - reviews, surveys, education, training, etc.
 - What else is needed?
 - Added effort and diligence to encompass illlites during the architecuring process
 - Quality must be "engineered-in"
The Fallacy of Seamless Size-Effort-Time Trade

However, in reality there are only a finite number of architectural options.

Legend: CER – Cost Estimation Relationship
CPLS 2008 – Peter Hantos
Architectural Options (Solution Sets) and Cost*

- **Consequences**
 - During initial estimation:
 - For the **Cost – Schedule – Capabilities** trade we have only a few options
 - During development:
 - Requirements can not always simply “dropped” in order to maintain cost or schedule objectives

Diagram is based on [Rice 2000]

CPLS 2008 – Peter Hantos

Slide 29
Space-Specific WBS (Work Breakdown Structure)

Typical WBS Hierarchy

- System
- Segments
- Elements
- Subsystems
- HW/SW Items
- HW/SW Units

Example (Ground Thread)

- Satellite
- Ground, Space, User, Launch
- **Ground Elements**: Mission Control, TT&C, Support
- **Mission Control Subsystems**: Master Control, Ground Antenna Control
- **Master Control SW Items**: Mission Planning, Payload Planning
- **Mission Planning SW Units**: Generate Timeline, Define Vehicle Configuration, Plan Orbital Maneuver
Space-Specific Software Discussion

There are Requirements and there are Requirements...

- Capabilities
- Requirements
- SW Specifications
- TPM (Technical Performance Measure) Thresholds

... and there is Architecture and there is Architecture.

- System
- Segments
- Elements
- Subsystems
- HW/SW Items
- HW/SW Units

26 DODAF (DOD Architecture Framework) Products/Views

- System Architecture
- High-Level, Conceptual SW Architecture
- SW Architecture and Detail Design

CPLS 2008 – Peter Hantos

Slide 31
Capabilities vs. Requirements

- Note the language of the acquisition domain: “Deliver useful military capability”
 - Customer needs are expressed in form of capabilities
 - The intent is not to impose unnecessary, technical implementation constraints on the Contractor
- However, development contracts are written with “Requirements” in mind
 - During the source selection process the Government Program Office must understand, interpret, and translate customer needs into tangible, feasible requirements and communicate them to the competing contractors
 - These requirements are the basis for developing detailed system specifications by the contractor
 - These requirements are also used for developing cost/schedule estimates
 - Caveats:
 - It is impossible to provide accurate cost and schedule estimates for delivering abstract capabilities
 - During estimation the capabilities must be mapped into solution sets (designs) as the previous slide showed
The Experts’ Voices

• Barry Boehm [Boehm 1981]
 ✤ “Whatever the strengths of a software cost estimation technique, there is no way we can expect the technique to compensate for our lack of definition or understanding of the software job to be done. Until a software specification is fully defined, it actually represents a range of software products, and a corresponding range of software development costs.”

• George Bozoki [Bozoki 2005]
 ✤ “SSM (Software Sizing Model) can be employed in any phase of the software development cycle in which the user can partition the software project into modules or components whose operational and functional characteristics are defined.”

• Steve McConnell [McConnell 2006]
 ✤ “Meaningful commitments are not possible in the early, wide part of the Cone. Effective organizations delay their commitments until they have done work to force the Cone to narrow.”
Conclusions

- **Time Certain Development** – as an acquisition strategy – poses very difficult engineering challenges
 - Even state-of-the-art estimation and engineering approaches could not support successful implementation for large programs
- **Accurate size estimation requires the full comprehension of the implementation consequences of “illities”**
 - Such analysis can only be based on a detailed and adequately documented software architecture
- **The root-cause of the dissatisfaction with the performance of the Acquisition System lies with misstated or misunderstood, unrealistic, and mismanaged expectations**
 - While improving estimation accuracy is certainly beneficial, further improvement efforts should focus on deeper understanding of engineering practices and the human dimensions of the Acquisition System
- **Topics for further discussion**
 - What the proper solution would be to the problems described in the DAPA Report
 - How to really address the concerns of the combatant commanders

Final conclusion: Estimating the unprecedented remains a black art…
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAIV</td>
<td>Cost As Independent Variable</td>
</tr>
<tr>
<td>CER</td>
<td>Cost Estimation Relationship</td>
</tr>
<tr>
<td>COCOMO</td>
<td>Constructive Cost Model</td>
</tr>
<tr>
<td>DAPA</td>
<td>Defense Acquisition Performance Assessment</td>
</tr>
<tr>
<td>DOD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>IOC</td>
<td>Initial Operational Capability</td>
</tr>
<tr>
<td>KPP</td>
<td>Key Performance Parameter</td>
</tr>
<tr>
<td>KSLOC</td>
<td>Thousand Source Lines of Code</td>
</tr>
<tr>
<td>MOE</td>
<td>Measures of Effectiveness</td>
</tr>
<tr>
<td>MOIE</td>
<td>Mission-Oriented Investigation and Experimentation</td>
</tr>
<tr>
<td>MOP</td>
<td>Measures of Performance</td>
</tr>
<tr>
<td>PPBE</td>
<td>Planning, Programming, Budgeting, and Execution</td>
</tr>
<tr>
<td>R-TOC</td>
<td>Reduction of Total Ownership Cost</td>
</tr>
<tr>
<td>SAIV</td>
<td>Schedule As Independent Variable</td>
</tr>
<tr>
<td>TPM</td>
<td>Technical Performance Parameter</td>
</tr>
<tr>
<td>TRA</td>
<td>Technology Readiness Assessment</td>
</tr>
<tr>
<td>TRL</td>
<td>Technology Readiness Level</td>
</tr>
<tr>
<td>USAF</td>
<td>United States Air Force</td>
</tr>
<tr>
<td>USC</td>
<td>University of Southern California</td>
</tr>
<tr>
<td>WBS</td>
<td>Work Breakdown Structure</td>
</tr>
</tbody>
</table>
References

Covert 2007 Covert, R.P., Cost Risk Methods, DOD Cost Analysis Symposium, May 31, 2005
DUSD 2005 DOD, Technology Readiness Assessment (TRA) Deskbook, May 2005
Rice 2000 Rice, R.E., CAIV...NOT!!!, <http://www.mors.org/publications/phalanx/feb00/Caiv/caiv.htm>
All trademarks, service marks, and trade names are the property of their respective owners