Award Number: W81XWH-07-1-0223

TITLE: Impact of Erb-B Signaling on Myelin Repair in the CNS Following Virus-Induced Damage

PRINCIPAL INVESTIGATOR: Kristen Mary Drescher, Ph.D.

CONTRACTING ORGANIZATION: Creighton University
Omaha, NE 68178

REPORT DATE: March 2008

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
The objective of these studies is to examine the impact of erbB-mediated signaling on myelin destruction and repair in a novel murine model of central nervous system (CNS) demyelination. In these studies, we utilize a model of demyelination triggered by direct injection of Theiler’s murine encephalomyelitis virus (TMEV) into the spinal cord. This method of lesioning permits us to precisely identify the age and site of a lesion. We hypothesize that increased erbB-mediated signaling will be protect animals from disease. Conversely, reduced signaling will worsen disease. Toward the goals of this project, we have generated three recombinant adenoviral constructs that will be used to exogenously increase the level of ligand available to the receptors, thus examining whether enhanced signaling via erbB family members will enhance protection of the CNS. We have identified the major cell type harboring virus in this model (macrophages) and have begun to examine the effects of infection on myelin gene transcription.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>4</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>8</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>8</td>
</tr>
<tr>
<td>Conclusion</td>
<td>8</td>
</tr>
<tr>
<td>References</td>
<td>9</td>
</tr>
<tr>
<td>Appendices</td>
<td>10</td>
</tr>
</tbody>
</table>
Introduction
The immediate objective of the studies funded by this grant is to define the neuregulin-mediated interactions that enhance myelin preservation/repair in the spinal cord following TMEV injection through testing of the hypothesis that neuregulins invoke erbB signaling and protects the central nervous system (CNS) by limiting Theiler's virus-induced pathology and triggering myelin repair processes. Two animal models will be utilized in these studies. In the first model, we will utilize animal that have not been genetically engineered and examine the earliest events after injection of TMEV into the spinal cords of mice. The effect of increased or decreased erbB-mediated signaling on these early events will also be defined. The second animal model will utilize tissue-specific inducible knockout mice that are lacking either erbB2, EGFR1 (also known as erbB1) or both erbB2 and EGFR. We will examine the effects of loss of these genes on myelin gene products and repair of the demyelinating lesions. The data obtained from the studies in this proposal will provide insight into the mechanisms responsible for repair of the CNS after virus-induced damage. These studies are the first to examine the role of neuregulins and their receptors in a model of virus-induced damage of the CNS. A greater understanding of the mechanisms involved in repair of the CNS will allow us to develop and refine strategies for the treatment of humans with demyelinating disease.

Body
Generation of recombinant adenovirus vectors expressing glial growth factor (GGF), glial growth factor-2 (GGF-2) and sensory motor derived factor (SMDF). As there was a delay in obtaining final clearance to utilize animals, we first focused on the generation of the recombinant adenovirus vectors that express a variety of neuregulin isoforms (required for Aim 3 of the grant). Performing this task (while not originally slated as part of the first year of the grant) permitted us to move forward on the grant while waiting for animal approval. GGF, GGF2, and SMDF clones were obtained and subcloned into a shuttle vector (Dual CCM-CMVeGFP). The cloned inserts are shown below. Lane 4 is positive for the GGF2 vector, all lanes positive for SMDF and lane 3 positive for GGF. This was then inserted into the adenoviral genome. A preliminary stock was generated and then a high-titer stock produced. To date, we have high titer stocks ($2 \times 10^{11-12}$ pfus/ml; minimum of 5 mls) of each of the adenoviral constructs. We are beginning to characterize these stocks in vitro and they are ready to use in animals.

Optimization of real-time RT-PCR to detect alterations in myelin gene transcripts.
We designed a battery of real-time PCR primers specific for the transcripts of various myelin genes. The genes of interest are: peripheral myelin protein-22 (PMP), myelin protein zero (MPZ), proteolipid protein (PLP), myelin associated glycoprotein (MAG), Krox-20 (KROX) and myelin basic protein (MBP). Using spinal cord and brain from mice that were infected with TMEV (intracerebral infection, not localized spinal cord injection), we isolated RNA and examined the difference in the level of mRNA transcripts in each of the above-described genes, using GAPDH as a housekeeping gene. Because we used the entire spinal cord (not just the lesioned area) the results are diluted relative to what is occurring at the lesion site. Transcript levels in infected control mice were reduced relative to the uninfected control samples. All data are expressed as the fold-change over a calibrator sample ± the standard error of the mean. In
addition, transcript levels of MAG were significantly reduced in the infected spinal cord compared to the control (t-test; p<0.05). Note that these studies utilized long-term (~6 month infected) infected banked tissues and do not reflect what may occur early in infection.

<table>
<thead>
<tr>
<th>Transcript</th>
<th>Uninfected Brain</th>
<th>Infected Brain</th>
<th>Uninfected Spinal Cord</th>
<th>Infected Spinal Cord</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMP</td>
<td>0.99 ± 0.17</td>
<td>0.76 ± 0.80</td>
<td>1.78 ± 0.46</td>
<td>1.05 ± 0.06</td>
</tr>
<tr>
<td>MPZ</td>
<td>0.50 ± 0.26</td>
<td>0.16 ± 0.05</td>
<td>2.01 ± 0.93</td>
<td>1.36 ± 0.15</td>
</tr>
<tr>
<td>PLP</td>
<td>1.03 ± 0.15</td>
<td>0.62 ± 0.06</td>
<td>1.28 ± 0.38</td>
<td>0.47 ± 0.03</td>
</tr>
<tr>
<td>MAG</td>
<td>0.99 ± 0.26</td>
<td>0.38 ± 0.06</td>
<td>1.13 ± 0.24</td>
<td>0.26 ± 0.17*</td>
</tr>
<tr>
<td>KROX</td>
<td>0.82 ± 0.14</td>
<td>1.28 ± 0.38</td>
<td>2.39 ± 1.05</td>
<td>2.00 ± 0.15</td>
</tr>
<tr>
<td>MBP</td>
<td>0.84 ± 0.12</td>
<td>0.87 ± 0.10</td>
<td>1.38 ± 0.35</td>
<td>0.90 ± 0.08</td>
</tr>
</tbody>
</table>

3 samples/group

We have begun to examine these transcripts at the lesion site, using the model of direct TMEV injection into the spinal cord. TMEV was injected directly into the spinal cord of SJL/J mice and animals were sacrificed at various timepoints post-injection. The time-frame examined was from 2-72 hours after injection. We dissected out the injection site, isolated RNA and performed real-time PCR. The results of the PLP real-time are shown below:

![Fold change in PLP transcripts](image)

We observed a large increase in the level of PLP transcripts within 24 hours of injection of virus into the spinal cord. Given the results using the whole spinal cord homogenates (see table, above) this was surprising. We are in the process of repeating these studies to confirm these data, but there are several possibilities for the ‘disconnect’ between these data and the whole spinal cord results. 1) There could be a short period of time immediately after insult when the host attempts to invoke repair mechanisms in the CNS by upregulating the production of various myelin transcripts. 2) The use of the long-term infected mice could reflect a time-point past which these mechanisms could be harnessed. 3) There could be areas of the spinal cord where transcripts are down-regulated during the pathogenesis process and these areas are ‘diluting’ the effects observed at the lesions site. Currently, we favor the first option, although further studies will be required to confirm this.

We have also tested the MPZ primers in these samples. MPZ is not expected to be altered in the CNS as it is primarily expressed in the peripheral nervous system. As expected, no significant changes in MPZ transcript levels were detected over the timecourse.

The primary virus burden is localized to demyelinated areas of the spinal cord. We examined the distribution of the demyelinating lesions relative to the location of virus early in infection (day 4 after injection of virus into the spinal cord). If virus localized to the areas of the spinal cord lacking in myelin, then it would be appropriate to postulate that early phases of demyelination could be due to direct damage of the myelin by the virus. If there was demyelination observed, but virus could not be localized to these areas, then we would postulate that the damage to the
myelin was either the result of a) injection trauma or b) indirect. Double immunohistochemical staining was performed using a polyclonal antisera to TMEV and an antibody reactive to mouse myelin. Differentially-labeled detecting antibodies permitted us to stain sections simultaneously with both antibodies. The secondary antibody used for the myelin antibody was Alexa-Fluor 568 labeled (green; far left panel, below) and the secondary antibody used for the virus was Alexa-Fluor 488 labeled (red, middle panel, below). As shown in the merge image (green and red, far right panel, below) TMEV is found in the spinal cord in an area devoid of myelin. Virus is localized to areas without intact myelin, supporting the hypothesis that virus infection, not trauma or an indirect effect, leads to demyelination in this model. Further supporting this conclusion is the preliminary finding that mice injected with UV-inactivated virus do not experience a loss of myelin as determined by immunohistochemistry.

Macrophages/microglia are the cells harboring the primary viral burden in the spinal cords of TMEV injected mice. The lesion sites were examined to determine what cell type harbored the majority of virus in the newly formed lesions in the spinal cords of mice injected with TMEV. As the primary reservoir of virus in the model of demyelination that develops following intracerebral infection are phagocytic cells (1), we performed double immunostaining using antibodies to TMEV and F4/80, a marker of macrophages and microglia, the primary phagocytic cells in the CNS. In these experiments, virus fluoresces red (Alexa-Fluor 488 labeled secondary antibody) while cells positive for F4/80 appear green (Alexa-Fluor 568 labeled secondary antibody). The far right panel shows the merged images of the green F4/80 staining and red TMEV staining. The yellow staining is indicative of cells positive for both virus and F4/80.
T cells infiltrate the spinal cords of mice that have been directly injected with TMEV. Immunostaining was also used to determine whether cells of the adaptive immune system are attracted to the site of damage following direct injection of TMEV into the spinal cord. This is important, as one of the key characteristics of human multiple sclerosis is that T cells infiltrate the site of damage. In this experiment, we examined tissues for the presence of either CD4+ (helper) or CD8+ (cytolytic) T cells. As demonstrated below, within 5 days of injection, both CD4+ T cells and CD8+ T cells have infiltrated the lesion site.

Tissue Collection. The majority of studies in this proposal require the collection of a large number of spinal cord sections. This has been a significant focus of our efforts over the last few months. Due to the technical aspects of these intraspinal cord injections, the PI is performing all of these injections.

TMEV replicates in the spinal cord after intraspinal cord injection. To test whether TMEV replicated at the lesion site, we injected SJL/J mice into the spinal cord, and sacrificed the animals at various timepoints post-injection to measure viral load by plaque assay. As shown in the figure below, TMEV replicates within the lesion site over several days, indicating that a production infection occurs.
Key Research Accomplishments

1. Recombinant adenoviral vectors expressing three isoforms of neuregulins have been produced and are in the process of being tested.
2. Spinal cord blocks from transgenic and non-transgenic animals are being collected for further characterization.
3. Real-time RT-PCR primers for myelin transcripts have been designed, tested, and some preliminary experiments have been performed.
4. We have identified macrophages as the primary immune cell type infected with virus.
5. Real-time RT-PCR primers have been designed for erbB2, erbB3 and EGFR.
6. Replicating virus has been isolated from the spinal cords of injected mice.

Reportable Outcomes

Medical Student Fellowships:

Two medical student fellowships have been awarded to pursue this research. These medical students will be working on the research during the summer of 2008:

Allison Lindquist (M1), recipient of a $3,000 research fellowship from the Dean’s Research Fund for a proposal entitled “Role of Neuregulins in Myelin Preservation and Repair in the Central Nervous System”

Jonathan Lindquist (M1), recipient of a $3,000 research fellowship from the Nebraska Medical Foundation for a proposal entitled “The Roles of ErbB2 and EGFR in the Development of TMEV-Induced Lesions”

Publications:

Awards:

Conclusions

We have obtained the recombinant adenovirus constructs that will be used in the third specific aim of the grant and have begun in vitro characterization prior to their use in animals. In addition, we have made progress toward collecting the tissues that will be used in to perform the immunohistochemical studies outlined in specific aims 1 and 2. We have demonstrated that TMEV injection of the spinal cord induces demyelination and replication of the virus. The primary contributor of demyelination is virus infection, not trauma. We have begun to characterize the changes in myelin gene transcription in non-transgenic mice injected with TMEV. We have also treated a large number of tissue specific conditional knockout mice with tamoxifen; these mice are being used for lesion characterization. Real-time RT-PCR primers for erbB2, erbB3 and EGFR have also been designed and are in the process of being tested.
Despite issues in hiring and a delay in obtaining final animal approval, we have made significant progress towards the goals of the grant.

References

Appendices

Being a mouse in a man’s world: what TMEV has taught us about human disease

Kristen M. Drescher, Danuta Sosnowska

Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178

TABLE OF CONTENTS

1. Abstract
2. An overview of the Theiler’s model of demyelinating disease
3. Multiple Sclerosis – the short course
4. Axonal injury in demyelinating disease. Does demyelination really matter?
 4.1. Axonal injury in multiple sclerosis
 4.2. What has Theiler’s virus taught us about demyelination and axonal injury?
 4.3. Mechanism of axonal injury in the TMEV model
5. Lessons from the acute phase of TMEV infection
6. Peripheral nervous system infection
7. Summary and Perspectives
8. Acknowledgements
9. References

1. ABSTRACT

Choosing an appropriate animal model to study a disease is guided by a variety of factors including but not limited to the questions being asked, availability of reagents, knowledge of the animal species, personal biases of the researcher, and in some cases, cost and availability of facilities to effectively investigate the model. The validity of an animal model can be further complicated when the etiology of the disease is incompletely defined. Examples of these diseases include multiple sclerosis (MS) and type 1 diabetes (T1D). In addition to host genetics, epidemiological studies have implicated infectious agents, in particular viruses as triggers of these diseases. Thus many studies of these diseases have focused on modeling the interactions of viruses and the host immune response in vivo in small animals. Theiler’s murine encephalomyelitis virus (TMEV) infection of mice has been used for over 30 years as a model of virus-induced demyelination. TMEV induces a MS-like disease in susceptible strains of mice but does not cause pathology in humans. While some researchers may question the rationale for using a non-human pathogen to model human disease, the TMEV model of central nervous system (CNS) demyelination has permitted study of some aspects of human MS which would have been difficult to address in other models of the disease. Despite being ‘merely a disease of mice,’ many of the findings in the Theiler’s virus model are directly applicable to the human condition, and studies from the model are responsible for our current understanding of mechanisms of pathology and clinical disability in human MS. In this review we will present some of the key findings from the TMEV model in the context of human disease.

2. AN OVERVIEW OF THE THEILER’S MODEL OF DEMYELINATING DISEASE

Theiler’s murine encephalomyelitis virus (TMEV) is a positive-stranded RNA virus belonging to the family Picornaviridae (genus Cardiovirus). There are two subgroups of TMEV – GDVII and TO. The GDVII subgroup viruses (FA and GDVII) are highly neurovirulent and cause necrotizing encephalitis and death in the murine host within 7 days of intracerebral (i.c.) infection even at very low doses (1). Intracerebral infection of mice with TO subgroup viruses (DA and BeAn) induces acute encephalitis between days 5 and 10 post-injection (p.i.) in all strains of mice. During this phase of infection virus replicates primarily in neurons and viral titers escalate rapidly (2). Within two weeks of infection, virus is cleared from the gray matter of the brain. In mouse strains resistant to persistent infection (H-2d,b) (3-5)TMEV is effectively cleared from the central nervous system (CNS) by a strong cytolitic T lymphocyte (CTL) response directed against the VP2 viral capsid protein (6,7). These animals recover and experience no obvious functional deficits as a result of the infection. Some strains of mice are unable to efficiently clear virus from the CNS and a persistent infection is established in the white matter of the brain and spinal cord, where demyelination and chronic inflammation develops. The infiltrate is comprised of CD4+ T cells, CD8+ T cells, B cells, and activated microglia/macrophages (8). Low-levels of virus can be detected in oligodendrocytes (9,10), microglia/macrophages (2,11,12), and astrocytes (10). In the BeAn strain the macrophages are the main reservoir of virus in chronically infected mice (11). Despite the high degree of sequence homology between DA and BeAn (13), the disease observed in DA-infected mice is distinct from...
Relevance of TMEV to human disease

BeAn-induced disease. DA-infected mice have higher levels of spinal cord demyelination, increased functional deficits, higher levels of virus-specific RNA and protein, and lower levels of TMEV-specific antibody compared to BeAn-infected animals (14).

The initial demyelination in the TMEV model is due to direct viral damage to the myelin-producing oligodendrocyte. Ongoing chronic demyelination is attributed to the development of autoimmune responses to previously sequestered self-epitopes, a phenomenon known as epitope spreading (15-17). Clinical signs of chronic TMEV infection are similar to those observed in patients with chronic progressive MS. These include spasticity, incontinence, weakness of the extremities, and eventually paralysis (2,18). Akin to the oligoclonal bands found in the cerebrospinal fluid (CSF) of MS patients, i.e. infection of susceptible strains of mice with TMEV results in intrathecal antibody production (19).

The wide availability of mutant and knockout mice has permitted the study of the contribution of various immune system components on susceptibility or resistance to demyelination (20-31), neuronal damage (20,21,32-34), and in some cases, death of the host (24,32,35). Mice lacking adaptive immune systems die within two weeks of i.c. infection even when on a genetic background that is resistant to infection (32,35,36). In addition, some immune component deficiencies may result in altered patterns of brain pathology in the acute phases of disease (20,21,32). While Thieler’s virus infection of mice has been used primarily as a model of demyelination, TMEV infection of mice has been used to explore many more scientific questions beyond modeling MS. TMEV infection of mice has also been successfully used to model T cell priming and antigen presentation in the CNS (17,37-41), mechanisms of virus transport from the PNS to the CNS (42-44), and understanding mechanisms of myelin damage (45) and repair (46-48).

3. MULTIPLE SCLEROSIS – A SHORT COURSE

Multiple sclerosis is the most common demyelinating disease of the CNS in humans, with more females affected than males (49-51). The disease is focal in nature and the lesions contain inflammatory infiltrates consisting of T cells, B cells, and macrophages (52). The disease course in individuals diagnosed with MS is unpredictable although most individuals experience increasing loss of function as time progresses. Autoreactive T cells have been identified against several myelin components including myelin basic protein (MBP) (53-55) and proteolipid protein (PLP) (53, 56, 57). As most studies have focused on individuals after diagnosis, the contribution of the autoreactive T cells to disease onset is murky.

The etiology of MS is unknown, but both host genetics and environmental factors are likely involved in disease development (58-64). A variety of genetic associations have been made between various HLA alleles and an increased relative risk rate of MS development (58, 59, 65-68). The first genes implicated in the development of MS were HLA class I alleles – key participants in the immune response to viruses (61), suggesting that the response to intracellular pathogens may be important in disease development. In addition to particular HLA alleles, polymorphisms in other genes that affect immune function have been made (69-76). Despite extensive study, no consensus has been reached with regard to which genes are most important in MS susceptibility. The results of the genetic studies do support a role for multiple genes in determining MS risk.

While the risk of disease development increases when a first degree relative is affected, genetics alone do not adequately explain disease development (77-83). Long-term studies in the Faroe Islands in the decades following World War II and migration studies have supported a role for infectious agents in disease onset (60,62-64, 84, 85). Since these original epidemiological studies, much work has focused on identification of pathogens that may trigger disease. The most commonly implicated class of pathogens in the development of MS is viruses (86-94). Viruses have been implicated or eliminated as causes of the disease based on their presence or absence in a demyelinating lesion, or the level of virus-specific antibody in the patient at or near diagnosis. Some of the pathogens proposed as triggers of MS include rabies (86,87), human herpes virus 6 (95, 96), measles (96-100), adenovirus (88-89), parainfluenza type 1 (90-93, 101), rhinovirus (102), and Epstein Barr virus (94, 103, 104).

Based on studies in the TMEV model of MS, mechanisms of demyelination that are triggered by virus may or may not require the presence of viral antigen at the lesion site at the time of clinical disease onset. Studies from the laboratory of Stephen Miller have demonstrated that while virus is required to initiate demyelination, it is ultimately the ongoing immune response to newly exposed self-epitopes that is responsible for the chronic, increased levels of demyelination that are observed (15-17). The specificity of the autoreactive cells that develop changes over time in a predictable manner (15-17). Extending these findings to the human disease, one could postulate that while a virus (or viruses) may trigger the disease in humans, it is long-gone by the time of diagnosis.

Diagnosis of MS is difficult, as similar symptoms related to other disease conditions must be considered. Diseases that must be excluded include Lyme Disease, sarcoidosis, vascular disease, syphilis, genetic diseases, or structural conditions such as herniated disks or tumors that may impair nervous system function. Other diagnostic criteria include the presence of oligoclonal bands in the CSF and gadolinium-enhanced plaques in the spinal cord and brain upon magnetic resonance imaging (MRI) (105-107). Currently lesion activity, as defined by MRI visualization, is the key pathological feature of MS both in diagnosis and in monitoring disease progression.
4. AXONAL INJURY IN DEMYELINATING DISEASE. DOES DEMYELINATION REALLY MATTER?

4.1. Axonal injury in multiple sclerosis

Human multiple sclerosis has long been characterized as a primary demyelinating disease. The hallmark pathologic feature of the disease is a loss of myelin, with relative sparing of the axon (108). Despite this categorization, the clinical course of the disease is perplexing because no firm association between the extent of demyelination lesions and patient disability has been described. This lack of correlation between lesion load and clinical disability is referred to as the clinico-radiological paradox (109,110). Until relatively recently, axonal damage has been thought to be a long-term sequelae that results from the assault on the demyelinated axon by the immune response (108). Increasing evidence however currently suggests that axonal damage occurs significantly earlier than previously thought, and demyelination alone is not the cause of patient disability (108,111-116). Axonal injury results in axonal transaction, a condition for which there is no treatment. In the past decade numerous studies have demonstrated that at least in some instances, axonal damage occurs in areas of normal appearing white matter of MS patients (111-114).

To examine whether there were alterations in axonal density in normal appearing white matter in patients with MS, Bjartmer et al. examined autopsy tissue from a patient with acute MS. Using immunohistochemical staining with an antibody to neurofilament protein as a marker for axons, these studies demonstrated that there was a decrease in axonal density of approximately 22% in normal appearing white matter in the MS patient as compared to the axonal density in the CNS tissue from individuals with no known neurological pathology (111). In the course of these studies, the authors also demonstrated that despite the significant level of axonal dropout, myelin sheaths devoid of axons were also apparent. These myelin sheaths were either intact or collapsed upon themselves. In addition, macrophages containing myelin debris were also detected, indicating that myelin was also disrupted (111). Similar immunohistochemical studies have confirmed the observation that axonal dropout occurred in normal appearing white matter in autopsy tissue from MS patients. Decreases in axonal density of up to 65% were observed (112-114). The axons at greatest risk were the small axons (113,114). Despite the sex bias in MS patients, no difference in the level of axonal dropout has been reported between the sexes (114).

While these findings were of interest, these studies did not address whether the axonal pathology was old or relatively recent. To address this question, immunohistochemical staining of biopsy tissue from MS patients was performed using amyloid precursor protein (APP) as a marker of acute axonal injury (117). Acute axonal injury was defined as damage that occurred within the last month. The amount of acute axonal injury varied with the subtype of MS in the patient. Patients with primary progressive MS had reduced levels of APP staining; patients with secondary progressive MS had much higher APP-positive staining than other forms of MS (117). APP was found in areas of demyelination, remyelination, and normal appearing white matter (117) indicating that axons in areas undergoing damage, invoking repair mechanisms, and normal appearing tissue were all vulnerable to axonal damage.

The main focus of treatments used in MS patients is targeted toward reducing lesion activity and relapses as a measure of success (118-122). Given that significant numbers of axons are damaged early on in some forms of MS, the view that clinical sequelae can be prevented if myelin sheaths can be repaired relatively quickly after the onset of demyelination may be naïve and outdated. This is not to say that reducing or repairing demyelination in the treatment of MS is not warranted. As myelination impacts conduction velocities along the axon, reduced myelination most certainly negatively impacts clinical symptoms in the patient. However, it is imperative that alternative measures be used to assess treatment efficacy.

4.2. What has Theiler’s virus taught us about demyelination and axonal injury?

The study of chronic infection of mice with Theiler’s virus has been used to demonstrate the disparity between the extent of demyelination in the host and the level of clinical disability. Studies from this model first provided an experimental model demonstrating that clinical deficits and demyelination were independent of each other and ultimately providing a potential mechanism explaining the clinico-radiological paradox (123-126). Using beta2 microglobulin-deficient mice on a background resistant to demyelination (C57Bl/6J x 129), Rivera-Quinones et al. demonstrated that demyelinating lesions developed following intracerebral infection with Theiler’s virus (123). These beta2 microglobulin-deficient mice, devoid of both MHC class I expression and CD8+ T cells, were unable to mount CTL responses (127). Despite the presence of these large areas of demyelination, spontaneous clinical activity and hindlimb evoked potentials in the virus-infected mice were similar to those observed in mice that were infected and efficiently cleared TMEV from the CNS (123). The retention of normal function in the TMEV-infected beta2 microglobulin-deficient mice parallels human cases of asymptomatic MS (128). TMEV-infected beta2 microglobulin-deficient mice also had increased sodium channel levels in the CNS, as well as relatively well-preserved axons, findings that would provide the basis for the normal evoked potentials measured in these animals (123). The development of this model permitted further studies on the role of CD8+ T cell/MHC class I interactions in the development of functional deficits in demyelinating diseases.

The beta2 microglobulin knockout mice have been the focus of intense study since their initial characterization (23, 124-126). One possibility for the observed differences in clinical function between beta2 microglobulin-deficient mice and immunocompetent control mice susceptible to the development of large areas of demyelination and functional deficits was that the two
Relevance of TMEV to human disease

strains of mice developed lesions in different areas of the spinal cord. Simply put, the lesions in the beta2 microglobulin-deficient mice, while large, were in areas of the spinal cord that were less critical to motor function. To address this potential mechanism of clinical function preservation in the beta2 microglobulin-deficient mice, geographic distribution of the lesions and the extent of remyelination were examined. Beta2 microglobulin knockout mice and SJL/J mice, a strain of mice that experience significant loss of function following TMEV infection were used in these studies (125). The hypothesis being examined was that the location of the demyelinated lesions was the key determinant as to whether clinical deficits developed. Morphometric studies determined that both the lesion size, geographic distribution of the lesions, and the degree of remyelination in these two strains of mice were similar. Using retrograde neuronal labeling to measure the level of axonal injury, it was determined that compared to beta2 microglobulin-deficient mice, SJL/J mice had reduced retrograde labeling of neurons in the major motor tracts compared to the beta2 microglobulin-deficient mice (125). Together, these studies provide further evidence for the hypothesis that demyelination and axonal damage are independent of each other. These studies also implicate a role for CD8+ T cells in impacting axonal health.

4.3. Mechanism of axonal injury in the TMEV model

Key to induction of CTL response are that MHC class I molecules displaying a peptide in the binding cleft that corresponds to an appropriate T cell receptor on a CD8+ T cell. Under normal conditions, MHC molecules are not expressed in the brain and spinal cord. However, damage (infection, trauma, physiological) can result in the induction of MHC molecules in the affected area (129, 130). Thus, following damage or infection, CNS resident cells acquire the ability to present antigen to T cells. Increased expression of class I on the demyelinated axons in patients with MS has been reported, thereby demonstrating that one of the requirements for CTL-mediated damage to the axons is fulfilled (131). In studies exploring the interactions between CD8+ T cells and neurons in an in vitro setting, the hypothesis that cytotoxic T cells were directly responsible for damage to neuritis was tested (132). Murine neurons were pulsed with lymphocytic choriomeningitis virus (LCMV)-derived peptides and then co-cultured with LCMV-specific CD8+ T cells. The CD8+ T cells attacked the neuritis and within 3 hours, changes to the neurite cytoskeleton consistent with transaction of the neurite were observed (132). No structural abnormalities were observed in neuritis when control peptides or neurons devoid of class I expression were used, indicating that the structural changes were the result of antigen-specific class-I mediated responses (132).

While studies in the beta2 microglobulin-deficient mice demonstrated that demyelination and axonal damage were not interdependent, they did not address the observation in human tissue that there are damaged axons in the normal appearing white matter (111-114). The concept that axonal injury is a sequela to demyelination has also been examined in the TMEV model. Using nonphosphorylated neurofilament protein as a marker of axonal damage, studies using SJL/J mice demonstrated that axonal injury was detected by one week p.i. with the DA strain of TMEV (133). At this time-point in infection the majority of virus was localized to the neurons. As the infection progressed the number of nonphosphorylated NPP immunoreactive axons increased in the spinal cord. Histologically there was an increase in the amount of axonal swelling in normal appearing white matter over time. These studies were significant as they provided evidence that axonal injury did not occur solely as a secondary event following demyelination (133). TMEV antigens rarely co-localized with axons indicating that direct virus-induced axonal damage was likely. Furthermore, similar to the pathology described in MS, empty myelin sheaths were observed indicative of axonal degeneration (111,133). Using the highly neurovirulent GDVII strain of TMEV, similar studies determined that this strain of TMEV also induced high levels of axonal swelling and degeneration in normal appearing white matter. As GDVII-infected animals do not demyelinate, these data demonstrate the independence of these distinct pathologies.

Two proteins are involved in CTL-mediated killing. Perforin is responsible for the generation of channels on the target cells, and granzymes enter the cell and cause damage to the target cell’s DNA. To test the contribution of perforin to axonal degeneration and clinical deficits, perforin-deficient animals on a C57BL/6J background (that is, animals that can mount a vigorous CTL response and clear virus) were infected with TMEV and examined six months later. TMEV-infected perforin-deficient mice developed demyelinating lesions throughout the spinal cord but motor function and large diameter axons remained preserved (126). The levels of function and axonal preservation were similar to those observed in immunocompetent wild-type mice. In contrast, TMEV-infected mice with CD4+ T cell deficits experienced similar levels of demyelination as the perforin deficient mice but also experienced a loss of function. In addition, CD4-deficient mice infected with TMEV experienced a loss of large diameter axons (126). In these studies, demyelination alone was not a predictor of clinical function although the extent of loss of large diameter axons could be correlated to clinical disease. Similar to the in vitro studies demonstrating the antigen-specific nature of the CTL-mediated damage to the neuritis in vivo studies demonstrated that depletion of the VP2 121-130-specific T cells significantly reduces the damage in the TMEV model (124).

Because MS is typically categorized as an autoimmune disease the main focus of study in MS patients, as well as animal models, has been the host immune response. Despite the obvious interest in the immune response, the role of non-immune factors in the establishment of disease has also been of great interest. Recently, the role of myelin in the establishment of TMEV persistence has been explored. In these studies two mouse strains with myelin defects were studied and have presented us with new paradigms to understand the mechanism of viral persistence in this model. Shiverer mice have a large
Relevance of TMEV to human disease

deletion in the myelin basic protein gene resulting in extremely low levels of myelin production (134-137). Rumpshaker mice have an X-linked mutation in proteolipid protein gene which results in dysmyelination and increased numbers of oligodendrocytes (138). Even when infected with high doses of TMEV, it is not possible to induce a persistent infection in these mouse strains (139). In contrast, infection of wild type control mice with much lower doses of TMEV results in virus persistence and subsequent demyelination. These data cannot be explained solely by the immune response in the context of epitope spreading as the immune response to myelin basic protein is not one of the early identified self-reactivities (16).

To explore the basis of this protection from persistent TMEV infection, the optic nerve was used to model axon, myelin, and virus interactions (45). These studies demonstrated that the axons of infected neurons are a key component in permitting infection of the cytoplasmic channels of myelin. It was postulated that the virus attempts to gain a survival advantage in the host by establishing itself in an environment distal from the demyelinating lesion, which is the main target of the immune response (45). What is the relevance of these findings in the context of human multiple sclerosis? The data, while relatively new, provide a mechanism by which viruses could induce MS in humans, and provide an explanation as to the lack of viruses that have been identified at the lesion site.

5. LESSONS FROM THE ACUTE PHASE OF TMEV INFECTION

All strains of mice, regardless of their genetic background, experience the acute phase of TMEV infection characterized by high levels of virus replication in the neurons (2, 18). This virus-induced encephalitis has permitted the study of the role of immune system components in protection of discrete areas of the brain from virus infection could travel to the CNS via a breach in the surface of the tongue, similar to one of the proposed mechanisms of transmission of prion diseases (142).

Our laboratory recently developed a model of direct injection of virus into the sciatic nerve with a goal of using this model to study myelin repair of the peripheral nervous system (42). While it has been well-described that the PNS is more efficient at repair than the CNS, few opportunities exist to directly examine the differences in the processes, as the lesioning methods used in the PNS and CNS vary. Further development of this sciatic nerve model, as well as our model of direct CNS lesioning (143),
will permit study of these processes without the complication of an additional variable (that is, the method by which the lesion was made).

7. SUMMARY AND PERSPECTIVES

The study of non-human pathogens that are not of agricultural interest is sometimes denigrated by those working with human pathogens (aka, ‘my virus is better than your virus’). The concept that one cannot advance the understanding of human disease by studying a mouse model because it is, in our view, short-sighted. Certainly, our understanding of axonal damage in multiple sclerosis would not be as advanced as it is without the TMEV model. The ability to utilize a small animal model in concert with human histopathological studies provides investigators with an excellent opportunity to test and understand mechanisms of pathology, and to gain confirmatory data from human samples. Furthermore other aspects of the model, such as the acute phase of disease or infection of the peripheral nervous system provide ample opportunity for further study of human diseases other than multiple sclerosis.

8. ACKNOWLEDGMENTS

The laboratory is grateful to have the support of the National Multiple Sclerosis Society (RG 3870-A-3; KMD), the Department of Defense (PR064574; KMD), and the State of Nebraska (LB692;KMD). The laboratory was constructed with support from Research Facilities Improvement Program (1 C06 RR17417-01) from the National Center for Research Resources, National Institutes of Health.

9. REFERENCES

20. Kristen M. Drescher, Laurie Zoecklein, Kevin D. Pavelko, Cynthia Rivera-Quinones, Diane Hollenbaugh, and Moses Rodriguez: CD40L is critical for protection
35. Laurence Fiette, Christine Aubert, Ulrike Muller, Su Huang, Michel Auget, Michel Brahic, and Jean-Francois Bureau: Thielers virus infection of 129 Sv mice that lack the interferon a/b or interferon g receptors. J Exp Med 181, 2069-2076 (1995)
48. Kimihiko Asakura, David J. Miller, Larry R. Pease, and Moses Rodriguez: Targeting of IgM antibodies to
Relevance of TMEV to human disease

75. Birgitte Stoevring, Jette L. Frederiksen, and Michael Christiansen: CRYAB promoter polymorphisms, influence
Relevance of TMEV to human disease

106. Frederick Barkoff, Massimo Filippi, David H. Miller, Phillip Scheltens, Adriana Campi, Chris H. Polman, Giancarlo Comi, Herman J. Ader, Nickloss, and Jacob Valk: Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. *Brain* 120, 2059-2069 (1997)

Abbreviations: CNS: central nervous system; CSF: cerebrospinal fluid; CTL: cytotoxic T lymphocyte; i.e.: intracerebral; MBP: LCMV: lymphocytic choriomeningitis virus; MRI: magnetic resonance imaging; MS: multiple sclerosis; NFP: neurofilament protein; p.i.: post-infection; PLP: proteolipid protein; PNS: peripheral nervous system; TCR: T cell receptor; TMEV: Theiler's murine encephalomyelitis virus

Key Words: TMEV, MS, review, Theiler's Virus, Demyelinating Disease, Review

Send correspondence to: Kristen M. Drescher, Ph.D., Department of Medical Microbiology and Immunology