Developing and Testing RTX Hand Devices

Author(s): Jim Coleman, Mark Smith

Performing Organization Name(s) and Address(es):
AVAcore Technologies, Inc., 333 Parkland Plaza Dr., Ann Arbor, MI 48103

Performing Organization Report Number:

Sponsoring/monitoring agency name(s) and address(es):
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

Supplementary notes:
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

Abstract (Maximum 200 words):

AVAcore Technologies in conjunction with Stanford University has developed RTX (Rapid Thermal eXchange) technology for the purpose of enhancing heat transfer with the body core of a mammal. Application of an optimal thermal load and slight negative pressure to certain areas of a mammal containing arteriovenous anastomoses and venous plexus has been shown to increase heat exchange significantly. Previous versions of RTX required insertion of a hand or foot into a sealed rigid chamber. The current work funded by DARPA through ARO was to design and build RTX devices that incorporate maximum contact to the palmar surface of a hand at rest, provide topical vacuum (no chamber) and a thermal load for ease of use in field applications.

Design criteria were established to accommodate the fifth through ninety fifth percentile hand, be rugged enough to withstand transport in military vehicles during combat operations, and operate regardless of their mounting orientation (vertical or horizontal). Bench testing was performed using a simulated hand to compare heat exchange rates with previous versions of RTX. A 33% increase in heat exchange was observed with the new RTX design. Nine units were built for human testing by others.

Subject terms:
- RTX, heat exchange, DARPA, hand cooling, vacuum, thermoregulation, rapid thermal exchange, arteriovenous anastomoses, cooling, heat extraction

Number of pages: 35

Price code:

Enclosure 1
US Department of Defense
Defense Advanced Research Projects Agency (DARPA)
Defense Sciences Office (DSO)
Peak Soldier Performance (PSP)

ARO Contract No. W911NF-06-C-0173
Developing and Testing RTX Hand Devices

Mark A. Smith
James H. Coleman
Co-Principal Investigators

Final Progress Report
March 26, 2007
On October 1, 2006 AVAcore Technologies, Inc. (AVAcore) started the project under ARO Contract No. W911NF-06-C-0173. All specified work was completed on 3-1-07. This report summarizes the problem addressed and important results. The appendixes include progress reports that describe work performed and interim results.

1. Problem Addressed

Several Rapid Thermal eXchange (RTX) devices had been developed and tested under DARPA funding. Each of these devices required the hand to be placed in a vacuum chamber sealed at the wrist.

This project addresses a new device to test RTX which applies vacuum only to the palm side of the hand, not to the entire hand surface. Specifically, the device needs to meet the following requirements:

- Provide a distributed thermal supply to the palm (including front of fingers and thumb) of the hand; circulate chilled water efficiently and evenly.
- Provide a distributed, topical vacuum supply to the palm; provide no vacuum supply to the sides and back of the hand; maximize the area of vacuum application to the hand; minimize device vacuum loss in non-contact areas.
- Meet specified operational requirements:
 - **User:** 95% male to 5% female soldier; long sleeves; left or right hand; in transport; un gloved; wet or dry; possible exposure to topical petroleum or medications.
 - **Environment:** operate in 33°F to 140°F; store in -40°F to 170°F; both in dusty space where personnel and equipment are loaded and unloaded.
 - **Attachment:** attach to horizontal, vertical surfaces; unattached to horizontal surface.
- Provide a surface shape that maximizes contact with the palm to accommodate conductive heat transfer and vacuum application; make accessible from user in standing, sitting, and lying positions.

The device should not include thermal or vacuum supplies and controls. The project should not include human-subject testing. (This will be done by others using the device.)

2. Important Results

2.1. Design

The design is a closed thin-walled 6” copper hemisphere with a 2.5” vacuum hole oriented at a 45° to the base at its center. In the hole is another closed thin-walled button about 2.3” in diameter. When a hand is placed on the device depressing the button slightly, a vacuum is activated in the hole and is sustained between a small ridge on the sphere surrounding the hole and the fleshy part of the center of the palm. Vacuum is not applied to other areas of the sphere.

The hemisphere conforms to the natural contour of the hand, maximizes contact area, and is usable by either hand. It has a low form factor to reduce obstruction to soldier ingress/egress in confined transport vehicles.

Vacuum is applied to the center of the palm where blood vessels are most concentrated and close to the palm surface.
This is also where the palm is least calloused. Blood vessels in the fingers are primarily along the sides of the fingers where a topical vacuum cannot reach. There will be little/no vacuum loss before, during, and after use since it is concentrated only in the area where all hands (all sizes and many orientations) will rest.

Cooling water is supplied to the hemisphere and the button independently.

2.2. Testing
The device met all specified functional and usability requirements. Device performance was done on the prototype and AVAcore’s B-Unit (with internal supplies removed) with identical external supplies. “Hand” tests were done with a rubber glove perfused with 38°C water without a vacuum.

<table>
<thead>
<tr>
<th>Value</th>
<th>Unit</th>
<th>Device</th>
<th>B-Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow rate</td>
<td>ml/sec</td>
<td>13.6</td>
<td>8.5</td>
</tr>
<tr>
<td>I/O pressure drop</td>
<td>psi</td>
<td>0.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Steady state heat extraction</td>
<td>watts</td>
<td>9.1</td>
<td>8.1</td>
</tr>
<tr>
<td>Temp drop top-to-bottom of unit</td>
<td>ºC</td>
<td>1.6</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Human testing was not in the scope of the project.

2.3. Production
Nine (9) units were manufactured. All were identical except for the stainless steel screens which covered the “button” in the vacuum hole: three (3) units had a 30 wires/inch mesh; three (3), a 16 wires/inch mesh; three (3), an 8 wires/inch mesh. The University of New Mexico, DARPA, and AVAcore each received one (1) each of the three units and operating instructions.

2.4. Inventions
No inventions resulting from the work are being declared as of this report date.

3. Publications and Technical Reports
The following reports were submitted to DARPA and/or the Defense Contract Management Agency (DCMA):

- Workplan (9-28-06)
- Product Requirements Specification (10-13-06)
- Progress Report – October 2006 (11-3-06)
- Progress Report – November 2006 (12-5-06)
- Progress Report – December 2006 (1-12-07)
- Progress Report – January 2007 (2-14-07)
- Abstract for presentation in Miami (2-5-07)
- Presentation slides (2-23-07)

None was published or provided to others outside of the project team. No other papers were published.
4. **Participating Scientific Personnel**
 This was a design, engineering, and production project. No new science was pursued or developed. No scientific personnel participated.

5. **Bibliography**
 The following publications were used in the execution of this project:

6. **Appendixes**
 Appendixes are included in the following order:

 - Product Requirements Specification (10-13-06)
 - Progress Report – October 2006 (11-3-06)
 - Progress Report – November 2006 (12-5-06)
 - Progress Report – December 2006 (1-12-07)
 - Progress Report – January 2007 (2-14-07)
 - Abstract for presentation in Miami (2-5-07)
 - Presentation slides (2-23-07)
Product Requirements Specification

Device Description

The device will provide episodic service and represent a reasonable balance between RTX performance and access/convenience and will conform to the following as possible:

1. Provide a distributed, non-isotropic thermal supply to the palm (including front of fingers and thumb) of the hand.
2. Provide a distributed, topical vacuum supply to the palm; provide no vacuum supply to the sides and back of the hand.
3. Provide feedback to enable vacuum and thermal supply and control.

The device will not include thermal supplies and controls or vacuum supplies and controls.

Development Objectives and Qualifications

The device will meet these objectives as possible within the limits of schedule and budget:

1. Meets the Operational Requirements outlined in this document.
2. Provides a surface shape that maximizes contact with the palm to accommodate conductive heat transfer and vacuum application.
3. Circulates chilled water efficiently and evenly.
4. Maximizes the area of vacuum application to the hand; minimizes device vacuum loss in non-contact areas.

Because of the Biological Unknowns outlined in this document and because no human testing will be done in this project, assumptions will be made as to the size, spacing, and location of vacuum holes based on best available information.

Operational Requirements

User

1. The user will be a 95% male to a 5% female US soldier.
2. The user will be in typical desert battle dress including a backpack and long sleeves with associated restricted motion.
3. The user will use his/her left or right hand as available.
4. The user may be in transport on rough terrain.
5. The user’s hand will be ungloved and may be wet or dry.
6. The user’s hand may have had previous contact with petroleum products and/or standard hand creams or topical medications.
Environment

1. The device will operate over an ambient temperature range of 33°F to 140°F.
2. The device will be stored over an ambient temperature range of -40°F to 170°F.
3. The device will operate and be stored in dusty environments.
4. The device will operate in, be stored in, and withstand the impacts of spaces where personnel and equipment are loaded and unloaded.

Attachment Surfaces

1. The device may be attached to horizontal or vertical surfaces.
2. The device may be used unattached.

Equipment Used for Human Testing (By Others)

1. For human testing, the maximum vacuum pressure will be (TBD1 in psi); the maximum airflow at the connector will be (TBD2 in cfm); the test equipment connector will be (TBD3 in manufacturer and part number).
2. For human testing, the maximum thermal supply head pressure will be (TBD4 in psi); the maximum thermal supply flow rate will be (TBD5 in cfm); the test equipment connectors will be (TBD6 in manufacturer and part number(s)).
3. For human testing, sensor(s) required thermal or vacuum supply control is(are) (TBD7 sensor(s) with required location(s)).

Biological Unknowns

1. The impact on blood flow of applying a vacuum only to the palm and not the entire hand.
2. The areas of the hand that would constrict blood flow if forces consequential to a topical vacuum are applied.
3. The areas of the hand, absent the impact of 2. that would best benefit from vacuum as a means to increase blood flow.
4. The optimum vacuum level(s) to encourage blood flow when applying topical vacuum to small areas.
5. Minimum area of one effective vacuum “hole”; minimum percentage of the area of all vacuum holes to total palm contact area.
6. The impact of cyclic topical vacuum application on blood flow and thermal transfer; the maximum vacuum supply pressure applied to small areas that is unsafe for the user.
7. The maximum thermal transfer rate possible from the palm.
8. Vascular-restrictive effects that result from holding on to a vibrating object.
9. The effect of cooling on subsequent manual dexterity. (25% of the pressure sensitive nerve endings are located in the central whorls of the finger tips. They are adversely affected when skin temp drops below 20°C.
10. The impact of alternating gripping and relaxation – like during blood donation.
Grip Project / October 2006

This page summarizes the progress realized on AVAcore's "Developing and Testing RTX Hand Devices" project (DARPA No. W911NF-06-C-0173) between 10-2-06 and 11-3-06

Progress

We received contract approval on 9-27-06 and work commenced on 10-2-06 with a project kick-off meeting. A workplan was developed, approved by the team, and sent to John Main, our DARPA program manager, on 10-5-06.

Work has proceeded as planned. Activity included:

Task 1.1 - Develop requirements A product requirements specification was developed and sent as Rev. 0 dated 10-13-06 to John on 10-13-06. Additional information concerning user positions was developed to clarify operational requirements on 10-18-06. These have been considered by the team during development.

Task 1.2 - Approve (DARPA) No revisions to the above spec were requested by DARPA. The team is proceeding based on the current spec. Sue Schneider of UNM was contacted to complete the "Equipment Used for Human Testing" TBDs in the spec (Page 2). Sue will provide what information is available. The team will make assumptions on remaining items.

Task 1.3 - Develop design concepts The team considered various concepts including handles of various shapes supported at one and both ends and the current B-unit shape. It also considered various vacuum hole sizes and distribution patterns and the use of sintered material. The current design concept was selected for the reasons indicated. The team continues to challenge this concept and to consider others.

Task 1.4 - Engineer design 1 Engineering activity has concentrated on the water circulation and thermodynamics of the current design concept in support of prototype fabrication.

Task 2.1 - Procure materials Parts and materials have been purchased for prototype 1.

Task 2.2 - Fabrication of prototype 1 has begun and will be completed on schedule.

Current Design Concept

Design Concept The current concept is a metal sphere (approx. 4 in. diameter - think softball!) with a hole (approx. 2.7 in. diameter) in the top. In the hole is a cooling coil approximating the curvature of the sphere over the hole. When a hand is set on the device, the vacuum is activated in the hole and is sustained between a small ridge on the sphere surrounding the hole and the fleshy part of the center of the palm. Vacuum is not applied to areas of the sphere other than that of the cylinder. The entire surface of the sphere and cylinder are cooled.

Shape The shape conforms to the natural contour of the hand, maximizes contact area, is grip-able in a moving vehicle, is useable under defined users positions by either hand, has a low form factor to reduce obstruction to soldier ingress/egress. The sphere size will accommodate the 95% male palm; the hole size, 5% female palm. Later versions can be reduced in height with a truncated bottom and supplies from the side.

Vacuum Vacuum is applied to the center of the palm where blood vessels are most concentrated and close to the palm surface. And where the palm is least calloused. Blood vessels in the fingers are primarily along the sides of the fingers where a topical vacuum cannot reach. The vacuum is therefore located where it can have the greatest impact. (On Jim Coleman's 50% male hand, total contactable
surface area including fingers is 26 sq.in.; hole size is 8.5 sq.in. or 33% of the palm area.) There will be little/no vacuum loss before, during, and after use since it is concentrated only in the area where all hands (all sizes and orientations) will rest.

Thermal Cooling is fully conductive in the vacuumized area of the palm on the coil and the balance of the palm on the cooled metal sphere. Supplies to the coil and the sphere will be plumbed independently but be connected to the same controlled source. (With more sophisticated supplies and controls, the temperature of the coil could be made cooler/warmer than that of the rest of the sphere. This may increase heat removal from the center of the palm and reduce the chance of vaso-constriction.)

Contract Administration

Amendment Request Mark Smith submitted a revised Statement of Work on 11-2-06. Various project team changes were indicated. No changes to the work, deliverables, schedule or total contract budget were requested.

Property Control Procedure Jim Coleman submitted a draft of AVAcore's "Property Control Procedure" to Don Wallace, DCMA Detroit Property Administrator, on 10-2-06. It was approved and resubmitted in final form the same day.

Budget

Total expenditures for the first month have not been collected. A summary of budget vs. actual will be included in next month's report.

Schedule

On schedule per the [workplan](http://www.avacore.com/Grip/ProgRpt10-06.htm).

Questions concerning this progress report may be directed to Jim Coleman, PI and project manager.

Report date 11-3-06
This page summarizes the progress realized on AVAcore's "Developing and Testing RTX Hand Devices" project (DARPA No. W911NF-06-C-0173) between 11-6-06 and 12-1-06

Progress

Since October, work has proceeded according to the [workplan](#). Activity included:

Task 2.2 - Build prototype 1
Prototype 1 was built consistent with the "Current Design Concept" in the [October](#) progress report. (See [PIC1](#) [PIC2](#) [PIC3](#)) Prototype 1a was built to examine a different vacuum hole orientation. (See [PIC1](#) [PIC2](#) [PIC3](#)) The prototypes were developed in the FEI shop with input from Hoff & Associates.

Task 2.3 - Test prototype 1
Test hardware and software was developed. (See [PIC1](#) [PIC2](#)) Prototypes 1 and 1a were tested for form and function. Conclusions from these tests are included in the [current design concept](#) below.

Task 3.1 - Engineer design 2
The thermal and vacuum supply information from CSA Engineering was incorporated into the [Product Requirements Specification](#). Design 2 was started based on the findings of Task 2.3 and the resulting [current design concept](#). The team continues to challenge this concept and to consider others.

Task 4.1 - Procure materials for prototype 2
The device has been designed to use all stock parts and materials. No custom tooling is required. What has not been purchased can be gotten within two days.

Current Design Concept

Changes
Changes to the design concept since the [October](#) progress report include the following:

- a. Increased the **sphere diameter** from 4" to 6" to enable easier vacuum seals, more natural hand draping, greater surface contact, and less inclination for harder grips causing reduced blood flow.
- b. Reduced **vacuum hole diameter** from 2.75" to 2.5" to accommodate smaller hands.
- c. Moved the **vacuum hole centerline** from perpendicular to the base to a 45° angle to reduce wrist bend for most users and overall device height to 4.3".
- d. Replaced the copper cooling coil **palm interface** inside the vacuum hole with a copper cooling plate with a surface diameter of 3" covered with a copper screen or ridged surface to allow vacuum access. This improves contact area, manufacturability, and durability.
- e. Added a **base** through which supplies (two in-waters, two out-waters, one out-air) extend in parallel out the back.

Images
These images of the design are current as of the report date: [FRONT](#) [BACK](#) [BOTTOM](#) They are preliminary and subject to change.

Contract Administration

Amendment Request
Mark Smith submitted a revised Statement of Work on 11-15-06 proposing Mark and Jim Coleman as co-PIs. No changes to the work, deliverables, schedule, or total contract budget were requested.
Budget

As of 11-24-06, the follow data apply:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total budget spent</td>
<td>33%</td>
</tr>
<tr>
<td>Total work completed</td>
<td>37%</td>
</tr>
</tbody>
</table>

Based on actual Oct and estimated Nov invoices (two months, $36,758) and the contract amount of $112,500

Based on earned value of budgeted MHs on completed tasks

Schedule

On schedule per the workplan.

Questions concerning this progress report may be directed to Jim Coleman, co-PI and project manager.

Report date 12-5-06
Progress

During December, work proceeded according to the workplan. Activity included:

Task 3.1 - Engineer design 2 Design and engineering were completed according to the design concept included in the November progress report. Engineering support continued during prototype 2 construction. Additional thermal analyses were done on the water flow through the sphere to maximize the uniformity of sphere surface temperature. This delayed the completion of the prototype.

Tasks 4.2 thru 4.6 - Build and test prototype 2 Prototype construction was completed on 1-8-07. Testing continues.

Final Design

Only minor changes to the concept design have been made since the November progress report. Prototype 2 as shown below will be the basis for production under Task 5 with some cosmetic changes:

a. The base will be black; the sphere and palm plate, a matte silver coating on the copper and brass metal surfaces.

b. Three different (weave spacing) metal screens will cover the palm plates of each of the three units going to each of the sites. The screens enable vacuum access to the center of the palm. The three options will provide various contact-surface-to-vacuum-surface ratios for human testing. The palm plates are removable and interchangeable between units.

c. The finger ridges in the base (for lifting) will be smaller.

Images

Prototype 2 images: [FRONT](#), [SIDE/BACK](#), [BOTTOM](#)
Prototype 2 design sections: [FRONT/BACK](#), [PALM-PLATE CYLINDER](#)

Contract Administration

No actions this month.

Budget

As of 12-29-06, the follow data apply:

- Total budget spent 60% Based on actual Oct-Dec invoices ($67,378) and the contract amount of $112,500
- Total work completed 71% Based on earned value of budgeted MHs on completed tasks

Schedule

Building and testing of prototype 2 were delayed pending the issue noted under Progress above. We anticipate completion of the all work by 2-2-07, one week later than planned.

Questions concerning this progress report may be directed to Jim Coleman, co-PI and project manager.

Report date 1-12-06
Grip Project / January 2007

This page summarizes the progress realized on AVAcore's "Developing and Testing RTX Hand Devices" project (DARPA No. W911NF-06-C-0173) between 1-12-07 and 2-14-07

Progress

During January, work proceeded according to the workplan. Activity included:

Task 5.1 - Procure materials All materials were purchased for the production units.

Task 5.2 - Produce units After initial unit assembly there were water leaks during pressure testing. Several dis/reassemblies were required to find a reliable solution. Reengineering of some seals and seams was required. The final solution has been determined. Units are in final assembly and will be going to a local company to coat the copper spheres. It is expected that three (3) units will be shipped to DARPA by February 20. Another unit will be taken to the Miami meeting on February 22-23.

Task 5.3 - Prepare report The final report is completed in draft form. It will be completed pending the results of the Miami meeting.

Final Design

The final design is consistent with that described in the December progress report.

Contract Administration

Don Wallace of DCMA Detroit did a Property Control System Analysis of project material and equipment on 1-17-07. His report dated 1-19-07 indicated that he found no exceptions.

An abstract of AVAcore's presentation at the DARPA meeting in Miami was spent on 2-5-07.

Budget

As of 1-26-07 (most recent invoice period ending), the follow data apply:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Based on actual Oct-Jan invoices ($85,600 est.) and the contract amount of $112,500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total budget spent</td>
<td>76%</td>
<td></td>
</tr>
<tr>
<td>Total work completed</td>
<td>85%</td>
<td>Based on the earned value of budgeted MHs on completed tasks</td>
</tr>
</tbody>
</table>

Schedule

Because of delays in prototype build/testing (1 week) and in unit production (2 weeks), we anticipate shipment of the units by 2-20-07, three (3) weeks later than planned. Final report will be submitted by 3-2-07.

Questions concerning this progress report may be directed to Jim Coleman, co-PI and project manager.

Report date 2-14-07
Developing and Testing RTX Hand Devices

AVAcore Technologies, Inc

James Coleman (co-PI, project manager), jhColeman LLC
Mark Smith (co-PI, RTX consultant), AVAcore Technologies, Inc.
Thomas Armstrong, Ph.D. (ergonomics, physiology consultant), University of Michigan
Tim Beard (design/engineering manager), Hoff & Associates
James Freese (prototype/test manager), Freese Enterprises, Inc.

Objective

Develop a device to test the efficacy of Rapid Thermal eXchange (RTX) while meeting the following requirements:

1. Provide a distributed thermal supply to the palm (including front of fingers and thumb) of the hand; circulate chilled water efficiently and evenly.
2. Provide a distributed, topical vacuum supply to the palm; provide no vacuum supply to the sides and back of the hand; maximize the area of vacuum application to the hand; minimize device vacuum loss in non-contact areas.
3. Meet specified operational requirements:
 - User: 95% male to 5% female soldier; long sleeves; left or right hand; in transport; un gloved; wet or dry; possible exposure to topical petroleum or medications.
 - Environment: operate in 33°F to 140°F; store in -40°F to 170°F; both in dusty space where personnel and equipment are loaded and unloaded.
 - Attachment: attach to horizontal, vertical surfaces; unattached to horizontal surface.
4. Provide a surface shape that maximizes contact with the palm to accommodate conductive heat transfer and vacuum application; make accessible from user in standing, sitting, and lying positions.

The device will not include thermal or vacuum supplies and controls.

The project will not include human-subject testing.

Biological Unknowns

The following were/are unknown:

1. The impact of applying a vacuum only to the palm and not the entire hand: palm areas that would best benefit from vacuum.
2. The optimum vacuum level to encourage blood flow when applying topical vacuum to small areas; the maximum safe vacuum level applied to the same area.
3. Minimum area of one effective vacuum “hole”; minimum percentage of the area of all vacuum holes to total palm contact area;
4. The maximum thermal transfer rate possible from the palm.
5. Vascular-restrictive effects that result from holding on to a vibrating object.
Milestones

Project was completed according to the following work plan. Activities and results under each milestone are shown below.

<table>
<thead>
<tr>
<th>October</th>
<th>November</th>
<th>December</th>
<th>2006</th>
<th>2007</th>
<th>January</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-06</td>
<td>10-13</td>
<td>10-20</td>
<td>10-27</td>
<td>11-03</td>
<td>11-16</td>
</tr>
<tr>
<td>11-16</td>
<td>11-24</td>
<td>12-01</td>
<td>12-08</td>
<td>12-22</td>
<td>12-29</td>
</tr>
<tr>
<td>Build and test prototype 1</td>
<td>Improve design</td>
<td>Build and test prototype 2</td>
<td>Produce units and report</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Milestone 1 – Design and engineer

Functional requirements were developed and submitted to DARPA. Design concepts were developed with wood, PVC, Styrofoam, white board, and paper. CAE models were used to simulate various grip configurations. Direction for general form and functional was given for prototype 1 development.

Major direction included 1. a 4” sphere best maximized contact with a relaxed hand and offered easy ambidextrous access and 2. vacuum would be confined to center of the palm to enable vacuum containment, concentration, and activation.

Milestone 2 – Build and test prototype 1

Two prototypes were built with 4” copper spheres, a 2.75” independently-cooled palm plates that, when depressed, activated the vacuum. The first unit (right-top) did not allow the palm to drape easily over the area around the vacuum hole.

A second unit (right-bottom) with the same materials enabled improved contact when the hand was aligned properly.

Metal screens placed over the palm plate provided improved vacuum access to the entire applied area.

After testing with various hand sizes, the following major conclusions were derived: 1. increase the sphere to 6”, 2. reduce the vacuum hole size to 2.5”, 3. make the palm plate from 2.5” sphere, 4. place the vacuum hole on a 45° angle to the base, 5. plumb the chilled water supplies to the sphere and the palm plates independently to enable flexible testing of the unit, and 6. prove different screen gauges over palm plates for testing to determine the best size.
Milestone 3 – Improve design
Detailed design drawings were done based on prototype 1 conclusions with regular manufacturability reviews. Analytical analyses were done on the water flow and thermal transfer in the sphere. After the initial design was released additional analyses and revisions were made to the water flow and part materials prior to construction of the production units.

Chilled water is injected into the sphere at the top and drained in the bottom to assure best cooling in the hand area. The palm plate is spring loaded. The spring would be selected heuristically during prototype 2 construction.

Milestone 4 – Build and test prototype 2
Prototype 2 was constructed according released drawings and was tested. There were of two types of tests.

Air and water leaks were identified and fixed through small design and manufacturing process changes. Vacuum “grip” was confirmed with a 5% female and 90% male.

Unit performance was done on the prototype and AVAcore’s B-Unit (with internal supplies removed) with identical external supplies. “Hand” tests were done with a rubber glove perfused with 38°C water without vacuum.

<table>
<thead>
<tr>
<th>Value</th>
<th>Unit</th>
<th>Device</th>
<th>B-Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow rate</td>
<td>ml/sec</td>
<td>13.6</td>
<td>8.5</td>
</tr>
<tr>
<td>I/O pressure drop</td>
<td>psi</td>
<td>0.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Steady state heat extraction</td>
<td>watts</td>
<td>9.1</td>
<td>8.1</td>
</tr>
<tr>
<td>Temp drop top-to-bottom of unit</td>
<td>°C</td>
<td>1.6</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Milestone 5 – Build units
Nine (9) units were built and distributed as specified.

Units provide the following features:
- Meet specified requirements.
- Provide low form factor; are attachable
- Accommodate independent chilled water supplies
- Enable use of three (3) palm plate screens
- Have durable, non-stain, low-reflective surface
- Enable ambidextrous use at many approach angles

Units provide a basis for testing of this alternative RTX application and assessment of possible end-user applications.
AVAcore Technologies, Inc.
Developing and Testing RTX Hand Devices

DARPA / PSP / Phase 2 / Year 2 Review
Miami / February 23, 2007
Jim Coleman
Current Device

- RTX technology
- Vacuum chamber
- Wrist seal
- Two-handed operation
- Regulated thermal supply
- Regulated vacuum supply
- Commercial, military use
Current Device

- RTX technology
- Vacuum chamber
- Wrist seal
- Two-handed operation
- Regulated thermal supply
- Regulated vacuum supply
- Commercial, military use

New Device

- Same
- Topical vacuum
- No wrist seal
- One-handed operation
- Same (by others)
- Same (by others)
- Research, development
Requirements

• **RTX**
 • Deliver regulated thermal, vacuum
 • (Supplies by others)

• **Operational**
 • User hand: male/female, ambidextrous, wet, dirt/oil/med
 • Environment: 33°-140°, dusty, rough

• **Shape**
 • Maximize RTX benefit
 • Quick use, ergonomic; sit, stand, lie

• **Unknowns**
 • Impact of topical vacuum
 • Contact area vs. vacuum area
Milestone 1 Design and engineer

Requirements

Grip Shape

Grip Works

A. LOCATED HOLES
 LOCATING VS. CONSTRUCTION VS.

B. SINTERED
Milestone 1 Design and engineer

Grip Size

More Grip Size

Conclusions

Shape
• Grip too hard
• Need more contact area

Vacuum
• Uncovered holes
• Dirt in holes
Milestone 1 Design and engineer

Hand Shape

Device Shape
Milestone 1 Design and engineer

Hand Area Hand Map Vacuum Idea
Milestone 1 Design and engineer

- **Contact Area**: 16 sq.in.
- **Vacuum Area**: 6 sq.in. (37% of contact) w/2.75 in. dia. hole
- **Vacuum Area**: 6 sq.in. equivalent
Milestone 1 Design and engineer

Device Size

Device Works

Conclusions

- 4” copper sphere
- 2.75” vacuum hole
- Palm plate activated vacuum
- Independent water supplies
- Vacuum accumulator
Milestone 2 Build and test prototype 1

Prototype 1a Test Prototype 1b
Milestone 2 Build and test prototype 1

Test

- 6” copper sphere
- 2.5” vac hole
- 2.5” palm plate surface diameter
- Palm plate screens for vacuum access

Conclusions

- 6” copper sphere
- 2.5” vac hole
- 2.5” palm plate surface diameter
- Palm plate screens for vacuum access

Design Spec

- The sphere should be made of copper with a surface diameter of 2.5”.
- The palm plate should be made of copper with a surface diameter of 2.5”.
- The vacuum hole should be 2.5” in diameter.
- The test should be conducted in a controlled environment.

Avacore Technologies

[Image of a device with gauges and valves]
Milestone 3 Improve design

Size, Angle

Flow

Flow occurs along ball inner surface

Low temperature, high heat removal due to high flow velocity
Milestone 3 Improve design

Design
Milestone 4: Build and test prototype 2

Prototype

Test

Tweaks

- Select palm plate spring
- Reconfigure water supply in sphere

- Replace vacuum valve material
- Improve solder joint reinforcements
Milestone 4 Build and test prototype 2

Test

- Same thermal supply @ 20.5°C
- Heat extraction with perfused rubber glove @ 38°C
- No vacuum

Results

<table>
<thead>
<tr>
<th>Value</th>
<th>Units</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow rate</td>
<td>ml/sec</td>
<td>13.6</td>
<td>8.5</td>
</tr>
<tr>
<td>I/O pressure drop</td>
<td>psi</td>
<td>0.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Steady state heat extraction</td>
<td>watts</td>
<td>9.1</td>
<td>8.1</td>
</tr>
<tr>
<td>Temp drop top-to-bottom of unit</td>
<td>°C</td>
<td>1.6</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Milestone 5 Build units

- Meets requirements
- Low form factor
- Independent thermal supplies
- Three palm plate screens, interchangeable
- Durable, non-stain, low reflective surface
- Ambidextrous use at many approach angles
Next Phase Actions

- Test performance (by others)
- Solicit form, function feedback
- Identify specific applications
- Combine with custom supplies, controls
- Production-ize design
Questions?