Award Number: W81XWH-06-1-0459

TITLE: New Approaches for Prostate Cancer Combination Therapy

PRINCIPAL INVESTIGATOR: Luiz F. Zerbini, Ph.D.

CONTRACTING ORGANIZATION: Beth Israel Deaconess Medical Center
 Boston, MA 02215

REPORT DATE: April 2008

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
 Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
 Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and
should not be construed as an official Department of the Army position, policy or decision
unless so designated by other documentation.
The mechanisms underlying the antineoplastic actions of NSAIDs remain poorly understood. We started deciphering now the mechanisms by which NSAIDs induce programmed cell death and growth arrest in cancer. In this report we show that induction of the pro-apoptotic cytokine melanoma differentiation associated gene-7/Interleukin-24 (MDA-7/IL-24) and the expression of growth arrest and DNA damage inducible (GADD) 45α and γ by several NSAIDs is an essential step for G2/M growth arrest and apoptosis induction of cancer cells and inhibition of tumor growth in vivo. MDA-7/IL24 dependent upregulation of GADD45α and γ expression is sufficient for cancer cell apoptosis, since inhibition of GADD45α and γ by small interfering RNA abrogates apoptosis and growth arrest induction by the NSAID, blocks JNK activation and restores CDC2 kinase activity. Our results establish MDA-7/IL-24 and GADD45α and γ as critical mediators of apoptosis and growth arrest in response to NSAIDs in cancer cells. Pharmacological inhibitors of NF-κB have a potent effect in apoptosis induction of prostate cancer cells as well as in combination with NSAIDs. This new treatment could be then tested in combination of inhibitors of NF-κB pathway which are already in clinical trials.

Sulindac sulfide, NSAIDs, apoptosis, pharmacological inhibitors of NF-κB, combinatorial treatment
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>4</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>8</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>8</td>
</tr>
<tr>
<td>Conclusion</td>
<td>8</td>
</tr>
<tr>
<td>References</td>
<td>9</td>
</tr>
<tr>
<td>Appendices</td>
<td>10</td>
</tr>
</tbody>
</table>
Introduction

An increasing number of studies have demonstrated that some non-steroidal anti-inflammatory drugs (NSAIDs) such as Sulindac sulfide, at clinically tolerable concentrations, are effective in the treatment of several types of cancer. Sulindac sulfide has been shown to reduce CaP proliferation and induce CaP apoptosis in vitro and in vivo. Nevertheless, the mechanism of apoptosis induction is poorly understood and more studies are needed to fully elucidate the molecular and biochemical pathways of Sulindac-induced apoptosis. Our notion is that by dissecting the molecular mechanisms of CaP apoptosis induction by Sulindac sulfide and of a whole panel of NSAIDs with potential anti-prostate cancer activities we may be able to rationally design a combination of several NSAIDs with distinct target specificities that should act synergistically and, thus, more effectively against CaP. Our goal is to systematically decipher the pathways that are involved in apoptosis induction by Sulindac sulfide with particular emphasis on the role of GADD45α and γ, IL-24 and JNK kinase. Our hypothesis is that the detailed pathways will provide a multitude of novel entry points for targeted drug development, towards drugs specific for CaP apoptosis induction without the adverse reactions of current NSAIDs.

Body

Based on our first annual report, we have finished the analysis of aims 1a, b and c and Aim 2. Thus this second report is focused on the approved Statement of Work and the following research accomplishments are associated with Aim 3. Furthermore, the methodology used in all experiments in this report is stated in our first annual report and in our article published in Cancer Research, which we have again attached to this second report.

We have shown that blockage of the NF-κB pathway leads to apoptosis induction in CaP cells. In our preliminary data, we have shown that overexpression of IκBα induces GADD45α and γ gene expression and activates JNK kinase (1,2). Similarly, Sulindac induces apoptosis in CaP cells and induces GADD45 expression and activates JNK (3). Nevertheless, Sulindac treatment apparently does not inhibit NF-κB and indeed enhances expression of NF-κB dependent genes such as IL-6 and IL-8 rather than inhibiting it. Since activated NF-κB suppresses apoptosis and Sulindac induces apoptosis without inhibiting activated NF-κB, we hypothesize that inhibition of NF-κB in combination with Sulindac should further enhance the pro-apoptotic effect of Sulindac. Various inhibitors of the NF-κB pathway are in preclinical or clinical trials at the moment. Since cancers are very heterogeneous and escape therapy due to resistance via several mechanisms, a two-pronged approach should be significantly more effective in overcoming resistance. The combined interference with NF-κB and the pathways regulated by Sulindac may give rise to novel therapeutic modalities in the fight against various types of cancer. Therefore, we will test the hypothesis that a combination of Sulindac sulfide with an inhibitor of NF-κB will lead to synergistic induction of apoptosis in cancer cells. This combination therapy will be the starting point for a systematic analysis of the molecular mechanisms involved in the effects of a whole panel of NSAIDs on cancer cells.
a) **Determine whether combining Sulindac with NF-κB inhibition enhances apoptosis induction in CaP cells (Months 18-36)**

A broad panel of pharmacological inhibitors of the NF-κB pathway was tested for their abilities to induce apoptosis in prostate cancer cells. Apoptosis was measured 24 hours after treatment of DUCaP, VCaP and DU145 prostate cancer cells with this set of inhibitors of the NF-κB, revealing two potent inducers of apoptosis in prostate cancer cells. Strong inducers of apoptosis included 6-Amino-4-(4-phenoxyphenylethylamino) quinazoline and IKK-2 inhibitor SC-514 when compared with the solvent controls, whereas treatment with Isohelenin IKK inhibitor II Wedelolactone (7-Methoxy-5,11,12-trihydroxy-coumestan) resulted only in marginal apoptosis induction (Figure 1).

We extended our studies and determined the lowest dose of the stronger inducers, which still would have an effect in the programmed cell death of prostate cancer cells. Here, we determined the lowest concentrations of NSAIDs and pharmacological inhibitors of NF-κB. The concentrations of pharmacological inhibitors were chosen 2, 5 and 10 times lower than doses used in the experiments mentioned above. The concentrations of selected NSAIDs were also chosen 2, 5 and 10 times lower than doses described in our first annual report and is also described in details in our attached publication (see Figure 1 attached manuscript). Apoptosis was measured in prostate cancer cells 24 hours after treatment with different doses of NSAIDs and pharmacological inhibitors of NF-κB. Our results showed that the dose of Sulindac Sulfide can be reduced down 10 times, Flufenamic Acid and NS-398 can be reduced down 5 times whereas Finasteride, Diclofenac and Sulindac Sulfone...
can be reduced 2 times when compared with the solvent controls, and still resulting in apoptosis induction (Figure 2). Regarding the pharmacological inhibitors of NF-κB, 6-Amino-4-(4-phenoxyphenylethylamino)quinazoline can be reduced 5 times whereas the IKK-2 inhibitor SC-514 can be reduced 2 times when compared with the solvent controls (Figure 2).

Additionally, using the lowest dose of each NSAIDs and pharmacological inhibitors of NF-κB (see Figure 2), we have started to systematically analyze the apoptosis induction of a combination of NSAIDs and NF-κB inhibitors in prostate cancer cells. A panel of NSAIDs including Flufenamic acid, Flurbiprofen, Diclofenac, Sulindac Sulfide, Finasteride and NS398 and NF-B inhibitors 6-Amino-4-(4-phenoxyphenylethylamino)quinazoline and IKK-2 inhibitor SC-514 were tested for their abilities to induce apoptosis alone and in combination thereof. The concentrations used here were the ones defined in Aim 3 as the lowest concentration able to induce apoptosis in prostate cancer cells. DU145 prostate cancer cells were treated with 5 µM Flufenamic acid, 5 µM Sulindac Sulfide, 50 µM NS-398, 5 nM Flurbiprofen, 20 µM Diclofenac, 25 µM Finasteride or 5 nM 6-Amino-4-(4-phenoxyphenylethylamino) quinazoline, 10 µM IKK-2 inhibitor SC-514 and a combination of them. Apoptosis was measured 24 hours after treatment revealing that the majority of the combination of NSAIDs and pharmacological inhibitors of NF-κB tested, induced apoptosis in prostate cancer cells. However, some combinations had a stinking effect in the apoptosis
induction. Strong inducers included Sulindac sulfide+Diclofenac and Sulindac Sulfide+6-Amino-4-(4-phenoxyphenylethylamino) quinazoline (Figure 3).

![Figure 3. Multiple NSAIDs and pharmacological inhibitors of NF-κB induce apoptosis in quiescent ovarian cancer cells. DU145 prostate cancer cells were treated with 5µM Flufenamic acid, 5µM Sulindac Sulfide, 50µM NS-398, 5nM Flurbiprofen, 20µM Diclofenac, 25µM Finasteride or 5nM 6-Amino-4-(4-phenoxyphenylethylamino) quinazoline, 10µM IKK-2 inhibitor SC-514 and a combination of them or DMSO. Apoptosis was measured 24 hrs post-treatment. Data means ± s.d. of triplicate independent experiments for each treatment.](image)

b) **Determine whether the combination of Sulindac treatment and the blockage of the NF-κB pathway is more effective in inhibiting tumor formation or killing established CaP tumors in SCID mice or TRAMP mice than mono-therapy - (Months 18-36)**

To test whether the blockage of NF-κB in combination with Sulindac treatment is more effective *in vivo*, than either alone we will use the orthotopic tumor model in SCID mice as in our preliminary results and in the attached manuscript. as well as the transgenic adenocarcinoma of the mouse prostate (TRAMP) model (4). Since IkB overexpression itself completely inhibits tumor formation at least in the CaP cell line (1), it is possible that Sulindac sulfide or the pharmacological NF-κB inhibitors inhibit tumor formation as well. tumor size, histopathology, metastases etc. Results from these experiments will most vividly demonstrate whether Sulindac in combination with pharmacological NF-κB inhibitors can efficiently prevent CaP tumor formation or treat established tumors.

We first decided evaluate the toxicity of the chosen inhibitor of NF-κB6-Amino-4-(4-phenoxyphenylethylamino) quinazoline. This compound was chosen based on our in vitro data
(Figure 1 and 2 of this report) which shows the compound as one the stronger inducers of apoptosis in prostate cancer cells as well in combination with NSAIDs.

This first evaluation showed us the drugs develop adverse side effects if administer via IP injection. We then performed experiments using pumps, which releases the drugs in small concentration during 24 hours and added the drugs directly to the diets. This diminished the toxicity. If they also prove themselves promising in inhibiting tumor formation in vivo, we will move to experiments using TRAMP mouse model.

Key Research Accomplishments in the second year

- We have successfully defined the strong pharmacological inhibitors of NF-κB inducers of apoptosis in prostate cancer cells lines
- We have successfully determined the lowest dose of NSAIDs and pharmacological inhibitors of NF-κB described above for induction of apoptosis in prostate cancer cells lines
- We also have successfully determined the best NSAIDs combination and NSAIDs and pharmacological inhibitors of NF-κB for induction of apoptosis in prostate cancer cells lines

Reportable Outcomes (which is already attached in our first annual report)

Conclusion

The ability of NSAIDs to induce apoptosis appears to depend on their abilities to induce MDA-7/IL-24 expression and enhance GADD45α and γ expression. Thus, apoptosis and growth arrest induction of cancer cells as a result of enhanced MDA-7/IL-24 expression appears to be a common pathway for multiple classes of drugs. Pharmacological inhibitors of NF-κB have a potent effect in apoptosis induction of prostate cancer cells as well as in combination with NSAIDs.

These results also provide a rationale to screen small molecule libraries, natural compound libraries and chemically modified NSAIDs for selective inducers of MDA-7/IL-24 expression in cancer cells in order to obtain more effective anti-cancer drugs. These new compounds could be then tested in combination with inhibitors of NF-κB pathway which are already in clinical trials.
References

(4) Isayeva T, Chanda D, Kallman L, Eltoum IE, Ponnazhagan S. Effects of sustained antiangiogenic therapy in multistage prostate cancer in TRAMP model.

Appendices

See attached manuscript
A Novel Pathway Involving Melanoma Differentiation Associated Gene-7/Interleukin-24 Mediates Nonsteroidal Anti-inflammatory Drug–Induced Apoptosis and Growth Arrest of Cancer Cells

Luiz F. Zerbini,¹ Akos Czibere,¹ Yihong Wang,¹ Ricardo G. Correa,³ Hasan Otu,¹ Marie Joseph,¹ Yuko Takayasu,¹ Moriah Silver, Xuesong Gu, Kriangsak Ruchusatsawat,¹ Linglin Li,² Devanand Sarkar,¹ Jin-Rong Zhou,¹ Paul B. Fisher,¹ and Towia A. Libermann¹

¹BIDMC Genomics Center and Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts; ²Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California; and ³Departments of Pathology and Urology, Columbia University Medical Center, College of Physicians and Surgeons, New York, New York

Abstract
Numerous studies show that nonsteroidal anti-inflammatory drugs (NSAIDs) are effective in chemoprevention or treatment of cancer. Nevertheless, the mechanisms underlying these antineoplastic effects remain poorly understood. Here, we report that induction of the cancer-specific proapoptotic cytokine melanoma differentiation associated gene-7/interleukin-24 (MDA-7/IL-24) by several NSAIDs is an essential step for induction of apoptosis and G2-M growth arrest in cancer cells in vitro and inhibition of tumor growth in vivo. We also show that MDA-7/IL-24–dependent up-regulation of growth arrest and DNA damage inducible 45 α (GADD45α) and GADD45γ gene expression is sufficient for cancer cell apoptosis via c-Jun NH₂-terminal kinase (JNK) activation and growth arrest induction through inhibition of Cdc2-cyclin B checkpoint kinase. Knockdown of GADD45α and GADD45γ transcription by small interfering RNA abrogates apoptosis and growth arrest induction by the NSAID treatment, blocks JNK activation, and restores Cdc2-cyclin B kinase activity. Our results establish MDA-7/IL-24 and GADD45α and GADD45γ as critical mediators of apoptosis and growth arrest in response to NSAIDs in cancer cells. (Cancer Res 2006; 66(24): 11922-31)

Introduction
Various studies indicate that nonsteroidal anti-inflammatory drugs (NSAIDs), at clinically relevant concentrations, may be effective in prevention and treatment of common cancers (1, 2). Epidemiologic studies have suggested that regular use of certain NSAIDs reduces the risk of colorectal, breast, and ovarian cancer, and the number of precancerous colorectal polyps (3–5). The detailed molecular mechanisms by which NSAIDs inhibit neoplastic growth are, however, poorly understood and likely involve many off-target and divergent activities among different NSAIDs. Additionally, current clinical trials are evaluating a range of NSAIDs for a variety of cancers without any clear vision of the best way to use them.

Preclinical efficacy studies in animal models and cancer cell lines show strong antineoplastic effects of NSAIDs in vivo and in vitro (6, 7). The chemopreventive and antitumorigenic effects of NSAIDs are, to a large part, attributed to their apoptosis-inducing potential and may involve cyclooxygenase-2 (COX-2) inhibition (8–11). Nevertheless, the relevance of COX-2 inhibition for apoptosis induction is not entirely clear, because apoptosis induction by NSAIDs does not always correlate with their abilities to inhibit COX-2. Chemical modifications of NSAIDs that select for NSAIDs with enhanced proapoptotic activity reveal that structural requirements necessary for inhibition of cell growth and apoptosis induction in cancer cells can be distinct from those effecting COX-2 inhibition (12–15).

Because COX-2 inhibition does not seem to be the only antineoplastic, proapoptotic pathway targeted by NSAIDs in cancer cells, it is essential to unravel the molecular processes involved in apoptosis induction by these agents (16–18). Understanding these mechanisms will help to design drugs that are more specifically targeted against cancer, and, indeed, recent efforts show that chemical modifications of NSAIDs enable the selection of more efficient inducers of cancer cell apoptosis with enhanced growth inhibitory properties.

The objectives of our study were to obtain a comprehensive view of NSAID-mediated apoptosis in cancer cells and to decipher the precise molecular mechanisms of action by surveying and comparing a complete set of NSAIDs for their efficacies to induce apoptosis and growth arrest in cancer cells. We describe here a novel pathway by which NSAIDs induce apoptosis and growth arrest in cancer cells. We show that induction of the proapoptotic cytokine melanoma differentiation associated gene-7/interleukin-24 (MDA-7/IL-24) that mediates induction of growth arrest and DNA damage inducible 45 α (GADD45α) and GADD45γ expression (18–21) is sufficient for NSAID-induced cancer cell apoptosis and growth arrest. MDA-7/IL-24 overexpression is currently used in clinical trials, and identification of drugs that are most efficient in MDA-7/IL-24 induction may significantly enhance the antineoplastic effect of this novel cytokine.

Materials and Methods
Cell culture. The prostate cancer cell lines LNCaP, DU145, and PC-3; renal cancer cell lines Caki, UOK, A704, ACHN, and A498; stomach cancer cell lines Kato, SNU1, SNU16, NCI, and AGS1; breast cancer cell lines MDA231, MDA453, MDA435, SKBR3, and MCF-7; and the HEK 295 cell line...
were obtained from American Type Culture Collection (Rockville, MD). The F-12 foreskin fibroblast cell line was kindly provided by Dr. Steven Goldring (Beth Israel Deaconess Medical Center), and the CW19 and CW22 prostate cancer cell lines were kindly provided by Dr. Steven P. Balk (Beth Israel Deaconess Medical Center). The MS-1 endothelial cell line was kindly provided by Peter Oettgen (Beth Israel Deaconess Medical Center), A704, ACHN, and DU145 cells were grown in MEM (Life Technologies, Carlsbad, CA); CW19, CW22, MDA231, MCF-7, SKBR3, MDA453, MDA435, UOK, MS-1, F-12, and HEK 293 were grown in DMEM (Life Technologies); LNCaP, SN11, SN16, Kato, and NCI were grown in RPMI medium (Life Technologies); Caki cells were grown in McCoy’s 5A medium (Life Technologies); and AGS1 and PC-3 cells were grown in HAMS F-12 medium (BioWhitaker, Walkersville, MD). The medium was supplemented with 10% fetal bovine serum (FBS), 50 units penicillin/mL, and 50 μg streptomycin/mL (all from Life Technologies). The cells were maintained in a 5% CO2-humidified incubator at 37°C.

Reagents. Sulindac sulfide, sulindac sulfone, ibuprofen, aspirin, acetaminophen, and naproxen were obtained from Sigma-Aldrich (St. Louis, MO). Meloxicam, celecoxib, dicyclofenac, finasteride, and flufenamic acid were obtained from BioWhitaker (Walkersville, MD). The drugs were dissolved in DMSO or ethanol. Cancer cells were treated in their particular medium for 24 hours. The final concentration for each compound was as follows: 50 μmol/L sulindac sulfide, 5 mmol/L aspirin, 200 μmol/L ibuprofen, 50 μmol/L sulindac sulfone, 1 mmol/L acetaminophen, 200 μmol/L naproxen, 200 μmol/L NS-398, 50 μmol/L celecoxib, 40 μmol/L dicyclofenac, 50 μmol/L finasteride, 200 μmol/L dicyclofenac, 10 μmol/L meloxicam, 50 μmol/L ibuprofen, and 20 μmol/L flurbiprofen. For the controls, cells were treated with an equal amount of DMSO or ethanol, which was <0.1% of the final concentration.

Real-time PCR. Total RNA was harvested using QiAshredder (Qiagen, Valencia, CA) and RNeasy Mini kit (Qiagen). Real-time PCR was done as described (20). cDNAs were generated from 2 μg of total RNA using Ready-to-Go You-Prime First-Strand Beads (Amersham Pharmacia Biotech, Inc., Piscataway, NJ). Amplifications of 0.1 μg/μL cDNA were carried out using SYBR Green I–based real-time PCR on the MJ Research DNA Engine Opticon Continuous Fluorescence Detection System (MJ Research, Inc., Waltham, MA). All PCR mixtures contained PCR buffer [final concentration 10 mmol/L Tris-HCl (pH 9.0), 50 μmol/L KCl, 2 mmol/L MgCl2, and 0.1% Triton X-100], 250 μmol/L deoxyribonucleotide triphosphate (Roche, Indianapolis, IN), 0.5 μmol/L of each PCR primer, 0.5× SYBR Green 1 (Molecular Probes, Eugene, OR), 5% DMSO, and 1 unit Taq DNA polymerase (Promega, Madison, WI) with 2 μL cDNA in a 25 μL final volume reaction mix. The samples were loaded into wells of low-profile, 96-well microplates. After an initial denaturation step of 60 seconds at 94°C, conditions for cycling were 40 cycles of 30 seconds at 94°C, 30 seconds at 52°C, and 1 minute at 72°C.

Then, the fluorescence signal was measured right after incubation for 5 seconds at 79°C that follows the extension step, which eliminates possible primer dimer detection. At the end of the PCR cycles, a melting curve was generated to identify the specificity of the PCR product. For each run, serial dilutions of human glyceraldehyde-3-phosphate dehydrogenase (hGAPDH) plasmids were used as standards for quantitative measurement of the amount of amplified DNA. Also, for normalization of each sample, hGAPDH primers were used to measure the amount of hGAPDH cDNA. All samples were run in triplicates and the data were presented as gene-to-GAPDH ratio. The sequences of the primers are as follows: for GADD45α, sense 5′-GCC-TTGGACTGCAGCAGAA-3′; antisense 5′-ATCTCTGGTCTGTCCTGCT-3′; for GADD45β, sense 5′-TCCAGTTTCTCAATTTCTCC-3′; antisense 5′-GGATGCGTGAAGCTCGTT-3′; for GADD45δ, sense 5′-CTGCAATGGTGTCCTGCT-3′; antisense 5′-TTCGAAATGAGGACGACGCTG-3′; for MDA-7/IL-24, sense 5′-CAAGGGCTGGTCTGTAGTGC-3′; antisense 5′-GATACAGACAA CGCGTCTGTC-3′; and for IκBα, sense 5′-CAAGGTCGTGCTAGTACC-3′; antisense 5′-CCATGGAGAAGCTGGG-3′.

Western blot analysis. Whole-cell lysates were prepared in lysis buffer [20 mmol/L Tris (pH 7.4), 150 mmol/L NaCl, 1 mmol/L EDTA, 1 mmol/L EGTA, 1% Triton X-100, 2.5 mmol/L sodium PPI, 1 mmol/L β-glycerophosphate, 1 mmol/L Na3VO4, 1 μg/mL leupeptin, and 1 mmol/L phenylmethylsulfonyl fluoride] of treated and control cells. One hundred micrograms of protein were electroblotted on polyvinylidene difluoride membranes in a 50 mmol/L Tris base, 20% methanol, and 40 mmol/L glycine electrophoresis buffer. Membranes were incubated in 5% nonfat dry milk in TBST (60 mmol/L Tris-base, 120 mmol/L NaCl, 0.2% Tween 20) for 1 hour. Blots were probed with primary antibody overnight at 4°C in 2% bovine serum albumin in TBST, and then incubated with a horseradish peroxidase-conjugated secondary antibody (Cell Signaling Technology, Danvers, MA) in 5% dry milk in TBST for 1 hour at room temperature. Bound antibodies were detected by chemiluminescence with enhanced chemiluminescence detection reagents (Amersham Pharmacia Biotech) and were visualized by autoradiography. The primary antibodies used for Western blot analysis were anti-CDC25C (Cell Signaling Technology), anti-cyclin B1 (EMD Biosciences, San Diego, CA), anti-cyclin B2 (Santa Cruz Biotechnology), anti-phospho c-Jun (Cell Signaling Technology), anti-p21 (Cell Signaling Technology), anti-GADD45α (Santa Cruz Biotechnology), and anti-GADD45β (Santa Cruz Biotechnology). The MDA-7/IL-24 antibody was kindly provided by Sunil Chadda (Introgen, Inc.).

Kinase assays. Cdc2 kinase assay was done using histone H1 as the Cdc2 substrate. Five hundred micrograms of the cell lysate were immunoprecipitated using 2 μg agarose-conjugated anti-Cdc2 monoclonal antibody (Santa Cruz Biotechnology) overnight at 4°C. The beads were washed twice with lysis buffer and twice with kinase buffer [25 mmol/L Tris (pH 7.5), 5 mmol/L β-glycerophosphate, 2 mmol/L DTT, 0.1 mmol/L Na3VO4, 10 mmol/L MgCl2] and subjected to the kinase assay. The beads were suspended in 50 μL of kinase buffer supplemented with 200 μmol/L ATP and 30 μL Cdc2 substrate cocktail [Upstate: 2 mg/mL histone H1 in 20 mmol/L MOPS (pH 7.2), 25 mmol/L β-glycerophosphate, 5 mmol/L EGTA, 1 mmol/L sodium orthovanadate, 1 mmol/L DTT], and incubated for 30 minutes at 30°C. The reactions were terminated by adding 25 μL of 3× SDS sample buffer, and proteins were resolved by SDS-10% PAGE and probed with phospho-histone H1 antibody (Upstate). Active Cdc2 directly correlates with enhanced phosphorylation of histone H1. c-Jun NH2-terminal kinase (JNK) kinase activity was measured by using the stress-activated protein kinase (SAPK)/JNK assay kit (Cell Signaling Technology) according to the manufacturer’s protocol and as described in the supporting text.

Apoptotic assays. Apoptosis was assayed by using the Apoptotic Cell Death Detection ELISA (Roche) and/or the Cell Death Detection (Nuclear Matrix Protein, San Diego, CA) ELISA (EMD Biosciences) according to the manufacturer’s protocol.

Animals, diets, and orthotopic implantation of DU145 tumor cells. Eight-week-old male severe combined immunodeficient (SCID) nude mice were purchased from Taconic (Germantown, NY) and housed in a pathogen-free environment. Immediately before implantation, DU145 cells infected with lentiviral vector small interfering RNA green fluorescent protein (LV-siRNA GFP) or LV-siRNA MDA-7/IL-24 or uninfected cells were trypsinized and resuspended in MEM with 10% FBS. Cell viability was determined by trypsin blue exclusion. Then, a single cell suspension with >90% viability was used for implantation. A transverse incision was made in the lower abdomen, and the bladder and seminal vesicles were delivered through the incision to expose the dorsal prostate. DU145 cells (2 × 106 in 50 μL) were carefully injected under the prostatic capsule via a 30-gauge needle as described previously (20). Proper inoculation of cell suspension was indicated by blebbing under the prostate capsule. The incision was closed using a running suture of 5-0 silk. All procedures with animals were reviewed and approved by the Institutional Animal Care and Use Committee at the Beth Israel Deaconess Medical Center according to NIH guidelines. The mice were randomly divided into two groups (n = 8 per group) and fed one of two diets through the entire experiment: AIN-93G as the control and the AIN-93G diet supplemented with 200 ppm sulindac sulfide. The diets were prepared by Research Diets, Inc. (New Brunswick, NJ). Body weight and food intake were measured weekly. Six weeks after cancer cell implantation, phlebotomy was done by accessing the retro-orbital venous plexus to obtain 150 μL of blood from each mouse. Serum IL-6 level was measured by ELISA to estimate the tumor-take rate and tumor size. At the end of the experiment (8 weeks), animals were sacrificed.
and tumors were carefully dissected and weighed. Lymph nodes and lungs were collected to determine metastases.

siRNA oligonucleotides and transfections. The oligonucleotides for the three GADD45 family members have been described (20). The sense-strand sequence for each siRNA (Dharmacon, Chicago, WI) is described (a complementary oligonucleotide was synthesized for each): MDA-7/IL-24 siRNA 5'-AACCTTGTTCTCATCTGTTGCA-3', RNA duplexes (50 μmol/L) were transfected into cells using TKO transfection reagent (Mirus, Madison, WI) and tested for specificity and efficiency (see Supplementary Fig. S5).

Adenovirus constructs. The adenoviruses encoding β-galactosidase (Ad5-CMVβ-gal) and MDA-7/IL-24 (Ad5-MDA-7/IL-24) genes were described previously (20, 21).

siRNA lentiviral vectors. The lentiviruses encoding siRNA against the three GADD45 family members have been described (20). The LV-siRNA GFP construct (control) was kindly donated by Dr. Oded Singer (Salk Institute for Biological Studies). The lentiviruses encoding siRNA against MDA-7/IL-24 gene was cloned using Advantage 2 PCR kit (Clontech, Mountain View, CA), and the virus was generated by using a previously described methodology (20). The following siRNA oligonucleotides were used: 5'-CTCTGCTAGACAAAAACTTTGCTCTCATCTGCTATCTCTTTAGATCGATGAGAAACAAAGGGGATCTGTGTCATACA-3' for MDA-7/IL-24.

Production of lentiviral vectors and infections. Vascular stomatitis virus G envelope protein-pseudotyped lentiviruses were prepared and purified as described (20). The specificity of all lentivector products were tested (see supporting text).

Microarray analysis. Total RNA was harvested from cells treated with 50 μmol/L sulindac sulfide or DMSO 24 hours posttreatment using QiAshredder (Qiagen) and RNeasy Mini kit (Qiagen) and converted into cRNA according to manufacturer's instructions (Affymetrix, Santa Clara, CA). Experiments were done in duplicates. cRNAs were hybridized to the HG-U133A gene array (Affymetrix), washed, and scanned according to the manufacturer's instructions (Affymetrix). Scanned array images were analyzed by dChip, where model-based gene expression values were obtained using a smoothing-spline normalization method (22) to compare two groups of samples aiming to identify genes enriched in a given phenotype. If 90% lower confidence bound of the fold change between the two groups was >1, the corresponding gene was considered to be differentially expressed (22). Lower confidence bound is a stringent estimate of fold change and has been shown to be the better-ranking statistic (23). It has been suggested that a criterion of selecting genes that have a lower confidence bound above 1.2 most likely corresponds to genes with an "actual" fold change of at least 3 in expression (22-24).

Cell cycle analysis. Prostate cancer cells were treated with NSAIDs or DMSO as described above. After 24 hours of treatment, the medium was replaced by serum-containing medium, and cells were allowed to grow for another 24 hours. The cells were trypsinized, washed twice with cold PBS containing 2% FBS, and fixed in 70% ethanol for 60 minutes at 4°C. The cells were then washed twice with PBS and stained with 200 μL propidium iodide stock solution (50 μg/μL propidium iodide, 3.8 mmol/L sodium trisphosphate in PBS) supplemented with 50 μL RNase A (10 μg/ml) for 3 hours at 4°C and then analyzed with a FACScan cell sorter (Becton Dickinson, Franklin Lakes, NJ). Ten thousand cells were collected and the cell cycle profiles were calculated using the CellQuest Software.

Results

Multiple NSAIDs are potent inducers of apoptosis in prostate cancer cells. A broad panel of NSAIDs was tested for their abilities to induce apoptosis in cancer cells. The concentrations for all NSAIDs used in this study were selected to reflect achievable plasma concentrations (25–40). However, some drug concentrations exceeded the physiologically achievable doses (25–40). Apoptosis was measured 24 and 48 hours after treatment of DU145 prostate cancer cells with this set of NSAIDs, revealing that a variety of, but not all, NSAIDs induced apoptosis in DU145 cells.

Strong inducers of apoptosis included sulindac sulfide, finasteride, diclofenac, flufenamic acid, flurbiprofen, sulfindac sulfone, and NS-398 compared with solvent controls, whereas treatment with aspirin, celecoxib, acetaminophen, ibuprofen, naproxen, meloxicam, and ebselen resulted in only marginal apoptosis induction (Fig. 1). Sulindac sulfide was the strongest inducer of apoptosis in DU145 cells and it was one of the top three apoptotic inducers in a variety of cancer cells (data not shown).

NSAIDs induce G2-M growth arrest and apoptosis in cancer cells. Sulindac sulfide and sulfindac sulfone are the two major metabolites of sulindac sulfoxide (Clinoril; Merck, Whitehouse Station, NJ). Whereas sulindac sulfide is a COX-2 inhibitor, the sulfone compound is considered not to block COX-2. Sulindac sulfide inhibits proliferation and suppresses growth of various types of cancers in xenograft mouse models (refs. 41, 42; Supplementary Fig. S1A and B). The role of NSAIDs, such as sulindac sulfide, in growth arrest remains less well characterized. Cell cycle analysis of DU145 and PC-3 cells treated with 50 μmol/L sulindac sulfide for 24 hours revealed that sulindac sulfide induced G2-M growth arrest in both prostate cancer cell lines when compared with control (Supplementary Fig. S2) by increasing the fraction of cells in the G2-M phase by 2-fold (25–27).

To evaluate whether sulindac sulfide induces apoptosis in cancer cells, prostate, breast, renal, and stomach cancer cell lines, as well as untransformed cells, were treated with sulindac sulfide for 24 hours. Sulindac sulfide induced apoptosis in most prostate cancer cell lines and in almost all breast, renal, and stomach cancer cell lines except the A704 renal cancer cell line (Fig. 2). In contrast, untransformed cells, such as the MS-1 endothelial and F12 foreskin fibroblast cells, were not affected by sulindac sulfide, demonstrating broad-range specificity for cancer cells (Fig. 2). Moreover, a time course experiment showed that sulindac sulfide started to induce programmed cell death as early as 12 hours posttreatment (Supplementary Fig. S3).

It has been established that sulindac sulfide reaches peak plasma concentrations of 30 to 50 μmol/L (25–27), coming down to a steady-state plasma concentration of 5 to 10 μmol/L (43).
Figure 2. The NSAID sulindac sulfide induces apoptosis in cancer cells. Apoptosis assay of prostate, breast, renal, and stomach cancer cells. Cells were treated with 50 μmol/L sulindac sulfide or DMSO. Apoptosis was measured 24 hours posttreatment. Columns, mean of triplicate independent experiments for each treatment; bars, SD.

therefore, decided to evaluate whether the sulindac sulfide steady plasma concentration achievable in patients (43) was still able to induce apoptosis in cancer cells. Prostate cancer cells were treated with 5, 10, 25, and 50 μmol/L sulindac sulfide, and apoptosis was measured 24 hours posttreatment. We show that even low concentrations (5–10 μmol/L) of sulindac sulfide are sufficient to induce apoptosis in cancer cells (Supplementary Fig. S4A).

The proapoptotic cytokine MDA-7/IL-24 is the critical mediator of NSAID-induced apoptosis and growth arrest in cancer cells and inhibition of tumor growth in vivo. To elucidate the detailed molecular mechanisms underlying NSAID-mediated cell cycle arrest and apoptosis in cancer cells, we did oligonucleotide microarray-based transcriptional profiling of DU145 and PC-3 cells treated with 50 μmol/L sulindac sulfide versus DMSO. Detailed bioinformatic analysis revealed that sulindac sulfide does not trigger indiscriminate transcriptional shutdown of cancer cells, but induces distinct patterns of gene expression changes for a wide range of transcripts related to apoptosis and cell cycle (Supplementary Table S137) that were consistent across the two cell lines, further confirming their apparent relevance for the cell cycle and cell death effects of sulindac sulfide.

Particularly striking and unanticipated was the dramatic up-regulation of the proapoptotic cytokine IL-24, also named MDA-7 (18, 19). MDA-7/IL-24 was by far the highest up-regulated gene in both cell lines (140-fold in PC-3 and 722-fold in DU145). MDA-7/IL-24 has been shown to be a novel tumor-suppressor gene (19, 44). At low, presumably physiologic concentrations, MDA-7/IL-24 functions predominantly as a cytokine involved in immunoregulation (19, 44). However, when overexpressed at supraphysiologic levels using an adenovirus vector, MDA-7/IL-24 shows cancer cell–specific growth inhibitory properties without negatively affecting normal cells (19, 21, 44, 45). Furthermore, elevated endogenous MDA-7/IL-24 expression correlates with enhanced apoptosis and prolonged overall survival of patients with small-cell lung cancer, further supporting the anticancer role of MDA-7/IL-24 (46).

To evaluate the functional relevance of MDA-7/IL-24 induction for NSAID-mediated apoptosis, we measured mRNA expression levels of MDA-7/IL-24 in response to sulindac sulfide in the same cancer cell lines tested above for apoptosis induction by sulindac sulfide. Real-time PCR analysis showed that sulindac sulfide induces MDA-7/IL-24 expression in a variety of cancer types, up to 124-fold in DU145 cells and ~10- to 20-fold in various other cancer cell lines (Fig. 3A). Induction of MDA-7/IL-24 by sulindac sulfide correlated with the ability of this drug to induce extensive apoptosis in these cell lines (Fig. 2A). Furthermore, sulindac sulfide induced MDA-7/IL-24 gene expression as early as 8 hours posttreatment, before induction of programmed cell death at 12 hours posttreatment (Supplementary Fig. S3A and B).

These results indicate that sulindac sulfide–mediated induction of MDA-7/IL-24 expression is a common pathway in various types of cancer cells that respond to this NSAID by undergoing apoptosis and strongly suggest that MDA-7/IL-24 may play a critical role in this apoptosis induction.

To evaluate the relationship between MDA-7/IL-24 induction and apoptosis induction by various NSAIDs, we measured mRNA expression levels of MDA-7/IL-24 in response to different NSAIDs in prostate cancer cells. Real-time PCR analysis showed that induction of MDA-7/IL-24 is common to NSAIDs that induce apoptosis in cancer cells, because multiple, structurally unrelated NSAIDs strongly induced MDA-7/IL-24 expression in DU145 prostate carcinoma cells (Fig. 3B) in strong correlation with NSAID-mediated apoptosis induction (correlation coefficient, 0.91; P < 0.0001). NSAIDs that strongly enhanced apoptosis (Fig. 1) dramatically induced MDA-7/IL-24 expression (Fig. 3B), whereas NSAIDs that only marginally induced apoptosis (Fig. 1) did not significantly enhance MDA-7/IL-24 expression (Fig. 3B). These data suggest a common mechanism for structurally unrelated NSAIDs in targeting MDA-7/IL-24 induction and apoptosis induction.

We and others have shown (19, 21, 44, 45) that overexpression of MDA-7/IL-24 following infection with an adenovirus carrying the MDA-7/IL-24 gene induces apoptosis and inhibits cell proliferation in cancer cells (Supplementary Fig. S5A and B). To determine whether induction of growth arrest and apoptosis in cancer cells by NSAIDs is dependent on MDA-7/IL-24 up-regulation, we generated siRNA oligonucleotides and a lentivirus encoding this siRNA against MDA-7/IL-24. The specificity of the MDA-7/IL-24 siRNA oligonucleotides was validated as described in Supplementary Methods and Supplementary Fig. S5C. Infection with the LV-siRNA MDA-7/IL-24 reduced apoptosis induction by multiple NSAIDs by 90% (Fig. 3C) and reversed to a large part the G2-M cell cycle arrest (Fig. 3D). These results show that MDA-7/IL-24 may play an important role in tumor cell survival and, for the first time, implicate MDA-7/IL-24 as an essential mediator of NSAID action in cancer cells.

To determine whether NSAIDs reduce tumor growth in vivo and to evaluate whether their effects may be dependent on induction of MDA-7/IL-24, prostate cancer cells stably infected with LV-siRNA GFP or LV-siRNA MDA-7/IL-24, as well as uninfected cells, were orthotopically implanted into the prostate of SCID mice. The mice were randomly divided into two groups and fed one of two diets through the entire experiment: AIN-93G as the control and the AIN-93G diet supplemented with 200 ppm sulindac sulfide. Two months later, the animals were examined for tumor formation and tumor weight. All mice developed tumors, indicating that this particular dose of sulindac sulfide did not prevent tumor formation. As seen in Fig. 3E, infection of DU145 cells with the
LV-siRNA GFP virus did not affect tumor growth in the control diet group, because implantation of uninfected DU145 cells showed a similar pattern of tumor growth and tumor weight when compared with the LV-siRNA GFP group (Fig. 3E). Surprisingly, the blockage of MDA-7/IL-24 expression by siRNA interference in the LV-siRNA MDA-7/IL-24 group strongly enhanced tumor growth, demonstrating that the low endogenous basal MDA-7/IL-24 expression acts as a tumor suppressor ($P = 0.010$; Fig. 3E). Tumor weight markedly increased by 60% in the LV-siRNA MDA-7/IL-24 group fed with the control diet when compared with the LV-siRNA GFP group (0.969 versus 0.623 g; $P = 0.010$).

Sulindac sulfide treatment reduced the average tumor weight in the LV-siRNA GFP group by 38% when compared with the control diet, confirming its antitumor efficacy (Fig. 3E). Sulindac sulfide treatment also reduced tumor growth in the LV-siRNA MDA-7/IL-24 group to some extent; however, tumor weight was still 75% higher than in the sulindac-treated LV-siRNA GFP group ($P = 0.024$; Fig. 3E). These results indicate that NSAID-mediated MDA-7/IL-24

![Figure 3.](image)

Figure 3. MDA-7/IL-24 is the crucial mediator of NSAID-induced growth arrest and apoptosis in cancer cells and inhibition of tumor growth in vivo. A, sulindac sulfide induces MDA-7/IL-24 expression in various types of cancer cells. Real-time PCR of MDA-7/IL-24 after 24 hours of sulindac sulfide treatment. Each sample was normalized to hGAPDH. B, real-time PCR analysis of MDA-7/IL-24 expression in DU145 cells after 24 hours of treatment with different NSAIDs. Each sample was normalized to hGAPDH. C, apoptosis assay of PC-3 cells after treatment with 50 μmol/L sulindac sulfide, 40 μmol/L diclofenac, 200 μmol/L NS398, and 50 μmol/L finasteride or DMSO, and infection with lentivirus encoding MDA-7/IL-24 siRNA duplexes. Columns, mean of triplicate independent infection for each vector at each treatment; bars, SD. D, cell cycle analysis in DU145 and PC-3 cells treated with 50 μmol/L sulindac sulfide or DMSO and transfected with MDA-7/IL-24 siRNA duplexes. The percentages of cells in a particular cell cycle phase were determined by fluorescence-activated cell sorting analysis 24 hours after treatment. E, MDA-7/IL-24 is a tumor suppressor and contributes to sulindac sulfide–mediated inhibition of tumor growth. For each inoculation, 2×10^{6} DU145 cells infected with LV-siRNA GFP, LV-siRNA IL-24, or uninfected cells were orthotopically implanted into the prostate of SCID mice. The mice were randomly divided into two groups ($n = 8$ per group) and fed one of two diets through the entire experiment: AIN-93G as the control and the AIN-93G diet supplemented with 200 ppm sulindac sulfide. The size of the tumors and tumor weight were measured 2 months after implantation. Values not sharing the same letters are statistically significant with P values at least <0.05.
induction plays a critical role in tumor growth and also indicate a tumor-suppressor activity of MDA-7/IL-24.

Induction of the \textit{GADD45x} and \textit{GADD45γ} genes is tightly regulated by MDA-7/IL-24 in NSAID-treated cancer cells. Our transcriptional profiling experiments, moreover, showed a strong up-regulation of \textit{GADD45x} up to 16-fold by sulindac sulfide (Supplementary Table S1). MDA-7/IL-24 regulates and induces \textit{GADD45x} and \textit{GADD45γ} without affecting \textit{GADD45γ} expression (refs. 20, 21; Supplementary Fig. S6), and we have previously shown that \textit{GADD45x} and \textit{GADD45γ} up-regulation upon inhibition of nuclear factor-κB (NF-κB) is critical for induction of apoptosis in cancer cells (20). The \textit{GADD45} gene family encodes three structurally highly related growth arrest– and DNA damage–inducible proteins, \textit{GADD45x}, \textit{GADD45β}, and \textit{GADD45γ} (47), which play a role in the G2-M checkpoint in response to DNA damage (48).

To evaluate whether regulation of \textit{GADD45} genes is involved in NSAID-mediated apoptosis and whether \textit{GADD45x} and \textit{GADD45γ} regulation is a result of MDA-7/IL-24 induction by NSAIDs, expression of \textit{GADD45} family members was measured by real-time PCR in the different cancer cell lines treated with sulindac sulfide (Fig. 4A). Whereas \textit{GADD45β} expression was not significantly affected by sulindac sulfide in any of the cell lines, the drug induced \textit{GADD45x} and \textit{GADD45γ} expression 1.5–27-fold in various cancer cell types, indicating that \textit{GADD45x} and \textit{GADD45γ} expression is consistently regulated by sulindac sulfide (Fig. 4A). Furthermore, up-regulation of \textit{GADD45x} and \textit{GADD45γ} strongly correlated with the ability of sulindac sulfide to induce MDA-7/IL-24 expression (correlation coefficient, 0.68; \(P = 0.016 \)); correlation coefficient, 0.69; \(P = 0.0068 \), respectively; Fig. 3A). Interestingly, the correlation between induction of \textit{GADD45x} and \textit{GADD45γ} was also significant (correlation coefficient, 0.85; \(P = 0.0001 \)).

Differences in mRNA expression of the \textit{GADD45} family members were corroborated on the protein level by Western blot analysis using protein extracts from DU145 and PC-3 cells treated with sulindac sulfide for 24 hours. \textit{GADD45x} and \textit{GADD45γ}, but not \textit{GADD45β}? protein expression, were induced in sulindac sulfide–treated cancer cells (Fig. 4B).

To evaluate whether NSAID-mediated induction of \textit{GADD45x} and \textit{GADD45γ} expression is dependent on MDA-7/IL-24 up-regulation, we transfected prostate cancer cells with MDA-7/IL-24 siRNA oligonucleotides and measured \textit{GADD45} expression 24 hours after treatment with sulindac sulfide by real-time PCR. Interference with MDA-7/IL-24 expression almost completely blocked sulindac sulfide–mediated induction of \textit{GADD45x} and \textit{GADD45γ} gene expression without affecting \textit{GADD45β} expression (Fig. 4C). These data most vividly show that \textit{GADD45x} and \textit{GADD45γ} induction by sulindac sulfide is mediated via MDA-7/IL-24 up-regulation.

Inhibition of NF-κB also has been shown to induce apoptosis due to up-regulation of \textit{GADD45x} and \textit{GADD45γ} (20). Surprisingly, treatment of prostate cancer cells with sulindac sulfide had no effect on the NF-κB signaling pathways (Supplementary Fig. S7A and S7B).

NSAID-mediated \textit{GADD45x} and \textit{GADD45γ} induction is essential for Cdc2 kinase activation and growth arrest. Our transcriptional profiling analysis showed that, in concordance with the observed G2-M cell cycle arrest induced by sulindac sulfide, several genes involved in the G2-M checkpoint and Cdc2 kinase regulation are down-regulated by sulindac sulfide, including Cdc25C, Cdc2, cyclin B1, and cyclin B2, whereas the cyclin-dependent kinase inhibitor p21 is up-regulated (Supplementary Table S1). Western blot analysis of protein extracts from DU145 and PC-3 cells treated with sulindac sulfide for 24 hours corroborated the expression changes on the protein level. Protein expression of Cdc25C, cyclin B1, and cyclin B2 decreased, and p21 protein expression increased, in response to sulindac sulfide (Fig. 5A). \textit{GADD45x} has been shown to inhibit the kinase activity of the Cdc2-cyclin B complex (49) and progression from the G2 to the M phase of the cell cycle (50). To determine the role of \textit{GADD45x} and \textit{GADD45γ} in NSAID-induced G2-M arrest, we infected DU145 prostate cancer cells with lentiviruses encoding siRNAs for \textit{GADD45x}, \textit{GADD45β}, and \textit{GADD45γ} expression after treatment with 50 μmol/L sulindac sulfide or DMSO. Real-time PCR analysis of \textit{GADD45x}, \textit{GADD45β}, and \textit{GADD45γ}; expression after treatment of DU145 and PC-3 cells with 50 μmol/L sulindac sulfide or DMSO and transfection of MDA-7/IL-24 siRNA duplex (50 nmol/L) in prostate cancer cell lines. Each sample was normalized to hGAPDH. B, Western blot analysis of \textit{GADD45} family members in response to sulindac sulfide treatment. Protein extracts were obtained 24 hours after treatment of prostate cancer cells with 50 μmol/L sulindac sulfide or DMSO. C, real-time PCR analysis of \textit{GADD45x}, \textit{GADD45β}, and \textit{GADD45γ}; expression after treatment of DU145 and PC-3 cells with 50 μmol/L sulindac sulfide or DMSO and transfection of MDA-7/IL-24 siRNA duplex (50 nmol/L) in prostate cancer cell lines. Each sample was normalized to hGAPDH.
GADD45α and GADD45γ expression and G2-M arrest. However, inhibition of GADD45α and GADD45γ expression in DU145 cells by the LV-siRNAs restored Cdc2 kinase activity as seen by increased histone H1 phosphorylation (Fig. 5B). These data suggest that sulindac sulfide–induced G2-M cell cycle arrest is due to a combination of decreased expression of several G2-M transition cell cycle regulators and MDA-7/IL-24–induced GADD45α and GADD45γ up-regulation that leads to inhibition of Cdc2 activity.

MDA-7/IL-24–dependent GADD45α and GADD45γ induction and JNK activation are critical for NSAID-mediated apoptosis induction in cancer cells. To elucidate the functional relevance of GADD45α and GADD45γ for NSAID-mediated apoptosis, we measured apoptosis induction by sulindac sulfide in GADD45α- and GADD45γ–knockdown cells. siRNA-mediated inhibition of sulindac sulfide induced up-regulation of GADD45α or GADD45γ expression and almost completely abrogated apoptosis induction (Fig. 6A), clearly demonstrating the absolute requirement of MDA-7/IL-24–dependent GADD45α and GADD45γ up-regulation for apoptosis induction by NSAIDs.

Because we and others had shown that JNK activation plays a role in apoptosis induction in cancer cells and GADD45α and GADD45γ interact with the upstream kinase of JNK, mitogen-activated protein kinase kinase kinase 4, and activate JNK (47), we evaluated the relevance of JNK for NSAID-mediated apoptosis. JNK kinase activity was tested in protein extracts obtained from DU145 and PC-3 cells treated with sulindac sulfide or DMSO for 24 hours by an in vitro kinase assay. Western blot analysis revealed very little JNK activity in untreated control cells and a strong increase in JNK activity in both cell lines upon treatment with sulindac sulfide (Fig. 6B). JNK activation by sulindac sulfide was at least partially dependent on MDA-7/IL-24 induction because JNK activity in sulindac sulfide–treated MDA-7/IL-24−/− cells was reduced by 62%, but not completely abolished when compared with MDA-7/IL-24+/+ cells (Fig. 6C). The importance of GADD45α and GADD45γ for NSAID-induced JNK activation was evaluated in DU145 and PC-3 cells infected with the GADD45α or GADD45γ siRNA lentiviruses or the control lentivirus and treated with sulindac sulfide for 24 hours. Inhibition of sulindac sulfide–mediated up-regulation of GADD45α and GADD45γ expression by siRNA drastically reduced JNK activation in both cell lines, correlating with the inhibition of apoptosis induction (Fig. 6D).

To establish the relevance of JNK activation in mediating apoptosis in cancer cells, apoptosis was measured in protein extracts obtained from DU145 and PC-3 cells treated with 50 μmol/L sulindac sulfide or DMSO in the absence or presence of a specific JNK inhibitor, JNKII. Compared with controls, apoptosis of sulindac sulfide–treated cells was reduced by >56% in DU145 cells and 40% in PC-3 cells in JNKII-treated cells, but inhibition of JNK did not fully abolish apoptosis induction (Fig. 6E). These results suggest that JNK contributes to, but is not absolutely essential for, sulindac sulfide–mediated apoptosis.

Discussion

Dissection of the biological and biochemical pathways targeted by NSAIDs will provide ample opportunities to screen for chemically modified NSAIDs or for new compounds that are more effective and specific in destroying cancer cells. Furthermore, NSAID treatments have been reported to induce changes in gene expression in a variety of cancer cells affecting multiple target genes (51–54). We report here the discovery of a novel biological pathway involving MDA-7/IL-24 and the GADD45 gene family that are targeted by a set of NSAIDs in a number of cancer types and whose activation directly correlates with the efficacy of NSAIDs to induce cancer cell death. We show that multiple classes of structurally unrelated NSAIDs induce apoptosis and growth arrest via induction of MDA-7/IL-24 expression with consecutive GADD45α and GADD45γ induction, leading to JNK activation and GADD45α- and GADD45γ-dependent inhibition of Cdc2 activity (Fig. 6F).

Several studies using an adenovirus encoding the MDA-7/IL-24 gene show its profound and selective anticancer activity in vitro and in animal models (19, 21, 44, 45, 55). However, transient expression, frequent adverse immune reactions, and limitations to local delivery may restrict the use of adenoviral delivery of MDA-7/IL-24. This potential problem is partly ameliorated by the potent “bystander antitumor” activity of MDA-7/IL-24 mediated by its cytokine properties (19, 44, 56, 57). In these contexts, our discovery of specific high-level induction of MDA-7/IL-24 in different types of cancer cells, by a variety of NSAIDs, provides a new entry point to enhance MDA-7/IL-24 levels in cancer cells on a systemic level that should be significantly more effective than adenoviral delivery. Additionally, recent studies correlate increased levels of endogenous MDA-7/IL-24 with a favorable prognosis in lung adenocarcinoma and a significantly higher incidence of apoptotic tumor cells (46) and treatment of human lung tumor xenografts in nude mice with Ad-MDA-7/IL-24 plus sulindac suppressed growth more efficiently than Ad-MDA-7/IL-24 or sulindac alone (58). Therefore, our findings that NSAIDs induce high levels of MDA-7/IL-24 in various types of cancers and use the potent proapoptotic activity of MDA-7/IL-24 to induce apoptosis and cell cycle arrest in cancer cells strongly support the notion that therapeutic strategies that lead to enhanced MDA-7/IL-24 expression in cancer cells will have a significant effect on cancer patient survival.
Our *in vivo* orthotopic tumor model provides further support of the hypothesis that *MDA-7/IL-24* is indeed a tumor-suppressor gene. Blocking *MDA-7/IL-24* expression by siRNA interference not only reduced the ability of sulindac sulfide to inhibit tumor growth *in vivo*, but also enhanced tumor growth in the LV-siRNA *MDA-7/IL-24* group. However, sulindac sulfide, to some extent, still inhibited tumor growth in animals receiving LV-siRNA *MDA-7/IL-

24. This partial *in vivo* effect of sulindac sulfide on tumor growth following injection with tumor cells expressing the *MDA-7/IL-24* siRNA could be explained by several mechanisms: Although *MDA-7/IL-24* expression was inhibited in the tumor cells, systemic sulindac sulfide exposure in the mice led to *MDA-7/IL-24* expression in mouse-derived cells or tissues that affected the implanted tumor cells and partially reversed the effect of the

Figure 6. Induction of GADD45 expression by NSAIDs is essential for JNK activation and apoptosis induction. A, apoptosis assay of PC-3 cells after treatment with 50 μmol/L sulindac sulfide or DMSO and infection with GADD45α and GADD45γ LV-siRNAs. Columns, mean of triplicate independent infections for each vector at each treatment; bars, SD. B, induction of JNK activation by sulindac sulfide. JNK kinase was analyzed in cell lysates from DU145 and PC-3 cells treated with 50 μmol/L sulindac sulfide or DMSO using the SAPK/JNK assay kit (Cell Signaling). C, kinase assay showing inhibition of JNK kinase activity by *MDA-7/IL-24* siRNA (50 μmol/L) in prostate cancer cells treated with 50 μmol/L sulindac sulfide or DMSO. D, kinase assay showing inhibition of JNK kinase activity by GADD45 siRNA duplexes (50 μmol/L) in prostate cancer cells treated with 50 μmol/L sulindac sulfide or DMSO. E, apoptosis of prostate cancer cells 24 hours after treatment with 50 μmol/L sulindac sulfide or DMSO and treatment with the JNK inhibitor JNKII SP600125 (100 nmol/L; Calbiochem). Columns, mean of triplicate independent treatments; bars, SD. F, schematic presentation of NSAID signaling pathway in cancer.
MDA-7/IL-24 siRNA; it is also likely that MDA-24/IL-24 is not the sole pathway targeted by sulindac sulfide and the drug could act through multiple pathways to induce programmed cell death in cancer cells, including indirect antioxidant effects on stromal and vascular cells. Additionally, our data provide strong evidence that multiple NSAI oncogenic activity of several divergent classes of drugs evaluated here seems not to be due primarily to their effects on their supposed targets, but due to the off-target induction of MDA-7/IL-24 and apoptosis. Thus, the proapoptotic

Acknowledgments

Received 6/13/2006; revised 9/6/2006; accepted 10/9/2006.

Clinical Support: NIH grants CA94947, PS0 CA090381, PS0 CA105099, and the Hershey Foundation (T.A. Libermann); NIH grants IR01 CA097318, IR01 CA098712, P01 CA101477, the Samuel Waxman Cancer Research Foundation, and the Chernow Endowment (P.B. Fisher); and Department of Defense grant PC051217 (L.F. Zerbini). The costs of publication of this article were deferred in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank Dr. Inder M. Verma for help with the generation of lentiviruses.

References

5. Saji S, Hirose M, Toi M. Novel sensitizing agents: COX-2 inhibitor celecoxib is significantly less effective in inducing GADD45a and GADD45γ via repression of c-myc expression as essential for apoptosis induction as in response to NSAIDs (20) and multiple MDA-7/IL-24–dependent and MDA-7/IL-24–independent pathways seem to merge into GADD45α and GADD45γ. Although current studies indicate that members of the GADD45 family appear infrequently mutated in cancer, reduced GADD45 expression due to gene and or promoter methylation have been frequently observed in several types of human cancer (60, 61).

In conclusion, the ability of NSAIDs to induce apoptosis seems to depend on their abilities to induce MDA-7/IL-24 expression and enhance GADD45α and GADD45γ expression. Thus, apoptosis and growth arrest induction of cancer cells as a result of enhanced MDA-7/IL-24 expression seems to be a common pathway for multiple classes of drugs. These results also provide a rationale to screen small-molecule libraries, natural compound libraries, and chemically modified NSAIDs for selective inducers of MDA-7/IL-24 and apoptosis in cancer cells to obtain more effective anticancer drugs.