QUANTIFYING THE EFFECT OF FUSELAGE CROSS-SECTIONAL SHAPE ON STRUCTURAL WEIGHT
(PREPRINT)

Michael A. Falugi
Advanced Structural Concepts Branch
Structures Division

MARCH 2007

Approved for public release; distribution unlimited.
See additional restrictions described on inside pages

STINFO COPY
Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Wright Site (AFRL/WS) Public Affairs Office and is available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RB-WP-TP-2007-3100 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

//Signature// //Signature//
MICHAEL A. FALUGI JOSEPH P. NALEPKA
Program Manager Chief
Advanced Structural Concepts Branch Advanced Structural Concepts Branch

//Signature//
DAVID M. PRATT, Ph.D.
Acting Technical Advisor
Structures Division

This report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//signature//” stamped or typed above the signature blocks.
REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) March 2007
2. REPORT TYPE Interim
3. DATES COVERED (From - To) 01 March 2005 – 01 March 2007

4. TITLE AND SUBTITLE
QUANTIFYING THE EFFECT OF FUSELAGE CROSS-SECTIONAL SHAPE ON STRUCTURAL WEIGHT (PREPRINT)

5a. CONTRACT NUMBER
In-house

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
63211F

5d. PROJECT NUMBER
A0AE

5e. TASK NUMBER

5f. WORK UNIT NUMBER
0A

6. AUTHOR(S)
Michael A. Falugi

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Advanced Structural Concepts Branch (AFRL/RBSA)
Structures Division
Air Force Research Laboratory, Air Vehicles Directorate
Wright-Patterson Air Force Base, OH 45433-7542
Air Force Materiel Command, United States Air Force

8. PERFORMING ORGANIZATION REPORT NUMBER
AFRL-RB-WP-TP-2007-3100

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory
Air Vehicles Directorate
Wright-Patterson Air Force Base, OH 45433-7542
Air Force Materiel Command
United States Air Force

10. SPONSORING/MONITORING AGENCY ACRONYM(S)
AFRL/RBSA

11. SPONSORING/MONITORING AGENCY REPORT NUMBER(S)
AFRL-RB-WP-TP-2007-3100

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES
Slideshow presented at the 32st AIAA Dayton-Cincinnati Aerospace Sciences Symposium.

14. ABSTRACT
Analytical trade studies were set up and are being performed to quantify the effect of fuselage cross-sectional shape on structural weight for a cargo transport aircraft. The target vehicle design reflects various geometry, aerodynamic and inertia loads, internal pressurization, and other requirements associated with a medium-sized military transport configuration. Several elliptical cross-sections and at least one cross section containing one or more flat (LO-friendly) outer mold line segments are being evaluated. Aerodynamic loading on the fuselage is being accounted for in the trades. FEM generation and analysis includes automated structural sizing for the cargo compartment portion of the fuselage using HyperSizer. The results of this study will be used to influence decisions regarding the shape preferences for potential fuselage design candidates. The models that are created can also be used to support additional in-house trade studies to look at new structural materials and design concept candidates for transport fuselage primary structure.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT Unclassified
b. ABSTRACT Unclassified
c. THIS PAGE Unclassified

17. LIMITATION OF ABSTRACT: SAR

18. NUMBER OF PAGES 26

19a. NAME OF RESPONSIBLE PERSON (Monitor)
Michael A. Falugi

19b. TELEPHONE NUMBER (Include Area Code) N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18
A preliminary in-house analysis was recently initiated to assess the effect of fuselage cross-sectional shape on structural weight.
Outline

- Objective & approach
- Assumptions
- Structural description
- Fuselage structural trades
- Weight optimization
- Summary
Analytical trade studies were set up and are being performed to quantify the effect of fuselage cross-sectional shape on structural weight for a cargo transport aircraft.

FEM generation and analysis includes automated structural sizing for the cargo compartment portion of the fuselage using NASTRAN and HyperSizer.

An elliptical or other non-circular fuselage provides a potentially more efficient interior shape to maximize cargo.
Preliminary design trade studies of 3 different fuselage configurations have been accomplished. MSC/NASTRAN was used to calculate stresses and Hypersizer is planned to be used for structural optimization.

Three different configurations explored:
- Circular Fuselage
- Elliptical Fuselage 3/4 Aspect Ratio
- Elliptical Fuselage 4/3 Aspect Ratio

NASTRAN to calculate stresses
NASTRAN model imported into Hypersizer for structural weight optimization
As a background, an initial trade study was done on six generic fuselage configurations. This was followed by a more realistic study on three representative fuselage structures.
Shown are the initial six generic fuselage configurations that were studied. The baseline configuration was circular and the remaining were elliptical with different ratios of height to width. The applied loads are shown.
The finite element models generated for this study is shown. The panels are designed to be hat stiffened for the fuselage, and the ring frames are I-beam shaped.
Initial stress results were collected for the six generic fuselage configurations.
Shown are the analysis results for the peak stresses for each configuration. As the ratio of fuselage height over length gets smaller the peak stress rises. The curve can be represented by the shown exponential equation.

\[y = 18682e^{0.5110x} \]
Different stress curves are shown for each fuselage configuration as compared to the baseline circular configuration.
Fuselage Structural Trades
Here are the assumptions that were made for the three different fuselage configurations. Representative flight loadings, internal pressure, aerodynamic loading and gravity were used to calculate stresses.
The initial analysis was done on generic configurations. Getting into the more realistic model loading and geometry, a more representative of actual aircraft structure including the cargo floor are shown.
Shown are the aerodynamic loads that were applied to the circular fuselage with a minimum pressure of 1.75 psi and a maximum pressure of 5 psi.
Shown are the aerodynamic loads that were applied to the elliptical fuselage with a minimum pressure of 1.63 psi and a maximum pressure of 5 psi.
Also shown are the aerodynamic loads that were applied to the third elliptical fuselage.
Weight Optimization
Nastran into HyperSizer
MSC/NASTRAN was used as the loads model, and the entire model will be optimized using HyperSizer. HyperSizer, developed by Collier Research Corporation, is able to optimize in a manner which guarantees structural integrity of the entire model using methods to accurately compute margins of safety (MoS) for all potential failures.
A summary of the effort is shown. The results of this study will be used to influence decisions regarding the shape preferences for potential fuselage design candidates.