Award Number: W81XWH-04-1-0218

TITLE: Investigation of the Akt/Pkb Kinase in the Development of Hormone-Independent Prostate Cancer

PRINCIPAL INVESTIGATOR: Linda A. deGraffenried, PhD

CONTRACTING ORGANIZATION: University of Texas Health Science Center at San Antonio
San Antonio, TX 78229-3900

REPORT DATE: February 2008

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Investigation of the Akt/Pkb Kinase in the Development of Hormone-Independent Prostate Cancer

Authors: Linda A. deGraffenried, Ph.D.

E-Mail: degraffenri@uthscsa.edu

Performing Organization:
University of Texas Health Science Center at San Antonio
San Antonio, TX 78229-3900

Sponsoring Agency:
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Distribution Statement: Approved for Public Release; Distribution Unlimited

Abstract:
Our laboratory has been interested in the role of Akt in the development of hormone-independent cancers. Using a breast cancer cell model, we previously demonstrated that tumors with a constitutively active Akt are resistant to anti-hormone therapy. In this study we have expanded upon our preliminary observations in the breast model into in vitro prostate cancer models to determine the molecular and biological mechanisms underlying these findings. In our second year of this study, we found that treatment with an Akt inhibitor prevented the progression of LNCaP cells to a state of androgen-independence. These results correlated with suppression of expression of the androgen receptor, as well as suppression of the pro-survival proteins bcl-2 and NF-kB. We are currently exploring the significance of these findings in relationship to the preventive properties of the omega-3 fatty acids. Currently, progression of prostate cancer to androgen independence remains the primary obstacle to improved survival with this disease. The results of our studies suggest that targeting the Akt pathway may provide a strategy for preventing progression, resulting in increased survival among patients with recurrent disease.

Keywords: AKT, HORMONE INDEPENDENCE, SIGNAL TRANSDUCTION
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>4</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>7</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>8</td>
</tr>
<tr>
<td>Conclusions</td>
<td>8</td>
</tr>
<tr>
<td>References</td>
<td>N/A</td>
</tr>
</tbody>
</table>
INTRODUCTION
Our laboratory has been interested in the role of Akt in the development of hormone-independent cancers. Using a breast cancer cell model, we have demonstrated that tumors with a constitutively active Akt are resistant to anti-hormone therapy. In this study we will expand our preliminary observations in the breast model into in vitro and in vivo prostate cancer models and determine the molecular and biological mechanisms underlying these findings.

BODY:
Task 1: To determine whether the level of phospho-Akt within the tumor is a predictor of eventual development of hormone-refractory disease.

Initial analysis of Akt status in prostate tumors from original diagnostic biopsy specimens demonstrate high phosphorylated Akt staining in a high percentage of those tumors that eventually developed PSA failure and metastasis independent from Gleeson score. 28% of those tumors that developed recurrent disease demonstrated >2+ phospho-Akt, while less than 10% of the non-failures demonstrated high Akt staining. Final statistical analysis is being completed and will be submitted as part of a follow-up report if requested. If the statistical data confirm initial observation, phosphorylated Akt status may be used as a predictive marker for those patients that will eventually develop recurrent disease.

Task 2: To investigate in vitro whether Akt signaling is a critical component of one of the mechanisms by which prostate cancer progresses to a condition of hormone independence.

Culture LNCaP and CRW-R1 cells under conditions of hormone ablation with and without co-treatment with an Akt inhibitor and assess for progression as well as alterations in cell cycle, apoptosis and signal transduction.

As was reported last year, we have completed this task. The results of this component of the study have been reported at the annual meeting of the American Institute for Cancer Research, the annual meeting of the American Association for Cancer Research, and the EORTC-NCI-AACR Symposium on "Molecular Targets and Cancer Therapeutics". Two manuscripts are in preparation for a April submission to Clinical Cancer Research and Cancer Research.

In the previous progress report, we presented the results of our hormone ablation studies, in which we found that treatment with the Akt inhibitor prevented the progression of LNCaP cells to a state of androgen-independence. As seen in Fig. 1, all but one of the clones exposed to the Akt inhibitor arrested by week 5, and never recovered. Conversely, only seventeen (43%) of the clones in the charcoal-stripped alone group (CSS) continuously arrested. Fourteen (40%) of the clones in the CSS group arrested, but then recovered, suggesting that this subset is now hormone-independent. Approximately 13% (5 of 40) of the clones in the CSS group never arrested, suggesting de
novo resistance. Supplementation with the synthetic androgen R1881 decreased the percentage of clones that were continuously arrested compared to the CSS group, (only 28% compared to 43%), while increasing the number of clones that either recovered or continuously proliferated (18 (45%) and 10 (25%), respectively). In this current report, we present the results of our molecular analysis of these cells.

Evaluate cells for cell cycle, morphological, and molecular status

We have initiated studies investigating the molecular basis for results obtained with the hormone ablation study. By Western blot analysis, we evaluated the expression levels of a panel of proteins involved in cell cycle regulation and apoptosis, including cyclin D, p21 and p27. Surprisingly, we found no differences in the expression levels of these proteins (data not shown). Several studies have demonstrated an increase in expression of the androgen receptor (AR) at time of relapse, in both preclinical and patient samples. In agreement with these studies, we consistently observed an increase in AR expression levels in those clones that became hormone independent, compared to the levels observed in the controls (Fig 2, CS vs. Cont). Intriguingly, the clones exposed to the Akt inhibitor (Akt I) did not demonstrate this increase in AR levels, even though they were also grown in charcoal-stripped conditions. This was observed in all of the 14 hormone independent clones tested. We are currently conducting studies to determine whether suppression of AR expression is at the transcriptional or post-transcriptional level, and whether it is one of the key reasons that the Akt inhibitor-grown clones were unable to progress to hormone independence.

In addition to the AR, several reports have suggested that NF-κB signaling is also critical for prostate cancer progression to hormone independence. Because of this, we examined the hormone-independent clones for NF-κB activity (Fig. 3). We found that the clones that were hormone independent after long-term growth in androgen-depleted serum (CS, blue bar) demonstrated almost 60% greater NF-κB activity compared to those grown in complete serum (Complete FBS, green bar). Interestingly, the clones exposed to the Akt inhibitor (Akt I) did not show this increase in NF-κB activity, even though they were also grown in charcoal-stripped conditions. This was observed in all of the 14 hormone independent clones tested.

In addition to the changes in AR expression, we also observed that increased levels of the pro-survival protein, bcl-2, were not evident in the Akt I cells. As with the AR data, we are currently exploring the relevance of this observation in relationship to the efficacy of the Akt inhibitor at suppressing progression.
activity compared to the same clones still hormone dependent grown in complete serum (Complete FBS, green bar). These same clones grown in the charcoal-stripped serum supplemented with 10μM of the Calbiochem Akt inhibitor (Akt I, yellow bar) demonstrated significantly lower levels of NF-κB activity (30%) compared to either the complete or CS clones. These data suggest that increases in NF-κB activity may be critical for progression to hormone independence, and suppression of Akt activity may block this increase in activity. We addressed this question by determining whether suppression of NF-κB activity alters growth in hormone – independent cells.

To demonstrate the potential of targeting NF-κB activity in suppressing hormone independence, BrDU incorporation assay was performed to measure cell proliferation and DNA synthesis in one of the hormone independent clone (LNCAP clone-2). As seen in Figure 4, cells were grown in either complete media (10% FBS), 10% charcoal-stripped FBS (CSS) or CSS with 10uM Parthenolide (an NF-κB inhibitor) for 10 weeks. Inhibition of NF-κB by parthenolide significantly suppressed cell proliferation in hormone-independent cells (Fig 4A). Protein levels in these cells were assessed after 10 weeks. As observed previously, AR and Bcl-2 expression were higher in CSS conditions as opposed to cells grown in FBS. However, parthenolide prevented this increased expression of these two proteins (Fig. 4B). In Figure 4C, cells demonstrated decreased nuclear localization of p65 (NF-κB subunit) with parthenolide treatment as compared to cells grown in FBS and CSS. Finally, apoptosis was assessed by activation of a pro-apoptosis marker, PARP, from the whole cell extract of these cells (Fig. 4D). Consistent with the proliferation assay, treatment with parthenolide increases apoptosis in hormone-depleted conditions. These results indicate that continuous exposure to parthenolide prevents cells from progressing to a hormone refractory state, correlating with a suppression of AR and Bcl-2 expression, suggesting that targeting NF-κB could be a potential therapeutic target in hormone-refractory prostate cancer.

Since Akt inhibition effectively prevented
progression to hormone independence, we were also interested in assessing its efficacy at inhibiting proliferation in hormone-independent cells. As seen in Fig. 5, we found that hormone-independent clones grown for 96 hours in either charcoal-stripped serum or charcoal-stripped serum supplemented with 1 μM of the synthetic androgen R1881 demonstrated no significant difference in growth. Importantly, these same clones grown in the presence of 10 μM of the Akt inhibitor demonstrated an almost 60% decrease in proliferation, as assessed by MTT analysis. These data strongly suggest that Akt activity is critical for continued proliferation/survival even once cells have proceeded to hormone independence, and that Akt remains a potential target for clinical intervention in the metastatic setting, even once the disease has relapsed.

In addition to these earlier studies, we have found that Akt regulates the activity of the enzymatic subunit of telomerase, hTERT, and that regulation of hTERT may play a role in mediating the effects of Akt in promoting progression. Activation of Akt activity in LNCaP and PC-3 cells increases hTERT mRNA levels (data not shown). Intriguingly, we have found that expression of higher levels of hTERT increases the clonogenic potential of both of these cell lines (Fig. 7). Soft agar assays were performed to determine the tumorigenic potential of infected LNCaP and PC-3 cells. hTERT overexpression in PC-3 and LNCaP cells significantly increased the colony forming ability of the cells by 50% in LNCaP cells and by 200% in PC-3 cells, suggesting that hTERT may play a role in promoting tumorigenicity of prostate cancer cells. We are currently pursuing studies to determine the contribution of hTERT to the tumorigenic properties of Akt.

Task 3: To investigate in vivo whether Akt signaling is a critical component of the mechanism by which prostate cancer progresses to a condition of hormone independence.

We have had significant technical problems in completing Specific Aim 3 as originally designed. Even after three attempts and significant testing, the CRW22 cells failed to respond at any point to androgen withdrawal. We were therefore not able to determine if suppression of Akt signaling could inhibit progression to hormone independence in vivo. What we were able to determine was that once these tumors develop hormone independence, treatment with an Akt inhibitor was not able to significantly inhibit tumor growth. Castrated male mice were initially supplemented with testosterone pellets to promote the initial growth of the CRW22 xenografts. Serum PSA levels began to rise, the testosterone pellet was removed and both PSA and tumor size monitored weekly and bi-weekly, respectively. As seen in Figure 8, whether Akt treatment was initiated one week after testosterone withdrawal or after several weeks, both tumor volume and PSA levels continued to rise. However, if treatment with the Akt inhibitor was started prior to testosterone withdrawal, and then continued for several weeks, no tumor development or increase in PSA levels was observed (data not shown because n was only 2).
Akt may no longer be an effective target for intervention. Suppression can inhibit progression to hormone independence, once independence has been achieved targeting Akt. However, if the SH5 compound did effectively suppress Akt signaling, our results suggest that while Akt signaling was suppressed by the SH5 agent. These studies are currently on-going. If the studies indicate that Akt signaling was effectively suppressed by the SH5 agent. Additionally, the molecular analysis has not been completed to confirm if Akt signaling was effectively suppressed by the SH5 agent. These studies are currently on-going. If the studies indicate that Akt signaling was not effectively suppressed, it could explain the discrepancy between the in vitro and in vivo results. However, if the SH5 compound did effectively suppress Akt signaling, our results suggest that while Akt suppression can inhibit progression to hormone independence, once independence has been achieved targeting Akt may no longer be an effective target for intervention.

Fig. 8 Inhibition of Akt signaling fails to suppress hormone-independent tumor growth in vivo. Castrated nude male mice were supplemented with testosterone and then implanted with CRW22 prostate cancer cells. Testosterone pellets were removed when serum PSA levels began to rise (week 1), and treatment with either an Akt inhibitor (blue lines) or vehicle (red lines) initiated on week 2 (Group 1) or week 7 (Group 2) (indicated by star). Serum PSA levels (upper panels) were measured weekly, and tumor volumes (lower panels) were measured bi-weekly. Presented are the average serum PSA (ng/mL) levels and the average tumor volume (mm³) over the course of treatment (10 weeks for Group 1 and 8 weeks for Group 2). N=10 for each group (5 on Akt inhibitor and 5 on vehicle).
KEY RESEARCH ACCOMPLISHMENTS:
- Development of several AR-positive hormone-independent prostate cancer LNCaP sublines
- Demonstration that inhibition of the Akt pathway results in suppression of expression and activity of key proteins involved in prostate cancer progression, including the androgen receptor, bcl-2 and NF-κB.
- Demonstration that Akt inhibition may be a realistic target for therapeutic intervention for the prevention of hormone-independent disease, but not necessarily for the treatment of the disease once resistance has developed.

REPORTABLE OUTCOMES:
The data was presented at the annual meeting of the American Institute for Cancer Research as well as the annual meeting of the American Association for Cancer Research.

The results of Specific Aim 2 have been submitted for publication to both Prostate and Cancer Research.

We have reported that:

1) Suppression of Akt activity precludes the ability of prostate cancer cell lines to progress to hormone independence.

2) Growth of hormone independent prostate cancer cells can be inhibited by suppression of Akt activity.

3) Akt suppression of progression is associated with inhibition of androgen receptor expression.

4) Suppression of progression is also associated with inhibition of NF-κB activity.

5) Inhibition of NF-κB activity suppresses hormone-independent growth, expression of AR, expression of Bcl-2, and induces PARP activation (a marker of apoptosis).

6) Akt activity induces increased levels of hTERT mRNA, which may contribute to the more aggressive properties of Akt.

CONCLUSIONS:
As part of our on-going studies to better understand the role of the Akt kinase pathway in the progression of prostate cancer, we have found that treatment with an Akt inhibitor inhibited almost all progression to hormone independence in an in vitro model of androgen ablation. This was correlated with a suppression of expression and activity of key proteins involved in progression. These results suggest a critical role for Akt signaling in prostate cancer progression. The results of these in vitro studies will be confirmed using an animal model of prostate cancer progression in studies scheduled for the upcoming year.

The results of these studies could have a significant impact on clinical approaches for the treatment of recurrent prostate cancer. Currently, progression of prostate cancer to androgen independence remains the primary obstacle to improved survival with this disease. In order to improve overall survival, novel treatment strategies that are based upon specific molecular mechanisms that prolong the androgen-dependent state and that are useful for androgen-independent disease need to be identified. The results of our studies suggest that targeting the Akt pathway may provide such a strategy, resulting in increased survival among patients with recurrent disease.