Award Number: DAMD17-01-1-0817

TITLE: Bone Growth, Mechanical Stimulus and IGF-I

PRINCIPAL INVESTIGATOR: Vicente Gilsanz, M.D.

CONTRACTING ORGANIZATION: Children’s Hospital Los Angeles
Los Angeles, CA 90027

REPORT DATE: October 2007

TYPE OF REPORT: Addendum to Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 01-10-2007
2. REPORT TYPE Addendum to Final
3. DATES COVERED (From - To) 10-SEP 2006 - 10 SEP 2007

4. TITLE AND SUBTITLE
Bone Growth, Mechanical Stimulus and IGF-I

5. REPORT DISTRIBUTION/AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

6. AUTHOR(S)
Vicente Gilsanz, M.D.

E-Mail: vgilsanz@chla.usc.edu

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Children’s Hospital Los Angeles
Los Angeles, CA 90027

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENT NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The purpose of this study was to assess the potential for brief periods of low magnitude high frequency mechanical stimulation signals in the musculoskeletal system. The major findings were that short bouts of extremely low-level mechanical signals, several orders of magnitude below that associated with vigorous exercise, increased bone and muscle mass in the weight bearing skeleton of young adult females with low bone density. Ultimately, this information could be of great benefit to enhance musculoskeletal development and decrease the risk for stress fractures in military recruits. Moreover, should these musculoskeletal changes persist through adulthood, this intervention may prove a deterrent to osteoporosis in the elderly.

15. SUBJECT TERMS
Mechanical Intervention, Fractures, IGF-I, Teenagers, Low Bone Mass

16. SECURITY CLASSIFICATION OF:

a. REPORT U
b. ABSTRACT U
c. THIS PAGE U

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES 8

19. NAME OF RESPONSIBLE PERSON
USAMRMC

20. TELEPHONE NUMBER (include area code)
Table of Contents

Introduction ..5
Body ...5
Key Research Accomplishments ...6
Reportable Outcomes ...6
Conclusions ..7
Personnel ...7
Bibliography ..8
Appendices ...
INTRODUCTION

The incidence of osteoporosis, a disease that manifests in the elderly, may be reduced by increasing peak bone mass in the young. Indeed, susceptibility for low bone mass is present early in life, the amount of bone gained during adolescence is a main contributor to peak bone mass in the young adult, and peak bone mass in the young adult is a likely determinant of osteoporosis in the elderly. While research continues to identify means of reversing osteoporosis in the elderly, these data from children, adolescents and young adults indicate that enhancing bone health early in life represents a viable means of deterring osteoporosis decades before it arises. However, the benefits of early pharmacological interventions to prevent a disease that will not manifest for decades must be weighed against the possible complications of extended treatment. Preliminary data indicate that extremely low-level mechanical signals are anabolic to bone tissue, and their ability to enhance bone and muscle mass in young women was investigated in this study.

BODY

This study was designed to establish if brief, daily exposure to extremely low-level mechanical stimuli is anabolic to musculoskeletal development in young males and females, 15-20 years of age, with low bone density, who had previously sustained a fracture.

The effects of two twelve-month interventions on musculoskeletal development in young men and women were longitudinally studied and the results compared to matched groups of subjects undergoing no intervention. The mechanical intervention consisted of brief exposure to low level (0.3g; 1g = earth gravitational field) high frequency (30-Hz) mechanical loading for 10 minutes every day. The resistance exercise intervention consisted of 30 minutes of weight-bearing and trunk stabilization exercises three times per week.

A twelve-month trial was conducted in 48 young women (15-20y) with low bone density and a history of at least one skeletal fracture. Half of the subjects underwent brief (10 minute requested), daily, low-level whole body vibration (30 Hz, 0.3g); the remaining women served as controls. Quantitative computed tomography (CT) performed at baseline and at the end of study was used to establish changes in muscle and bone mass in the weight-bearing skeleton.

Using an Intention to Treat (ITT) analysis, cancellous bone in the lumbar vertebrae and cortical bone in the femoral midshaft of the experimental group increased by 2.1% (p=0.025) and 3.4% (p<0.001), respectively, as compared to 0.1% (p=0.74) and 1.1% (p=0.14), in controls. Increases in cancellous and cortical bone were 2.0% (p=0.06) and 2.3% (p=0.04) greater, respectively, in the experimental group when compared with controls. Cross-sectional area of paraspinous musculature was 4.9% greater (p=0.002) in the experimental group versus controls. When a per protocol analysis was considered, gains in both muscle and bone were strongly correlated to a threshold in compliance, where the benefit of the mechanical intervention as compared to controls was realized once subjects used the device for at least two minutes per day (n=18), as reflected by a 3.9% increase in cancellous bone of the spine (p=0.007), 2.9% increase in cortical bone of the femur (p=0.009), and 7.2% increase in musculature of the spine (p=0.001), as compared to controls and low-compliers (n=30).
Additionally, 24 males were initially enrolled in each of the vibration intervention and control groups. During the course of the intervention, one participant in the vibration intervention group moved out of state and one was incarcerated, the remaining 22 completed the intervention. There was no obvious benefit of the intervention in this group of subjects. These measures included paraspinous musculature, spine cancellous bone mineral density, spine cross-sectional area, visceral fat, subcutaneous fat, total fat, vertebral height and vertebral volume in the axial skeleton, and quadriceps femoris area, femoral cross-sectional area, femoral cortical bone area, femoral bone mineral density and femoral fat in the appendicular skeleton. Unfortunately, males were less compliant than females, possibly accounting for the negative results of this study.

Serum levels of IGF-I were examined prior to and following the mechanical intervention in both study subjects and controls. At the mid-shaft of the femurs, IGF-I did not correlate with the material density of cortical bone \((r = -0.08)\), but did correlate significantly with cortical bone area \((r = 0.50; P < 0.0001)\) and with the cross-sectional area \((r = 0.49; P < 0.0001)\) of the bone. When using multiple regression analyses, IGF-I was associated with both the cross-sectional area \((P = 0.03)\) and cortical bone area \((P= 0.04)\), even after accounting for age, gender, weight and the length of the femur. Thus, in the appendicular skeleton of male and female teenagers and young adults in this study, IGF-I had no influence on the material density of the bone, but was found to be a major determinant of the cross-sectional properties of the bone.

KEY RESEARCH ACCOMPLISHMENT

Establishing that short bouts of a low-level mechanical signal increases bone and muscle mass in young adult females.

REPORTABLE OUTCOMES

Abstracts and Presentations

10/2004 “Low DXA and CT Bone Measures in Young Adults with a Simple Sequence Repeat in IGF-I Gene”
26th Annual Meeting of the American Society for Bone and Mineral Research
Seattle, WA
03/2005 “Comparison of CT and DXA Measurements in Healthy Children”
 Bone Mineral Density in Childhood Study (BMDCS) Meeting
 National Institute of Child Health and Human Development
 Bethesda, MD

09/2005 “Mechanical Intervention Enhances Bone and Muscle in Young Women with Low Bone Density”
 American Society of Bone and Mineral Research 27th Annual Meeting

06/2006 “Mechanical Intervention Enhances Bone and Muscle in Young Women with Low Bone Density”
 CHLA Saban Research Institute 11th Annual Poster Session

06/2006 “Fat Mass is Not Beneficial to Bone”
 CHLA Saban Research Institute 11th Annual Poster Session

06/2006 “Assessment of Vertebral Peak Bone Mass by CT and DXA”
 CHLA Saban Research Institute 11th Annual Poster Session

09/2006 “Good, Good, Good Vibrations: Evidence for the Therapeutic Potential of Low-Magnitude, High Frequency Mechanical Signals”
 American Society of Bone and Mineral Research 28th Annual Meeting

CONCLUSION

Short bouts of extremely low-level mechanical signals, several orders of magnitude below that associated with vigorous exercise, increased bone and muscle mass in the weight bearing skeleton of young adult females with low bone density. Should these musculoskeletal enhancements be preserved through adulthood, this intervention may prove a deterrent to osteoporosis in the elderly.

PERSONNEL

The salaries of the following personnel were supported through this research work:

Elizabeth Anton Monique Sanchez
Noel Arugay Valerie Thompson
Jaime Gonzalez Lisa Villanueva
Agnieska Janicka Cara Wah
Monitre Koh Vicente Gilsanz, M.D.
Mercedes Landaverde Pisit Pitukcheewanont, M.D.
Sandra Maravilla
BIBLIOGRAPHY

