ABSTRACT

Advanced, burn-rate, propellant modeling is critical for developing new rocket-missile and gun propellants for Future Combat Systems and for providing a fundamental screening tool that can result in substantial cost savings compared to missile and gun firings. In this paper, we report the detailed chemical kinetics and burn rate prediction of tri-amino-guanidinium azotetrazolate (TAGzT) and nitrocellulose (NC).

1. INTRODUCTION

Most composite formulations in tactical rocket and missile systems contain about 70 to 80% ammonium perchlorate (AP), an environmentally, hazardous compound. AP contributes to ground water pollution, and its combustion yields copious quantities of toxic hydrochloric acid and an undesirable smoke signature. Thus, it is desirable to replace it with insensitive, high-energy materials that are safer and have reduced smoke signatures.

We are employing advanced flame diagnostics and burn-rate, propellant modeling to characterize new oxidizers and high-energetic binders and nitrate esters with high-nitrogen compound additives, such as 5aminotetrazole (5-AT), biz-tetrazoyl-amino-tetrazine (BTATz), or tri-amino-guanidinium azotetrazolate (TAGzT), to determine their viability in rocket-missile propellants for energy-managed systems that require lower sensitivity, greater range, and flexibility (Sausa and Anderson, 2005). In this paper, we report our modeling and experimental efforts on nitrocellulose (NC) and TAGzT.

2. EXPERIMENTAL APPARATUS AND MODELING

The experimental apparatus and modeling are described in detail in our previous publications (Anderson and Fontijn, 2005, Miller and Anderson, 2004, Sausa, Venizelos, and Cabalo, 2006, Venizelos and Sausa, 1998, and Venizelos and Sausa, 2000). Briefly, the burn rates of NC and TAGzT are calculated over a broad pressure range using Cyclops, a burn-rate predictor developed at the US Army Research Laboratory (Miller and Anderson, 2004). The predictor employs a detailed chemical mechanism containing about 400 elementary reactions involving 100 species, which we obtained from a critical literature review. We tested parts of this mechanism with our burner flame apparatus shown in figure 1 using $\text{H}_2,\text{NH}_3/\text{N}_2\text{O}/\text{NO}_2/\text{Ar}$ flames. We measured the flame temperatures by thin-wire thermometry, and the stable and radical species concentrations by laser spectroscopy, molecular beam mass spectrometry, or both. The experimental species concentrations are then compared to those obtained with the SANDIA PREMIX flame code containing subsets of the detailed chemical mechanism.
Burn-Rate Modeling And Combustion Diagnostics For Environmentally Friendly, Solid Rocket Propellants

U.S. Army Research Laboratory, AMSRD-ARL-WM-BD Aberdeen Proving Ground, MD 21005-5069

Approved for public release, distribution unlimited

See also ADM002075., The original document contains color images.
3. RESULTS

The PREMIX calculations predict very well the H₂, N₂O, NH₃, NO₂, N₂, and NO, O₂, and H₂O stable species concentrations, as well as the OH, NH, and O radical profiles in the flames studied. Figure 2 shows the experimental and modeled OH profiles for the H₂/N₂O/NO₂ flame. The experimental LIF concentrations are converted to mole fractions using the measured flame temperatures and then normalized to the calculated mole fractions for comparison purposes. The model calculations predict well the shape of the OH radical throughout the flame, including a peak near 3.0 mm. Williams and Fleming observed a similar peak in their OH profile of premixed methane flames with O₂ and NO₂ oxidizers, and attributed it to the exothermic reaction H+NO₂=OH+NO (Williams and Fleming, 1991). Our model calculations also predict well the shapes of the OH profiles of the H₂/N₂O and H₂/NH₃/N₂O flames. The calculations show approximately a 55% decrease in the postflame OH mole fraction when ~4% NH₃ is added to the H₂/N₂O flame. This decrease agrees well with the observed OH decrease of ~45% (Sausa, Venizelos, and Cabalo, 2006).

OH rate analysis for the H₂/N₂O/NO₂ flame reveals that OH is formed mainly from the reactions NO₂+H=NO+OH and N₂O+H=OH+N₂, and that it is consumed mostly from reactions OH+OH=H₂O+O and H₂+OH=H₂O+H. The peak observed in the OH profiles shown in figure 2 results from the interplay between reactions NO₂+H=NO+OH and H₂+OH=H₂O+H. In contrast, our OH rate analysis of the H₂/N₂O flame reveals that over 90% of OH is formed from the N₂O + H = OH + N₂ reaction, and ~94% is consumed from the H₂+OH=H₂O+H reaction. A similar trend is observed for the H₂/NH₃/N₂O flame. However, the NH₃+OH=NH₂+H₂O reaction in the NH₃-doped flame plays more of a role in the consumption of OH, ~8%, compared to that in the neat flame (~0.01%).

Figure 3 is a pathway diagram of our modeled results showing the nitrogen chemistry occurring in the NH₃/N₂O/Ar flame. The numbers in parentheses are the relative integrated net reaction rates from 0 to 30.0 mm for the disappearance of the indicated reactant by the various reactions. These integrated rates are normalized to 100 (2.55 x 10⁻⁵ mol/cm²·sec) for the NH₃ + OH = NH₂ + H₂O reaction. The N₂O reactant is consumed primarily by reactions with H and M to form N₂, whereas its companion reactant, NH₃, is consumed by reactions involving the OH, H, and O species to form NH₂. NH₂ is regenerated to some extent mainly from NH₃ species reacting with themselves. Although the reactions involving NO with H and M are the major routes for N₂ formation, ~32% of N₂ is formed from the NNH, NH₂, NH, NO, and N species.
Figure 4 shows a burning propellant and the nature of the burning propellant with thermochemical and physical processes that illustrate the complexity of the overall process. We modeled the gas phase at a high level of detail and finessed the condensed phase by a semi-empirical approach (Miller and Anderson, 2004).

Figure 5 shows both modeled and measured burn rates of nitrocellulose in the 1-100 MPa range, whereas figure 6 shows those of TAGzT in the 0.1 to 30 MPa range. Our model predicts the observed data extremely well for both NC (Miller and Anderson, 2004) and TAGzT (Tappen et al., 2006). We also computed the combustion products of TAGzT using our burn rate predictor at 1 MPa; their identity along with their mole fraction is as follows: \(\text{N}_2 - 0.446; \) \(\text{H}_2 - 0.211; \) \(\text{NH}_3 - 0.120; \) and \(\text{HCN} - 0.220. \) These values agree well with those observed by Tappen and coworkers except for \(\text{H}_2, \) which they could not observe because of a limitation in their experimental apparatus (Tappen et al., 2006).

4. CONCLUSION

Our advanced experimental and modeling capabilities provide the necessary tools for characterizing environmentally benign rocket-missile propellants with low sensitivity and signatures. We have developed a burning rate model with detailed chemical kinetics for solid propellants, and presented our results for nitrocellulose and TAGzT. Overall, our model predicts very well the burn rates of NC and TAGzT over a wide range of pressure.

Figure 5. Calculated and observed burning rates of nitrocellulose

Figure 6. Calculated and observed burning rates of TAGzT.
ACKNOWLEDGMENTS

We thank Dr. A. Kotlar of the U.S. Army Research Laboratory for many valuable discussions, and gratefully acknowledge support from US Army Environmental Quality Technology Ordnance Program and the ARL Insensitive, High Energy Munitions Program.

REFERENCES

Williams, B. and Fleming, J., 1995: Comparison of Species Profiles Between O2 and NO2 Oxidizers in Premixed Methane Flames, Combustion and Flame, 100, 571-590.