RELIABLE MULTICAST AND INTEGRATED PARITY RETRANSMISSION WITH CHANNEL ESTIMATION CONSIDERATIONS
Don E. Gossink1 and Joseph P. Macker2
1Communications Division, Defence Science and Technology Organisation
2Information Technology Division, Naval Research Laboratory

ABSTRACT
This paper explores extensions to parity-based retransmission schemes applied to protocols for reliable multicast delivery. It considers a hybrid protocol scheme to potentially reduce the number of required data repair cycles through channel loss prediction. It is conjectured that such a scheme has potential benefit for particular network architectures, such as direct broadcast satellite, in improving protocol throughput delay and efficiency.

1 INTRODUCTION
An extensive body of work exists on reliable multicast networking protocols and frameworks. While there are many design aspects beyond packet retransmission, reliable multicasting approaches generally utilise packet retransmission schemes [1]. Much work has gone into improving the efficiency and scalability of packet retransmission within a multicast environment. Recently there has been growing interest and exploration in the area of applying parity-based encoding methods to reliable multicasting transport mechanisms. We focus on proposed parity-based packet retransmission schemes and potential enhancements for multicast protocols.

The integration of coded “packet healing”, specifically erasure-based coding, has been shown to support improved efficiency and scalability when combined appropriately with reliable multicast transport techniques [2,3]. Our discussion builds upon previous work in this area and explores some further issues related to hybrid transport control. Work described in [2,3] demonstrated general performance gains of an integrated pure parity-based approach in supporting scalable multicast data retransmission schemes. We propose extensions to this approach by including “insurance” parity packets in the transmission process based upon predicted channel loss conditions. We also briefly explore performance issues of several multicast approaches.

2 PURE ARQ AND RELIABLE MULTICAST
When error detection is the primary means of error control, a communication system must provide a way of alerting potential transmitters that data retransmission is necessary. Standard data retransmission procedures known as automatic repeat request or automatic retransmission query (ARQ) methods are well established in practice and are generally used to achieve reliability of data transfer [6]. ARQ techniques generally involve the use of sequence numbered data packets and feedback of positive acknowledgments (ACKs) and/or negative acknowledgments (NAKs) of received packets from receivers. Most reliable multicast transport methods generally use some variant of ARQ to reliably ensure delivery of network data to a group of multicast receivers. Relative data ordering information is typically provided by sequence numbers sent as part of the transmission packet structure and lost or corrupted packets are treated by receivers as missing data objects to be replaced by successfully received data retransmission.

Several reliable multicast approaches designed for efficient bulk data transfer (e.g., multicast file transfer) additionally make use of aggregate NAK message lists or bitmaps within a transmitted information block to further reduce receiver feedback requirements [mdp, mftp, others]. In these cases, a data source collects explicit negative acknowledgments (NAKs) from multicast recipients for missing packets in a transmitted information block. Requested missing packets are retransmitted and the process is repeated until the original block is completely reconstituted at all multicast receivers.

A principal shortcoming with pure selective repeat ARQ approaches unique to multicasting is that a reduction in required retransmitted packets is accomplished by an overlap of missing data amongst receivers within the receiver group. In the case of correlated errors or losses this is true; however, for uncorrelated (independent and identically distributed) erasures the overlap is probabilistic and
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE
1998

2. REPORT TYPE

3. DATES COVERED
00-00-1998 to 00-00-1998

4. TITLE AND SUBTITLE
Reliable Multicast and Inegrated Parity Retransmission with Channel Estimation Considerations

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory, Information Technology Division, Washington, DC, 20375

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
6

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
different receivers will generally require re-
transmission of different packets. Such a
situation increases both the amount of
retransmission packets and the number of
receiver requests. Under this condition, as the
number of receivers increases, it has been
shown that the pure ARQ approaches become
less efficient. The following sections review
potential approaches to ameliorate these
shortcomings and discuss some additional
performance considerations.

3 INTEGRATED PARITY TRANSMISSION
AND ARQ

Integrated parity transmission for reliable
multicast transport is a technique that integrates
a selective repeat ARQ approach with parity-
based Forward Error Correction (FEC); related
issues are described in [2,3]. The principal of
operation is that in order to repair t erasures in
a block, a minimum of t parity symbols need to
be transmitted [4,5]. If the information coding
process is done properly, the location of the
packet erasures (missing data) within a block is
not required information, but rather the number
of lost packets is needed. This means that the
transmission source can perform efficient
repair if it determines the “maximum number”
of erased packets amongst a multicast receiver
set [3]. Multicast receivers within a network
often have implicit (e.g., based on sequence
numbers) or explicit (e.g., based on error
detection) means of determining the status of a
data stream, where packets are missing or
invalid. From an information theoretic
standpoint, such data can be viewed as an
erasure within an information code. An erasure
to refers to known data location with invalid
received data. As described in [2], parity data
packets can be formed from blocks of
information packets using well known coding
techniques (e.g., Reed Solomon) to form the
basis of a packet-oriented erasure code. At a
particular multicast receiver, the known
location of the erased packets and t received
parity packets provide a sufficient condition for
the original data block to be recomposed, given
that t or fewer packets were originally lost.

If t' parity packets are received, where $t' \geq t$, a
receiver with t erased packets will be able to
reconstruct the original block of data. Herein
lies much of the performance gain advantages
of parity coded transmission in a multicast
environment. Within a multicast group, a
single parity packet has the ability to repair
different missing data packets at different
receivers within the multicast group. As such,
within a given transmission block only the
worst case performance amongst a receiver
group or repairing region (e.g., in the case of
localised repairing) need be considered. Upon
gaining this information, data sources can
prepare the proper amount of parity packets for
repair transmission. In a basic adaptation of
pure ARQ, receivers can inform a potential
source with packet erasure information.

Subsequently, the source can compile a record
of the number of packets missed by the
individual receivers for a given block of data.
Once receivers have reported their erasure
information, the “maximum reported loss” can
be found and used to determine the number of
group parity packets required. This would
generally correspond to the worst case receiver,
and the sender would prepare a block of parity
packets for transmission to repair the data
block. As described earlier, receivers with less
than the maximum number of erased packets
are being amply catered for.

It should be noted that when there are
correlated errors the aforementioned process
should perform no worse, on the basis of
transmission efficiency, than the pure ARQ
approach previously discussed. This result is
also discussed in [2] and investigated in [3].

A further extension of such a protocol is
possible when one assumes multicast receiver
transmissions are overheard or repair reports
are provided to other multicast receivers.
Under this assumption, backoff reporting
algorithms can be used to reduce the number of
redundant receiver feedback messages. This
scheme is presently implemented in existing
hybrid data retransmission schemes1. For
example, if receiver A overhears receiver B
reporting n losses and A has t losses, where $t \leq
n$, then receiver A can remain silent during this
reporting period. Dependent upon the
underlying network architecture and other
considerations (e.g., unidirectional routing,
timing requirements) such backoff techniques
may or may not be an effective protocol
optimization, but they should be considered for
a general, scalable design.

It is expected that distributed, localised
repairing algorithms can reduce the expected
number of uncorrelated packet losses required

\[http://manimac.itd.nrl.navy.mil/MDP \]
to be repaired globally within a multicast session and subsequently reduce the potential benefits of applying parity-based retransmission procedures. Such “localised repairing” techniques are not always effective or even possible in particular networking architectures that involve large overheads, or fully-distributed timing estimates. Direct broadcast satellite, hybrid-cable access, or asymmetric wireless networks provide example scenarios where it can be prohibitive for multicast receivers to communicate directly and efficiently with other multicast receivers. In addition, even if local repairing techniques are feasible, the assumption of removing uncorrelated loss by repairing locally may not hold (e.g. as is the case when radio receiver loss is dominant). In conclusion, we see “localised repairing” and “parity repairing” as complementary schemes contributing to improving the scalability and efficiency of a wide variety reliable multicast protocol designs. After taking different architectural assumptions and criteria into consideration, it can be appropriate from an engineering perspective to apply such techniques in an integrated fashion or separately.

4 INTEGRATED RELIABLE MULTICAST FEC/ARQ WITH CHANNEL ESTIMATION

It has previously been shown that parity-based retransmission can afford considerable saving in the number of packets required for multicast group repair. In addition, the number of retransmission cycles required for reliable delivery of a complete information data block across a multicast group can be reduced. We now consider a modification to the integrated parity-based retransmission ARQ scheme. Assuming a stationary loss channel, it is apparent that additional parity in the first repair cycle can provide robustness against the corruption or loss of transmitted parity symbols. Such an approach could potentially prevent the need for multiple repair cycles and subsequently reduce the total number of retransmission cycles required to ensure the successful delivery of the overall information block to the multicast group.

Similar to the preceding discussion, maximum packet loss at any one receiver amongst a group of multicast receivers is one metric of principal interest. Using this metric, an estimate of the packet erasure probability can be made simply by dividing the number of packets lost by the total number of packets in the desired block. This estimate will be referred to herein as \(\hat{\rho} \). The accuracy of \(\hat{\rho} \) increases with the number of packets sent (with the assumption that channel loss is stationary). Strategies for improving the estimation of \(\hat{\rho} \) for given communication channels are not discussed here and we only consider the possible use of \(\hat{\rho} \) and related performance issues. Given the overall assumption that \(\hat{\rho} \) provides an accurate estimate, it is considered likely that \(\hat{\rho} \) times the number of repair packets will subsequently be erased across the receiver group during a repair cycle. Thus, in order to attempt to minimise the number of overall repair cycles required, it may be prudent to transmit additional “insurance” parity packets to cover anticipated packet loss. The number of repair parity packets required can be determined by:

\[
\left(\frac{1}{1 - \hat{\rho}} \right) \times (\text{Max No. of Packets Erased})
\]

(1)

For practical implementations a ceiling function, to round the result of (1) to the nearest integer is applied.

The usefulness of the proposed technique is all the more important, because whenever possible we would like to limit the number of required repair cycles to one. This is because losses in the first parity cycle must subsequently be repaired with independent parity or with explicit loss information as in pure ARQ. It should be pointed out that in [2], the performance gain analysis only compared reduction of messaging requirements within the initial repair cycle for pure ARQ and integrated parity-based ARQ.

5 SIMULATION DESCRIPTION

The preceding discussions for the different possible reliable multicast approaches do not adequately describe the implementation requirements of a particular protocol, or the possible measures of effectiveness. Due to space considerations, a more detailed discussion of protocol implementation requirements are not provided in this paper. The following are the two measures of effectiveness for this paper: average number of packets required and average delay, \(K \), to
reconstruct a completely error free block of information. Averages are determined from Monte-Carlo trials. The average number of required transmit packets is used to describe the amount of source transmission and retransmission packets required to successfully send a block of \(N \) packets to all \(M \) multicast users. The average cycle delay is based upon the average number of transmit cycles required to ensure reliable delivery of the information block.

The term "delay" is used in this paper to refer to the total number of transmission cycles. A cycle is the period taken from when a block of information, or repair packets, is transmitted to the time that all request for healing packets, or acknowledgment of error free replication of the information block, occurs. Thus, the average cycle delay refers to the number of cycles that on average will be experienced to achieve reliable multicast. This is not an absolute measure of time, since additional transmission within a cycle will involve additional transmission time. The actual relationship between cycle time and packet transmission time is scenario dependent. Within our discussion the first transmission cycle is the original transmission of the information block the second, third, and so on are the subsequent repair retransmissions.

The three previously discussed approaches of achieving reliable multicast have been investigated via Monte-Carlo simulation. Some common parameters of the simulations are as follows: One Sender to \(M \) receiver structure, similar to Global (Theatre) Broadcast System, assumed. Homogeneous channels for all \(M \) receivers. Packet erasures are Independent and Identically Distributed (IID). Statistically stationary channel. All receivers have indicated their repair requirements before transmission of repair packets, etc. Back link is error free. CRC is error free and identifies all errors and packets with errors are subsequently identified as erasures.

Within the simulation, random erasures are introduced by comparing random additive white Gaussian noise (AWGN) against a threshold. If the threshold is exceeded the packet is declared erased; otherwise it is assumed to arrive without incident. The determination of the threshold is done analytically using the complementary error function and a specified packet erasure probability.

6 SIMULATION RESULTS AND DISCUSSION

Simulations were conducted for various Numbers of receivers (\(M \)), Numbers of Packets in an information block (\(N \)) and various erasure rates (\(p \)). This was done for all three reliable multicast methods and the results are plotted on a logarithmic scale in the following figures.

![Figure 1 Average No. of packets sent versus probability of packet erasure for M=20, N=20.](image1)

![Figure 2 Average No. of packets sent versus probability of packet erasure for M=20, N=100.](image2)

![Figure 3 Average No. of packets sent versus probability of packet erasure for M=100, N=100.](image3)

The preceding plots of Figures 1 to 3 demonstrate that integrated parity-based retransmission approaches can substantially reduce the average number of transmitted packets required to ensure reliable delivery of a
complete information block across a multicast group. This indicates that the integrated parity retransmission approaches can more efficiently utilise available channel resources and improve scalability properties of existing protocols. It is interesting to note that the integrated FEC with channel estimation approach at very low probability of erasure requires fractionally more packets to be transmitted than pure ARQ and integrated FEC/ARQ. At moderate erasure probabilities the channel estimation still requires slightly more packets to be sent than integrated FEC/ARQ alone but is clearly superior to pure ARQ. At high erasure rates, the scheme using integrated FEC/ARQ and channel estimation approaches the average number of packets required of integrated FEC/ARQ. In some instances, it requires less. The aforementioned characteristic appears to be a dependent upon both M and N.

The second measure: average cycle delay may be considered more important as it indicates which approach may deliver the information in the least number of transmission cycles. This may translate to an information block being reliably received significantly sooner in time and reflect how soon sources may release buffers set aside for holding information blocks and parity data. Additionally, by avoiding the need to begin explicit individual packet retransmission requests beyond the first repair cycle we potentially reduce the workload required of the protocol under independent loss conditions. The following plots of Figures 4 to 6 indicate the simulated average cycle delay (plotted on a logarithmic scale) for the three approaches under the same assumptions as the average number of packets results.

7 IMPLEMENTATION CONSIDERATIONS
The model for erasure-based repairing presented in this paper is an ideal model.
However, with practical implementations one must consider the erasure coding technique being employed. That is standard erasure coding approaches, such as Reed-Solomon, have specified rates, encoded symbols \(n \) and number of information symbols \(k \) per code set. These constraints can be massaged by lengthening and shortening [5]. Shortened codes can be formed to encode short data blocks but often involve significant processing overhead for long parity blocks. Practical implementation considerations may lead us to limit the length of parity blocks.

It can easily be shown that for any \((n,k) \) erasure code that the integrated FEC/ARQ with channel estimation approach can be applied as long as

\[
\hat{\rho} < \frac{(n-k)}{k}
\]

is satisfied. That is if the estimate \(\hat{\rho} \) is larger than the constraint of (2) then one of the other reliable multicast approaches will need to be employed.

Another consideration that needs to be taken into account is the processing requirements for the reconstruction process from the parity packets. The “decoding” of code words to reconstruct the information block can require considerable processing. The decoding rate required will be dependent on the coding approach employed and the received symbol/packet rate. In some applications, this combined requirement can be considerable; restraining the amount of parity that can be afforded. With increasing processor speed or optional hardware solutions this constraint may be lessened in the future, however, using current day technology it remains an implementation concern.

8 CONCLUSIONS

In this brief study a number of aspects of reliable multicast were investigated and a novel method of including “insurance” parity within integrated FEC/ARQ was introduced and early simulation results were provided.

It was demonstrated via simulation that the integrated FEC/ARQ approaches perform better than Pure ARQ in terms of average number of packets and average cycle delay required to achieve reliable multicast delivery. It was also demonstrated that integrated FEC/ARQ with channel estimation offers potential improvements, especially when delay is an important issue. The use of “insurance” parity packets, with accurate loss estimators, is particularly interesting as it appears to approach bounded cycle delay over extended range of erasure rates. This result is anticipated to provide significant benefit in network architectures with significant delay characteristics (e.g., asymmetric satellite dissemination). While the results and analysis here are largely preliminary these results should be considered in future design of parity-based ARQ schemes, especially when the statistical packet loss estimation is seen as significant and sufficiently stable within the repairing time window.

9. REFERENCES

