AN INTEGRATED SELF-AWARE COGNITIVE ARCHITECTURE

George Mason University

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK
NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Public Affairs Office and is available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2008-60 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

/s/ /s/

WILMAR SIFRE JAMES A. COLLINS, Deputy Chief
Work Unit Manager Advanced Computing Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government’s approval or disapproval of its ideas or findings.
14. ABSTRACT

The result of our BICA Phase I research effort is the specification of a computational cognitive architecture that is capable of human-like cognition, learning and social behavior in a wide range of real-world situations and paradigms set in virtual environments. Our architecture focuses on the higher-level cognitive processes involved in human cognition and is designed to be integrated into a larger end-to-end architecture that includes lower level sensing and action.

The main feature of our architecture is the notion of self-aware cognition that we believe is necessary for human-like cognitive growth. Our approach is inspired by studies of the human brain-mind: in particular, by theoretical models of representations of agency in the higher associative human brain areas. This feature (a theory of mind including representations of one’s self) allows the system to maintain human-like attention, focus on the most relevant features and aspects of a situation, and come up with ideas and initiatives that may not follow from formal logic. The result is a robust cognitive system capable of significant cognitive growth.

15. SUBJECT TERMS

Biologically-inspired computational cognitive models, learning, cognitive growth, schemas, cognitive maps
Contents

List of Figures ii
Overview iii

1 Structure and Functional Organization of the Architecture 1
 1.1 Schema Formalism ... 1
 1.2 Mental State Calculus .. 2
 1.3 Cognitive Map Concept .. 3
 1.4 Components of the Architecture 5

2 Examples Illustrating Cognitive Mechanisms in Action 7
 2.1 Schema Examples .. 7
 2.2 Mental State Examples .. 8
 2.3 Cognitive Maps and Cognitive Growth 10

3 Computational Specifications of the Architecture 15

4 Test Paradigms and Metrics 16
 4.1 Episodic Memory Test .. 17
 4.2 Theory-of-Mind and Social Cognition Tests 18
 4.3 Self-Awareness Tests ... 18
 4.4 Cognitive Growth Tests .. 19
 4.5 Scoring Cognitive Architectures .. 20
 4.6 Selected test paradigms .. 20

5 Our Vision of Phase II 23

A Appendix A: An Overview of the CD Material 26

Bibliography 27

Acronym List 29
List of Figures

1.1 A compact representation (A) and a 2D-array representation (B) of one and the same schema. Squares in A correspond to rows in B. Arrows in B represent bindings. ... 2

1.2 Examples of schemas: a schema of a face of a cube (A) and a schema of yielding to a car on the right (B). In A, terminals v1...v4 refer to the schema of a vertex, internal nodes e1...e4 refer to the schema of an edge. In B, T is a moment of discrete time. 3

1.3 Mental states in working memory. The double line represents the working scenario. ... 4

1.4 The cognitive map concept. .. 4

1.5 Top-level self-aware cognitive architecture. 5

1.6 A hierarchical view of the architecture. 6

2.1 Boss steps out of the BICA vehicle (red dot) after a guided tour. 9

2.2 The agent is processing information, using imagery. 11

2.3 The agent has a working scenario and is offering a ride to Boss. 12

2.4 Result of self-organization of a cognitive map. Each dot represents a word. 14

4.1 Selected Test Paradigms .. 21

5.1 An agent (red circle) exploring an indoor environment. 24

5.2 A template for integration. ... 25
Overview

The result of our BICA Phase 1 research effort is the specification of a computational cognitive architecture that is capable of human-like cognition, learning and social behavior in a wide range of real-world situations and paradigms set in virtual environments. Our architecture focuses on the higher-level cognitive processes involved in human cognition and is designed to be integrated into a larger end-to-end architecture that includes lower level sensing and action.

The main feature of our architecture is the notion of self-aware cognition that we believe is necessary for human-like cognitive growth. Our approach is inspired by studies of the human brain-mind: in particular, by theoretical models of representations of agency in the higher associative human brain areas. This feature (a theory of mind including representations of one’s self) allows the system to maintain human-like attention, focus on the most relevant features and aspects of a situation, and come up with ideas and initiatives that may not follow from formal logic. The result is a robust cognitive system capable of significant cognitive growth.

Our self-aware cognitive architecture is based on three key building blocks, all of which are novel theoretical constructs that we have elaborated in detail during Phase 1. These building blocks are:

- **schemas** - used for representation of knowledge and experiences,
- **mental states** - used instantiating a self,
- **cognitive maps** - providing efficient indexing and navigating of stored memories.

These building blocks are explained in more detail in Chapter 1. Then, after we describe what the building blocks are and how they work, in Chapter 2 we explain how the concepts of self-aware cognition and human-like cognitive growth emerge from the interaction of these elements.

Our second task is that of showing the computational feasibility of our cognitive architecture. This has been accomplished in Phase 1 by mapping our cognitive architecture onto a computational specification using standard software design techniques, and then implementing a prototype version of the core components in order to illustrate and verify the dynamic interactions of these components. This is described in Chapter 3.

Our third task is to help define a set of paradigms and metrics for evaluation of cognitive architectures that are necessary to guide and to control the process of their development,
implementation and training. As a part of the Phase 1 BICA community, we have made significant contributions in this area. Results have been published in several conference papers and submitted to a journal. We summarize them in Chapter 4.

Chapter 5, the final section of this report, discusses how we see our architecture fitting into the broader end-to-end architecture of Phase II.

We have also included a CD containing supplementary materials (our BICA-related publications, detailed design documents and demos of our working prototype) that provide additional support to our belief that our design can be implemented in a computationally efficient manner and exhibit human-like cognitive robustness and growth. An overview of the contents of the CD is provided in Appendix A.
Chapter 1

Structure and Functional Organization of the Architecture

In this section we present the specifications of our biologically-inspired, self-aware cognitive architecture. As a whole, the architecture is a tightly interconnected unit that operates at a higher symbolic and connectionist level. When this unit will be used as a higher-order module in an overarching BICA Phase II architecture, its specific function will be self-aware cognition: a key feature that enables the ‘magic’ of human cognition. Why “self-aware”? Because the main underlying idea is the attribution of experiences to instances of the Self, a fundamental aspect of human-like cognition. Our self-aware architecture includes eight biologically-inspired components that are described in Section 2.4. However, in order to understand them we need to define the three building blocks on which our entire architecture is based: schemas, mental states, and cognitive maps.

1.1 Schema Formalism

Our notion of a schema is easy to grasp: in computer science terms, it can be understood as a class of objects. From a cognitive science view, our schemas are categories. While schemas themselves constitute semantic memory of our cognitive system, instances of schemas appear in working and episodic memories and represent various cognitive states: beliefs, intentions, desires, etc.

Internally, a schema is represented by a graph, the nodes of which, generally speaking, refer to other schemas\(^1\). Each node is an atomic object with a set of attributes. All nodes in all schemas are objects of the same nature and have one and the same, standard set of approximately 20 attributes. Most of the attributes in a schema are typically left unspecified and have default values. A schema can be shown in detail as a two-dimensional array of nodes with links that represent bindings among them (Figure 1.1 B), or can be compactly represented as a graph in which internal link nodes are replaced by links (Figure 1.1 A).

\(^1\)Or classes of schemas, which, formally speaking, can be called “schemas” as well, even though they may not appear explicitly in semantic memory.
Figure 1.1: A compact representation (A) and a 2D-array representation (B) of one and the same schema. Squares in A correspond to rows in B. Arrows in B represent bindings.

The structural organization of a schema is best illustrated by the array representation (Figure 1.1 B). In the first (top) row are terminal nodes, the first of which is called the head and represents the current schema itself; other terminal nodes are just called terminals: they bind to other instances of schemas. Other rows constitute the body of the schema. Each row refers either to some schema (in which case it corresponds to the first row taken from that schema) or to a primitive (a hard-coded function stored in procedural memory). Therefore, the first column is the column of “heads”. Multiple terminals and multiple rows are optional features of a schema; however, any schema has at least one node: the head. Typically, most innate schemas have exactly one node (e.g., the qualia). A node can be bound to zero, one, or a set of other nodes. Bindings are asymmetric connections implemented as pointers and stored in a special attribute called “bindings” (in analogy with bindings of the parameter list of a LISP function).

In order to illustrate the range of possibilities, two examples of schemas are given in Figure 1.2: a schema of a face of a cube (A) and a schema of yielding to a car on the right (B). In our early implementation of the architecture, the schema of a face (Figure 1.2 A) was used to recognize faces of a cube given its wire diagram. This model allows us to reproduce the Necker cube effect.

1.2 Mental State Calculus

A mental state in our framework is a limited set of (mutually bound) instances of schemas associated with one and the same mental perspective (see below). Their evolution in physical time is called mental simulation. There is a lot of analogy between mental simulations in our framework and simulations based on event calculus [1]; however, in contrast with fluents of event calculus, our instances of schemas and their elements have more characteristics (attributes) than just a truth value.

A mental perspective (an instance of self) is characterized by the subject identity,
status, moment of time, location in space, etc. Thus, a mental state is an instance of a self together with all attributed experiences (Figure 1.3). A unique feature of our approach is that we understand the Self as an idealized abstraction represented in the cognitive system rather than the system itself or any of its aspects: the body, the software, etc. Furthermore, this abstraction is never represented explicitly as a structure or a set of mechanisms. Instead, it is entirely given by a set of functional characteristics called ‘self axioms’, and it can only be represented explicitly by an atomic token. For a more detailed explanation of this framework, see [2]. Mental states have self-explanatory labels: I-Now, I-Next, etc.

1.3 Cognitive Map Concept

The notion of a neuromorphic cognitive map (Figure 1.4), the origin of which dates back to O’Keefe and Nadel [3], plays a central role in our architecture. Generally, a cognitive map can be understood as an abstract metric space, the elements of which represent certain semantics applicable to concepts and/or contexts, while the topology and the metrics reflect semantic relationships between the associated symbolic representations. This abstract metric space can be implemented, e.g., as a continuous attractor in an associative neural network [4] and subsequently used, e.g., for cognitive control in episodic memory retrieval [5]. As the system grows cognitively, the elements of this attractor become associated with symbolic representations - schemas and mental states - via associative (Hebbian-like) learning. Thus, the function of a cognitive map is to guide symbolic information processing in the architecture.
Figure 1.3: Mental states in working memory. The double line represents the working scenario.

Figure 1.4: The cognitive map concept.
1.4 Components of the Architecture

The eight components of the architecture are illustrated in Figure 1.5, and can be characterized as follows. Semantic memory (SM) includes a set of schemas organized into a semantic net. Working memory (WM) and the input-output buffer (IO) are places where schemas get instantiated. In WM instances of schemas are organized into mental states. Episodic memory (EM) consists of deactivated (“frozen”) mental states that may be organized into clusters called episodes. Each episode can be compared to a snapshot of working memory, in which mental states are connected by one consistent scenario. Procedural memory (PM) consists of primitives: hard-coded “foreign functions” in the higher-level symbolic language that can be linked to schemas. These functions support input-output operations or special cognitive skills (e.g., arithmetic operations, specific algorithms like sorting, search, etc.). In principle, both, schemas and primitives, can be innate (pre-programmed) and acquired (automatically created by the system).

The cognitive map component (CM) includes neuromorphic cognitive maps that index schemas (conceptual maps) and mental states (contextual maps), reflecting their semantics and connections to each other. One particular aspect of semantics captured by the emotional map (or the value map) is the system of values, including the main three cognitive dimensions: valence (good - bad), arousal (calming - exciting) and dominance (free - constrained). The reward and punishment system (R&P) is responsible for the origin of these primary values and their attribution to symbolic representations via reinforcement learning. Elements of R&P are stimuli: agents that represent primary feelings (hunger, pain, pleasure, etc.) and are permanently associated with selected schemas (e.g., hunger is satisfied by consumption of food). Typically, a stimulus is the source of activity in working memory (it activates the associated schema, attempts to instantiate it in a mental state, if none is suitable for instantiation, then it creates a new mental state, etc.). The driving engine (DE) is the operation system of the architecture. It is responsible for implementation of all dynamic rules and for enforcing of all constraints (including the self axioms, that are hard-coded at the lower level rather than represented symbolically at the higher level).
Alternatively, the architecture can be described hierarchically as illustrated in Figure 1.6. Together, these elements represent a seamless integration of symbolic and neuromorphic components, and give rise to the higher-level cognitive features of robustness and growth as illustrated in the next section.
Chapter 2

Examples Illustrating Cognitive Mechanisms in Action

In this section we outline dynamic rules of our architecture and describe examples explaining how the three building blocks operate interacting at many levels, thereby giving rise to the foregoing basic elements of human-level cognition. We start again with the notion of a schema.

2.1 Schema Examples

When our architecture uses a schema, it starts by creating an instance (a copy) of it in some mental state in working memory (or possibly in the I/O buffer). This can only happen when the schema is active. Cloning a schema is the first step in a standard procedure performed by the driving engine. The next step is to bind the schema and to check whether its conditions are satisfied. The step after that may be to execute the schema. When necessary, instances of schemas can be terminated.¹

Schema formalism is a very powerful tool. Schemas allow us to represent qualia, objects, properties, relations, events, rules, actions, abstract notions, etc. in one and the same format. Below we list some examples of spatial concepts representable by schemas.

The location of A
To the right of A
Between A and B
Behind B
Next to B
Nearest object
Next object to the North of A
Equally spaced A, B, C

¹In contrast with Soar, in our formalism this does not happen automatically after execution: executed instances of schemas remain in their mental states virtually forever.
And the following list refers to traffic rules that can be represented as simple schemas:

- Stop at a stop sign
- Stop for a red light
- Yield to the car on the right
- Signal to yield

Each line of the above lists can be represented by a relatively simple schema. It is interesting to note that these schemas can be constructed by the system automatically, following verbal instructions. For example, below is a possible set of instructions given to a robot explaining how to find the location “to the right of the pillar”, which is then converted into a schema. We can assume here that each line of instructions given below activates a certain schema that previously has been associated with the word pattern. An instance of the activated schema is applied then to the current content of I-Now, resulting in desired behavioral and/or cognitive events.

Turn toward the pillar.
Make sure
- you see the pillar straight ahead of you.
Memorize the distance to the pillar.
Turn right slowly, until
- you do not see the pillar straight ahead of you.
Find the location that is straight ahead of you at the distance that you remember.
That is the location “to the right of the pillar”.
Now, in order to find the location “to the right of the pillar”, do all the above steps in your imagination.
Now you can do the same with respect to any object instead of the pillar.
Store this schema in semantic memory.

The last three instructions refer to the resultant mental content itself that needs to be modified, generalized and stored as a schema in semantic memory. This operation is done with the help of another schema, which is an example of a learning schema, or a meta-schema\(^2\). The new learned schema can be used in further learning of more complex schemas. Similarly to programming, this process of instructing has no limitations in complexity of the result. This example illustrates the cognitive growth ability.

2.2 Mental State Examples

Here we provide one short scenario illustrating how mental states work. Imagine that at the end of a guided tour during which the agent became familiar with the virtual city, the following dialogue occurs between the instructor (Boss) and the agent (BICA), when Boss steps out of the BICA vehicle (Figure 2.1).

\(^2\)A meta-schema is a schema that operates on other schemas, affecting semantic memory (as opposed to the majority of schemas that operate only on instances of other schemas located in working memory).
Figure 2.1: Boss steps out of the BICA vehicle (red dot) after a guided tour.

Boss: - Now you may go home, and I will take a train. Don’t forget to fill your tank.
Agent: - OK. Do you need a ride to the train station?
Agent: - Bye.

What would it take to implement this dialogue in terms of mental states of the agent? An explanation follows below. As a general setup for this episode, we assume that the innate meta-goal of the agent is to make Boss happy.

The first utterance of Boss is perceived in I-Now. Based on this perception, the architecture understands that there is a new agent in the current scene, who is identified as the Boss. Therefore, a new mental state Boss-Now is created, where the content of the utterance is instantiated. Thus, the utterance is attributed to Boss-Now.

Based on the available information, the architecture simulates other mental states of the Boss, including Boss-Next and Boss-Goal, and therefore is now in a position to generate ideas and intentions in order to help the Boss to achieve his goals. In addition to the two straightforward intentions - do exactly what the Boss asks - there is a third idea of offering a ride to the train station, which will subsequently lead to a speech act. Therefore, the agent demonstrates minimal social competence and exhibits rational initiative.
Now that the agent has an I-Goal state and a set of ideas relevant to the goal, the process of imagery starts (Figure 2.2). Three I-Imagined mental states of the agent are created in order to elaborate the ideas, and connections are made with other mental states. For example, offering a ride may help the Boss to decide how to get to the train station in Boss-Next. Initially, the mental state I-Imagined-2 where the filling of the tank occurs has no specific allocation in space. In this case, the help comes from instantiation of relevant associations stored in the conceptual cognitive map. “Filling the tank” is associated with the concept of a gas pump, and that in turn is associated with a gas station. There is only one gas station encountered in the city. Therefore, I-Imagined-2 gets its location specified. As to I-Imagined-1, the agent recalls a familiar paradigm, in which the contextual cognitive map will be used.

Finally, the agent is able to put new mental states into a linear sequence called “working scenario” (represented by double-line arrows). In this case the working scenario looks like a plan. In other words, the agent knows what to do, and intends to let the Boss know that the instructions are acknowledged (the agent believes that the Boss is waiting for his OK). Still, there is an alternative possible branch I-Imag4: in order to explore it cooperatively, the agent will offer a ride to the Boss (Figure 2.3).

As the agent performs a voluntary speech act, the standard mental perspective shift occurs. I-Previous becomes I-Past and goes to episodic memory (disappears from the working memory). I-Now becomes I-Previous. I-Next actually splits into two mental states (going into a more detailed level of representation), one of which becomes I-Now, and another remains I-Next. Also, at this level of more detail, I-Imagined-2 becomes a sub-goal state I-Subgoal, and I-Meta incorporates the working scenario that was previously constructed in I-Now. After this, the agent hears the response of the Boss, which implies cancellation of the idea to give him a ride. Also, it becomes necessary to say “Bye” to Boss, following a general communication schema.

Here again a voluntary act and a perspective shift occur, and again I-Next splits into I-Now and a new I-Next. The agent says ‘Bye’ to the Boss and expects the dialogue to end with this.

Similarly, a scenario in terms of mental state dynamics can be elaborated that illustrates an agent looking retrospectively through its episodic memories and making general decisions about own behavior in the future: this would be an example of cognitive growth. However, in order for this to happen, the agent needs a means of evaluation of its own episodic memories and decisions: it needs a cognitive map of its value system.

2.3 Cognitive Maps and Cognitive Growth

Now we are in a position to explain how the three ingredients - schemas, mental states and cognitive maps - will result in cognitive growth of the system. To begin with, we consider self-driven, autonomous cognitive growth of the agent embedded in a certain environment. The process of cognitive growth in this case may occur in contextual as well as in conceptual spaces. In the contextual space, it involves the following elements.
Figure 2.2: The agent is processing information, using imagery.
Figure 2.3: The agent has a working scenario and is offering a ride to Boss.
• generation of mental states I-Imagined that can be used as potential goals or tools for analysis;
• their allocation on a cognitive map: formation of a system of values;
• finding possible connections (e.g., by feasible actions) among these allocated mental states, goals and memories based on available schemas;
• exploration of interesting domains and directions on the cognitive map, generation and achievement of goals.

In conceptual space, the counterpart process of cognitive growth involves the following.
• generation of schema prototypes that do not follow from the available knowledge and may not apply to the world;
• allocation of these schema prototypes on the conceptual cognitive map;
• finding connections and realizations, etc.

In other words, the agent starts ‘dreaming’ of logically possible situations and concepts. This process is guided by the growing system of values that develops in parallel on the fly. The process results in learning and development of new cognitive capabilities via decision making, goal selection, hypothesis testing, analysis and discovery of new knowledge. The system does not explore all possibilities randomly, but decides which direction to pursue based on its cognitive map, and proceeds consistently.

Is it possible to construct cognitive maps automatically? Our numerical experiments with dictionaries of synonyms and antonyms clearly demonstrate that it is possible to construct cognitive maps of value systems automatically, using a process of self-organization of the map [6]. A result of self-organization of a map in this study is represented in Figure 2.4.

The first principal component corresponds to valence. The truncated list of words sorted along the main principal component is: increase, well, rise, support, accept, clear, improve, right, continue, direct, good, make, respect, honor, happy, secure, order, understanding, fix, power, bright, present, definite, confidence, hold, sure, helpful, certain, strengthen, strong, perfect, clean, neat, fair, gain, warm, decent, sound, fit, trust, polite, control, advance, encourage, pure, suitable, join, understand.

The second principal component in this case corresponds to arousal, and the third to dominance. The results are consistent across three languages for as many as the first six principal components, and across methods of analysis (from linguistic to psychometric) for at least the first three principal components.

In summary, our architecture based on schemas, mental states and cognitive maps enables

1. basic human forms of memory,
2. various forms of cognitive growth that include growth
Figure 2.4: Result of self-organization of a cognitive map. Each dot represents a word.

- guided by instructions,
- guided by observations of others’ behavior,
- guided by social interactions,
- guided by a textbook,
- based on self-analysis,

3. social meta-cognition and theory of mind,
4. communication capabilities,
5. emotional intelligence based on the value map.
Chapter 3

Computational Specifications of the Architecture

The BICA cognitive architecture is intended to be embedded in computational cognitive agents. This implies that, to be credible, a specification for a cognitive architecture must go beyond a purely verbal description accompanied with abstract component diagrams, and must include a description of how the architecture can be mapped onto an achievable computational framework. We have taken this challenge seriously. During Phase 1 we have developed a computational specification of our cognitive architecture and have implemented a prototype version of the core components in order to illustrate and verify the feasibility of our approach.

The computation specification consists of three documents. The first is this report. The second is a design document that describes the entire system in UML (universal modeling language). Using UML for design documents is standard practice in software design. Our design document is included in electronic form on the accompanying CD. The third part of our computational specification is an API (application program interface) document that describes the actual code implementing the GMU BICA architecture. This API document is generated directly from the implemented code. The notion of self-documenting code is also standard practice in software design. This document is also included on the accompanying CD.

Finally, the dynamical interaction of the components can only be tested by implementing prototypes of the components and developing test scenarios that exercise them. As part of Phase 1 we have implemented prototypes of the basic schema process components (creating, matching, binding), mental states (I-now, I-next, I-past), working memory, episodic memory, semantic memory, hippocampal-inspired cognitive maps, input-output buffers, and the top-level driving engine. Simultaneously we have developed a set of test scenarios to exercise them and to illustrate how the dynamical interactions of working memory, mental states, episodic memory, and cognitive maps lead to cognitive robustness and growth. We have included with this written report a CD containing examples of these interactions in the form of Quicktime movies of the running prototype system.
Chapter 4

Test Paradigms and Metrics

In addition to our main progress in the self-aware architecture design, we have contributed to the BICA effort to define metrics for evaluation of progress in cognitive architecture development. In this chapter we summarize our analysis of this topic. Additional details can be found in [10].

The BICA Program is focused on the “magic” of human cognition - this can be understood as the most general, higher human cognitive abilities that computers still cannot reproduce. If so, then it is vital for our success to make sure that architectures selected for implementation during Phase II are cognitively competent on a general scale, independent of their embedding-specific input-output (IO) capabilities that may or may not be available at a moment. Then, a qualifying test for the core cognitive competency appears to be necessary at the beginning of Phase II. We begin with a list of the key cognitive dimensions that, in our view, a computational agent must have as an individual, independent of any social or environmental context.

A. Episodic memory: the ability to remember and to learn from episodes of personal experience (own mental states), as opposed to memory of general facts and skills. Interestingly, the notion of episodic memory, initially defined in terms of materials and tasks, was subsequently refined in terms of memory mechanisms using the concepts of self, subjective time, and personal experience [11].

B. Theory-of-mind and social cognition: the ability to understand and to mentally simulate other minds, including current, past and imaginary situations [12, 13]. The main two points of view on the brain implementation of this ability are known as simulationism and the theory-theory view. The simulationist view assumes that people use the same mechanisms in their own first-hand experience and in order to understand other minds [14].

C. Self-awareness: the ability to understand own states of mind in the past, in the future and at present from a meta-cognitive perspective. The ability to reason about self (e.g., to understand current false beliefs) from a meta-cognitive perspective. There is a consensus that this complex of abilities is based on the Theory-of-Mind mechanisms [15].

D. Cognitive growth: the ability to learn concepts and to apply them for more efficient task solving and learning of new concepts in new paradigms. The ability to develop general personal values, goals and principles. The ability to build internal cognitive maps of
environments, scenarios, paradigms, etc., and to use them for problem solving.

E. Attention and sense making: the ability to find the most critical aspects and features in a given paradigm and to focus attention on them. The ability to relate attended features to previous knowledge. As a result, abilities to exhibit rational initiative, to capture the gist of a situation, to learn from brief instructions or comments, to communicate efficiently, etc.

These cognitive dimensions (A-E) can be evaluated, we believe, via low complexity tasks. For each of these dimensions, we provide below examples of cognitive psychology paradigms as well as our proposed tests for a selected meta-paradigm. In addition, in our view, the following three dimensions are also critical for capturing the “magic” of human cognition.

F. Human-like communication abilities: the ability to communicate efficiently with other agents in an ad hoc team. The ability to guess intentions and further questions to be asked by a partner. The ability to relate what the partner said to what the agent saw. These abilities are particularly vital for robots intended as prospective team members [16] and also involve the abilities mentioned above.

G. Multi-modal integration: the ability to organize and to unify cognitive activities in the system based on the abstract notion of a self. Examples include the unification of parallel multimodal experiences based on their attribution to one subject of experience; the integration of different mechanisms of information processing, such as intuitive and formal reasoning; and the coherent control of cognitive and behavioral voluntary acts.

H. Higher emotions as learning and self-control tools: the ability to learn from analysis of episodic memories, using emotional self-judgment: pride, shame, humor, etc. The ability to adjust current behavior based on emotional intelligence. The ability to express and to recognize emotions in communications.

There is a problem associated with the evaluation of computational cognitive architectures using experimental paradigms from traditional cognitive psychological studies. The problem is that during this test the agent must be able to show its true level of cognitive competency in a given environment, while its vision, language or motion skills should not become the bottleneck in the evaluation. Below are selected examples of tests suitable for this purpose.

4.1 Episodic Memory Test

Because the modern notion of episodic memory relates to first-hand subjective experience, a purely behavioral test can only indirectly discriminate between episodic and semantic memories. For example, a test in which the subject is asked to describe the content of a recently visited room addresses reference memory (knowledge of the current state of the world, a variety of semantic memory) in addition to episodic memory (memory of personal experiences). Therefore, a behavioral test intended to address selectively episodic memory should detect features characteristic of human episodic as opposed to semantic memories by measuring the ability of an agent to solve problems that require those features. The features include: multimodality, richness of detail, uniqueness, association with specific event and context, immediate availability as a whole episode, and most importantly, memory of
personal mental states in the episode, including intentions and feelings. In addition, the ability to retrieve an episodic memory may depend on active cognitive control over other episodic memories.

4.1.1 Test scenario:

During an investigation of a crime, a surveillance agent recalls seeing one of the suspects on a highway ten minutes before the crime (Figure 4.1 A-E). The suspect was heading away from the crime site. Could this fact be taken as an alibi? While thinking about this episode, the agent recalls another episode that happened a few minutes earlier, when he noticed that the traffic in the direction toward the crime site was temporarily jammed due to a car accident. Therefore, an explanation could be that the suspect was stuck in the traffic and decided to take a detour. Would the agent be able to conclude that the suspect was acting according to the assumed intention?

4.2 Theory-of-Mind and Social Cognition Tests

The idea here is to assess the ability to simulate other minds automatically, based on a built-in model of a self, as opposed to logical reasoning about possible beliefs and intentions of agents (a traditional approach in artificial intelligence).

4.2.1 Three cowboy fight scenario:

The paradigm of this test is a game involving three participants. The space-time is continuous, and each player knows the following rules. The fight is arranged in a limited three-dimensional space, where everybody can continuously see everybody, cannot hide and cannot run. Everyone has a loaded gun with one “deadly” shot and is presumably a good shooter. Guns are non-transferable. At the beginning all guns must be pointed up. The fight starts after a signal and ends when each participant either has fired his shot or is “dead”. Everyone can shoot at any time after the signal. Rewards are given for “survival”; however, if nobody is “killed” during the game, all participants lose. It is assumed that shots cannot occur simultaneously by chance, and each shot is made in full awareness of the current situation. Would the agent be able to design the right strategy?

4.3 Self-Awareness Tests

The notions of self and self-awareness include many facets. Addressing the high-end aspects of the concept of self requires test scenarios that make self-awareness vital for success in a scout mission. These abilities become practically useful and efficient when they are based on a general model of a self at the core of the cognitive architecture.
4.3.1 A mirror test:

In this paradigm (Fig. 4.1 F), participants play a simple videogame in discrete space-time, where the goal is to escape from a maze. At the beginning of each trial, the player can see a guard behind a glass wall and two exits from the maze located symmetrically, on the left and on the right. The player and the guard make steps left or right simultaneously and independently of each other (e.g., the player can only see the move of the guard after making her/his move, and the same rule presumably applies to the guard). This paradigm is repeated several times, giving the player an opportunity to use Theory-of-Mind in developing a strategy that allows her/him to get to an exit ahead of the guard, practically in all cases.

Starting from the middle of the game, in some trials the guard is replaced by a mirror reflection of the player that looks identical to the guard in other trials. The reflection always repeats all of the player’s moves and in this sense is impossible to “trick”. Unlike the guard, however, the reflection would not stop the escapee at the exit, instead it would just disappear. The two kinds of trials alternate randomly. The player is informed before the test that there are two possible situations, is informed about details of the first situation, and is given no information about the second situation, except that it is visually identical to the first. The challenge is to learn to distinguish two situations behaviorally and to design a right strategy for each. Our preliminary experimental study shows that most human subjects (undergrads) succeed in 10-20 trials.

4.4 Cognitive Growth Tests

One particular aspect of cognitive growth consists in learning new concepts for further use at a next level. This kind of learning performance can be measured in a multi-stage test that requires development of new conceptual knowledge at an early stage and the ability to use this knowledge for problem solving and further learning of higher concepts, at a later stage. Knowledge learned in one situation should be successfully applied in a new situation. Here are examples.

The agent learns to control a car by trial and error. Later, while performing driving with an instructor, it learns the driving rules (e.g. to stop at red lights) by trial and error, receiving negative responses to wrong actions from an instructor. While doing this second-stage learning, the agent has to use concepts acquired during the first stage in order to develop and use higher concepts (in this case, driving rules).

The agent learns a particular maze during a treasure hunt game. Later the agent is located near the same maze and is witnessing another game, in which one team, “police”, is chasing a member of the other team, a “fugitive”. The maze has several entrances. The “fugitive” runs into one of them, and a “policeman” runs into another. Will the agent be able to predict possible scenarios based on its previous experience in the maze? When a second “policeman” arrives, will the agent be able to point to the entrance where the “policeman” should go in order to capture the “fugitive”?

19
4.4.1 “Cheating on exam” scenario:

Two participants take one and the same test (e.g., one of the above tests): one after the other. The additional challenge for the first participant (who presumably solved the test) is to give a hint to the “friend” by referring to one concept that both presumably know. The concept should be selected as the most helpful tip, but by itself cannot be the complete solution (which is not entirely captured by any single familiar concept). E.g., a tip for the Three Cowboys problem could be “shoot to the air”, which may not be on the list of relevant actions, for a naive player. It remains to add that this test paradigm also addresses episodic memory, meta-cognition and the cognitive growth ability.

4.5 Scoring Cognitive Architectures

Given a battery of tests like the above examples, the procedure of evaluation and the metrics need to be specified. While most of the above tests would yield a simple “yes” or “no” result (that is, of course, meaningful by itself), the measure of performance needs to be refined by additional questions addressing various levels of the task. Results can be averaged over independent trials that may differ in details. Then, assuming that each particular test gives a number or a set of numbers, the cumulative score can be derived using principal component analysis, in analogy with the g-factor that proves to be a robust measure of human intelligence [7, 8].

Another possibility of scoring cognitive architectures based on their behavior is inspired by studies of perception of virtual reality. The feeling of presence in virtual reality is a well-documented phenomenon that is objectively measurable by psychometrics, behavioral assessment, etc. [9]. This measure extends to perception of artificial entities embedded in the environment as “alive beings” as opposed to automata and is mainly determined, as the experimental studies show, by the consistency of participant’s expectations with the actual behavior of the agent. This measure would require adding a human participant, or a human viewer, to the above test paradigms.

4.6 Selected test paradigms

Figure 4.1 illustrates the selected test paradigms. Parts A-E of Figure 4.1 illustrate the reconstruction of events related to the bombing based on available episodic memories. A: a snapshot of working memory showing the lattice of mental states. Working scenarios are represented by double lines. B: The cognitive architecture has eight components. Components involved in the task are circumscribed by dotted lines. E.g., cognitive map is responsible for finding the relevant mental states in episodic memory. C: The agent notices a suspicious truck ten minutes before the blast. D: The agent is passing a car accident scene and a traffic jam twelve minutes before the blast. E: Simulated episode of the suspect deciding to take a detour fifteen minutes before the blast.
Figure 4.1: Selected Test Paradigms
Part F of Figure 4.1 illustrates the mirror test paradigm. The player (below) must escape from the maze. The figure behind the glass wall (top) could be a guard or a mirror reflection. The actual test is presented in the player egocentric view, in discrete space-time. Visual perception capabilities (e.g., face recognition or visual recognition of mirrors) are not helpful in this paradigm, which addresses the general understanding of agency.

Some of the additional measures will require ”looking inside” the architecture in order to ensure its biological fidelity. This is important for many reasons: e.g., one may not be interested in architectures that remember ready solutions for a limited set of tests, but are clueless in general. For example, in an episodic memory test, one would want to make sure that episodic memory is used for solving the test (and, of course, that the architecture has an episodic memory system). In general, it could be vital for the evaluation to detect the method of solution of the test, not only the overall behavioral result.
Our self-aware cognitive architecture focuses on the higher-level cognitive processes that we feel are critical for a robust system capable of significant cognitive growth. It is designed to be integrated into a larger Phase 2 architecture that includes lower level sensing and action. During Phase 1 we have had lengthy discussions with other BICA groups that we focusing more on the lower levels (primarily HRL and the University of Maryland) to insure that our schema-based representation system is sufficiently scalable and flexible to accommodate for a wide range of interfaces and levels of abstraction. So, we don’t anticipate any significant problems in interfacing with other components of the overarching architecture. In addition, we have already verified that switching to an indoor environment like the one in Figure 5.1 presents no new difficulties for our architecture.

So, here is how we can imagine a possible interface with our unit (Figure 5.2).

(i) Our input-output (I/O) module will be linked to the streams of processed sensory input and motor output command, as well as to representations of plans and goals. This I/O connection will allow our unit to follow all major sensory, behavioral and cognitive events that take place in the overarching architecture.

(ii) In addition, direct links will be made between our schemas (stored in our SM) and symbolic representations in other components. E.g., these links will allow for a synchronous retrieval of appropriate knowledge. Similarly, connections will be made in order to synchronize other components of our unit with the corresponding components outside of it.

What will be the result of this integration? On the one hand, our self-aware unit will reflect on all essential sensory, behavioral and cognitive events that will take place in the greater architecture, with the capability of guiding or vetoing actions. On the other hand, the self-aware unit will be able to handle those situations in test paradigms that may require human-like thinking (self-awareness, meta-cognition, strategic retrieval of episodic memories, cognitive growth, social competency, etc.), when otherwise the architecture could be stuck. We have recently analyzed examples of cognitively challenging paradigms to make sure that we can handle them.
Figure 5.1: An agent (red circle) exploring an indoor environment.
Figure 5.2: A template for integration.
Appendix A

Appendix A: An Overview of the CD Material

We have also included with the final report a CD containing the following items:

- An electronic copy of this report.
- An electronic copy of the SF298 form.
- A design document describing the GMU BICA architecture using UML (universal modeling language).
- An API (application program interface) document describing the actual code implementing the GMU BICA architecture.
- A demo directory containing a number of demos that illustrate the GMU BICA architecture in action.
- A publications directory contains electronic copies of our BICA-related papers.
Bibliography

Acronym List

API - Application Programming Interface
BICA - Biologically Inspired Cognitive Architecture
CM - Cognitive Component
DE - Driving Engine
EM - Eposodic Memory
GMU - George Mason University
HRL - Hughes Research Laboratory
LISP - List Processing Language
PM - Procedural Memory
R&P - Reward and Punishment
SM - Semantic Memory
UML - Unified Modeling Language
WM - Working Memory