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ABSTRACT 

This research evaluates the production of three 

dimensional (3D) clouds for geospatial viewing programs such 

as Google Earth, NASA World Wind, and X3D Earth.  This 

thesis took advantage of iso-standard X3D graphics and X3D 

Edit in conjunction with manually produced image textures to 

represent 3D clouds.  While a 3D geospatial viewing might 

never completely characterize the current state of the 

atmosphere, a sufficiently realistic virtual 3D rendering 

can be created to present current sky coverage given 

adequate satellite and model data.  Various visualization 

demonstration results are presented that can be rendered and 

navigated in real time.  Further research and development is 

needed to match a cloud typing model output with a 

particular method of 3D cloud production.  Data-driven 

adaptation and production of cloud models for web-based 

delivery is an achievable capability given continued 

research and development. 
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I. INTRODUCTION  

Cloud visualization continues to present a challenge 

for both the meteorological and computer visual graphics 

communities.  The ever-increasing ability to have larger 

amounts of computer memory, as well as allocated memory for 

graphics cards in a personal desktop or laptop computer are 

allowing for improvement in cloud generation and 

visualization techniques.  Bringing together computer 

graphics and meteorological knowledge bases makes it 

possible to represent cloud phenomena in a manner that is 

scientifically accurate and aesthetically pleasing. 

While meteorologists are trained to conceptually 

visualize 3D aspects from a 2D cloud rendering or even 

numerical data, it is difficult to pass this knowledge on to 

a customer.  A 3D visualization that encompasses a certain 

meteorological correctness and an artistically correct 

rendering of clouds can be a valuable addition to Air Force 

weather products.  Such visualizations must provide a direct 

path from numerical model fields to a customer-oriented 

viewing platform, in order to improve end-user understanding 

and utilization of weather data.  Such a platform can be 

used at all levels of planning and encompass all types of 

missions from ground patrol to flight paths.   Additionally, 

such visualizations must permit the military forecaster to 

note areas of particular interest and focus on the 

meteorological soundness of a forecast thereby saving time 

and avoiding possible errors by eliminating the mental 

conversion to numerical or 2D data. 
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A theater-wide sensing strategy continues to be a top 

priority for the Air Force Weather forces.  With ingest of 

available insitu instrumental, observer, and remote sensing 

data, perhaps a comprehensive virtual 3D sky rendering can 

be used for critical mission oriented decisions.  By 

utilizing this study’s 3D cloud visualization platform 

combined with already available model data as a “nowcast,” 

the forecaster in the field, while not having the ability to 

have eyes on the desired observation area, can get a 

synthetic approximation of what the cloud conditions are.  

This will significantly improve or, in part, imitate a 

remote theater sensing strategy. 

A number of questions can be raised as to why such an 

endeavor with 3D clouds is appropriate for the Air Force or 

to the US Military in general.  One such question is what 

are the advantages of rendering clouds in this manner rather 

than the traditional 2D visualizations or simply creating 

the appearance of clouds for the GIS systems?  Very simply 

we live in a 3D world.  Every flight, maneuver, and 

operation requires the planner or operator to visualize his 

3D mission from a 2D map.  A whole new era of mission 

planning and execution is upon us with the ability to 

conceptualize the plans on a computer with 3D visualization.  

Creation of full 3D volumetric clouds, rather than an 

appearance of clouds within a 3D environment, is needed to 

represent the current state of the measured atmosphere as we 

would see it.  Most importantly these volumetric clouds give 

a realistic view to customers whose central mission is of an 

aerial nature. 
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The presentation of cloud data within a 3D virtual 

environment is beneficial for more than military or 

government uses.  The consumer use of GIS programs has 

become varied and broad.  Thus the general benefit of 3D 

cloud rendering as presented by this thesis is also broad.  

It represents the next step in the evolution of weather 

visualization products. 

The ultimate goal of this thesis is to connect the new 

and popular consumer 3D visualization programs with 

meteorological variables, creating a cloud representation 

using a standard personal computer. With this purpose in 

mind a collection of fog, stratus, cirrus, and cumulus cloud 

cases are developed for visual display.  Within the program, 

full analysis of the cloud structures can be accomplished by 

using predefined scene navigation.  User interaction can 

include a land-based examination of the surrounding sky, or 

a full flight plan that follows a mission path through 

different levels and types of clouds. 
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II. BACKGROUND  

A. CONCEPT 

When looking back on the history of 3D applications for 

cloud visualization, it is helpful to look at both 

scientific and visual graphic efforts.  While focused on the 

same topic, these two efforts tend to take a different 

approach toward 3D cloud visualization.  A brief look at 

these two approaches to designing 3D clouds is essential for 

understanding the research directions applied in this 

thesis. 

Meteorologists and the scientific community tend to be 

focused on all aspects of defining areas of clouds precisely 

and correctly using either data-driven or mathematical 

modeling techniques.  Efforts to more accurately define the 

cloud base, cloud top, and incremental resolution have been 

the objectives of much research.  Many different sources of 

data can ultimately provide input for the 3D space occupied 

by a cloud structure.  Satellite, radar, atmospheric 

soundings, and ground observations can all be sources of 

input data, with availability dependent on the area and time 

period under scrutiny.  For example, there is a large 

disparity in data available from the Continental U.S. 

(CONUS) vs. data sparse regions such as Afghanistan or Iraq. 

Regardless of the rendering program, the scientific 

visualization of environmental data tends to be quite 

logical showing clear delineation between incremental 

changes in the data.  This often leads to colorful 2D map 

presentations with a legend that details the data for the 

user.  While perfectly useful for the scientific community, 
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this type of display requires the customer to conceptualize 

the data as a 3D cloud.  Such conceptualization is a learned 

skill and not inherently intuitive.   

It is important to emphasize when data visualization 

attempts to render a better resolution than the data 

captures, a certain amount of interpolation is required.  In 

practice, interpolation is seen in the parameterization and 

grid placement of data variables within a weather model.  

Ingestion of data from various different locations to a 

gridded model requires the use of parameterizations to not 

only fit the data to a computational grid, but also to 

forecast the variables forward in time.  In the 

visualization of such data the opposite process often 

occurs.  Algorithms are used to modify the gridded data into 

a more realistic area for the interpolated data to occupy.  

The result is data values are no longer constrained to fit a 

gridded mesh, but rather correspond better to geographic 

features. 

B. SCIENTIFIC VIZUALIZATION 

The number of available scientific applications used to 

view meteorological data is large.  It is worthwhile to 

investigate such applications to determine if there are any 

features desirable for a 3D application as studied by this 

research.  One such application long used by the scientific 

and academic world is the Vis5D program. 

VIS5D software is an OpenGL based volume renderer for 

2D as well as 3D graphics.  At the heart of the Vis5D 

software is a process called 3D texture mapping.  This 

process takes advantage of graphics-acceleration hardware to 
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rasterize polygonal slices from texture memory to view a 3D 

image (Meibner et al, 2000).  The process of volume or 

volumetric rendering can be slightly difficult to 

understand.  The goal of 3D volume visualization is to 

display an object, or in most cases data, that fills a 3D 

volume.  In order to represent this continuous data field to 

a viewer, usually an internal surface of interest is the 

only part of the object that needs to be rendered.  Hence, a 

patchwork of connected polygons in 3D virtual space is used 

to represent the 3D object.  Figure 1 is an example of a 

Vis5D 3D rendering of a yellow isosurface enclosing constant 

parameter values and white 2D contours following constant 

parameter values.  Prominent in the figure is the 3D box 

with an isosurface and volumetric displays overlaid on a 

raised surface physical map projection.  While Vis5D can 

display large volumes of gridded data, and represent them in 

a smoothly shaded visualization, rendering of data becomes 

more complex at higher resolutions.  These renderings are 

primarily used for exterior viewing without the option of 

being able to navigate through the scene of individual 

clouds.  If this option were available, the fly-through 

navigation of internal cloud structures would not seem 

realistic. 
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Figure 1.   3D example of Vis5D showing ensemble forecast 
data at approximately 1:1800000 ratio for vertical 
exaggeration (SSEC,1998). 

 

Of all the features of the Vis5D software, arguably the 

most beneficial is open source licensing.  While the 

definition of open source has evolved over the years, the 

benefits are consistent, primary among them being that the 

cost is free for any use.  Open source coding also allows 

for open dialog from developers and users alike.  This free 

sharing of ideas encourages development and improvement of 

the software, adding features and fixing bugs.  Such is the 

case with the Vis5D community.  While the software is no 

longer supported in its original form as created by the 
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Space Science and Engineering Center of the University of 

Wisconsin-Madison, the original code has been used and 

improved in various ways by multiple organizations (Hibbard, 

1989). 

Regardless of the form of software, algorithms for 

rendering, or amount of shading all the scientific software 

visualization tools use data to drive the rendering process.  

Gridded data can be rendered in 3D independent of file 

format. 

C. VIRTUAL VISUALIZATION 

In other visualization applications, the endeavor to 

represent reality is the challenge.  Software developers in 

gaming and graphics animation companies have come a long way 

in their ability to visualize a realistic sky.  In the case 

of this thesis, there are many tips and methods that can be 

acquired from studying these endeavors.  One such endeavor 

is the process of making the video game software - Microsoft 

Flight Simulator 2004.  Figures 2 and 3 are examples of the 

cloud renderings from the program.  These examples are 

notional renderings in a virtual world for the purposes of 

the flight simulator game and do not try to represent a real 

cloud at a particular place and time.   
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Figure 2.   Realistic clouds at sunset produced from 
textured sprites for Microsoft Flight Simulator 
(Wang, 2003). 

 

 

Figure 3.   A cloud scene for Flight Simulator showing 
stratus, cumulus congestus, and altocumulus 
(Wang,2003). 
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For virtual flight simulation, it was necessary to 

develop a process to render realistic clouds while using as 

little of the computer memory and graphics resources as 

possible.  Likewise, the graphics process of developing 

clouds for geospatial display programs needs to be 

computationally inexpensive.  Adding data driven clouds to 

such programs is a capability the programs were not 

originally designed for.  

The Flight Simulator team was successful in creating 

artistic clouds using a different technical approach when 

compared to the clouds rendered by Vis5D.  No collected data 

or numerical models were used in the production of Flight 

Simulator clouds.  Ten types of clouds were manually created 

for the program using image-editing software and proprietary 

scripting.  Bounding boxes, as seen in Figure 4, defining 

the areas of clouds are placed throughout the 3D scene.  

These clouds are not the volumetric polygon surface 

renderings common to 3D scientific data clouds.  The clouds 

are created by assigning locations within the bounding boxes 

for 16 different 2D images on “sprites” that face toward the 

camera view at all times.  This process as seen in Figure 5 

gives the viewer the appearance of a 3D image formation.  

The patterns of the 2D images, sprite density, location, and 

rotational aspect of the images assist in the composition of 

different cloud types.  Within the software program, 

calculations are completed for time of day and depth-of-

image location within the cloud for shading purposes, giving 

an even more realistic appearance.  Not all of the cloud 

structures are of a volumetric design.  For faster rendering 

additional cloud “imposters” were created.  Only a certain 

number of real volumetric clouds are rendered within a 
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finite region around the camera or user view.  The imposters 

are images of clouds applied to a ring surrounding the 

viewer at the horizon.  While adding to the realism of the 

flight simulator by providing clouds at a distance, there is 

no interaction with the cloud imposters and the viewer 

(Wang, 2003). 

 

 

Figure 4.   Bounding boxes are created in Microsoft 
Flight Simulator for regions of clouds (Wang, 2003). 
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Figure 5.   Textured sprites are scattered throughout the 
bounding boxes to visually represent different cloud 
types (Wang, 2003). 

 

Other companies have created similar volumetric 3D 

clouds.  Generally the processes of creating volumetric 

clouds are proprietary, as are the software visualization 

packages.  Likewise, these cloud representations are 

customarily artistically driven and therefore created “by 

hand.”  Once a particularly striking resemblance of a cloud 

is formed, it can be copied and manually placed in a 

different location within the 3D environment.  The gaming 

community is most likely satisfied with these cloud-making 

procedures.  The process is computationally inexpensive 
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while the frame rate of displayed images remains high, and 

most importantly the realism of actual clouds are present.  

Even while research of possible connections between 

meteorological data and virtual clouds was being 

accomplished for this thesis new methods were created. 

Sundog Software has recently introduced a product named 

Silver Lining.  Silver Lining is slightly different from the 

artistically created clouds in that the clouds are 

procedurally created.  There are no copies of clouds. All 

clouds as well as imposters are dynamically created within 

the software.  Within the Graphical User Interface (GUI) the 

user can determine selections for meteorological variables, 

time of day, and the determination of computational 

limitations.  Currently four types of clouds are scripted to 

be built: cumulus congestus, cumulus mediocris, cumulonimbus 

stratus and cirrus.  Figure 6 shows how realistic 

procedurally created clouds can be in a 3D geospatial viewer 

with high resolution surface imagery.  The company offers a 

commercial software development kit (SDK) for software 

developers to use the Silver Lining application program 

interface (API) with other programs (Sundog, 2008). 
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Figure 6.   An example of procedurally generated cloud 

using Silver Lining software (Sundog, 2008). 

 

With the advent of the 3D geospatial display systems such as 

Google Earth and NASA World Wind the benefit of displaying 

meteorological data is more apparent.  The National Ocean 

Atmospheric Administration (NOAA) and the National Weather 

Service (NWS) have embraced the use of such visualization 

programs especially Google Earth.  Satellite, radar images, 

and weather warnings are just a few of the weather products 

produced for visualization in Google Earth.  While this 

shows a step past customer-based 3D programs, the images of 

satellite and radar are still the 2D images the 

meteorological community is familiar with.  The composite 

radar image for the Monterey Bay area as seen in Figure 7 is 
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a flat rendering of the composite radar data that has been 

added as a layer to the Google Earth program.  This is 

useful, but still is not quite the 3D aspect of 

meteorological data outcome for geospatial visualization 

systems desired by this research. 

 

 

Figure 7.   NWS composite radar layered at ground level 
viewed in Google Earth (Google Earth 2008). 

D. GEOSPATIAL DISPLAY APPLICATIONS 

With the determination made to research volumetric 

clouds for a real-time interactive visualization program the 

question is raised as to which program.  Based on successful 

deployment, currently at the top of the list are, as 

suggested above, Google Earth and NASA World Wind.  Both 

have their good points as well as bad.  Looking at the 

programs in different areas such as ease of use, features, 
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and the learning curve associated with its use, helps to 

determine which program is better suited toward the weather 

customer.  The areas examined to determine if certain 

aspects of this thesis research will be supported by the 

programs are: detailing, if the program is an open source 

project, the type of programming language used, and the 

functionality. 

1. Google Earth and NASA World Wind 

While Google Earth was the simplest to use and quickest 

to learn, it does not completely support the methods to be 

used in the volumetric cloud formation.  Additionally it is 

not an open source project, so software features cannot be 

scripted in to function with the volumetric clouds as 

created with a viewer facing image node.  NASA World Wind is 

an open source project with a SDK available so that an 

application program can be written to allow the 

functionality necessary for the volumetric cloud method. 

2. X3D Earth 

There is one aspect of this research area that is a 

larger undertaking and beyond the scope of this thesis, but 

which is hopefully of keen interest to the DoD - a cross-

service web-based 3D geospatial display system that can 

cover many roles of planning and training.  One such 

possibility exists via the undertaking of X3D Earth by the 

Modeling, Virtual Environments and Simulation (MOVES) 

Institute of NPS as part of the X3D Earth Working Group of 

the Web3D Consortium. These groups are working to use “Web 

architecture, XML languages and open protocols to build a 

standards-based X3D Earth usable by governments, industry, 
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scientists, academia and the general public.” (Brutzman, 

2006) An open source, scalable, sustainable platform can 

branch through all services and career fields.  The very 

basis of this plan rests upon Extensible Markup Language 

(XML) standards, especially Extensible 3D (X3D) Graphics.   

E. EXTENSIBLE MARKUP LANGUAGE (XML) 

X3D Earth, Google Earth, and NASA World Wind have a 

common thread in their base languages.  XML is a text-based 

language used to define the data languages that transmit 

and store data defined by the user or author.  The XML 

language does not actually perform any functions or 

processes.  These abilities are defined by specific tags as 

allocated by a particular schema.  Google Earth’s Keyhole 

Markup Language (KML) is a specialized markup language used 

in transporting large amounts of geographic data, and 

implemented by the Google Earth browser.  X3D is a royalty-

free International Standards Organization (ISO) compliant 

schema defining features for the viewing of XML data, 

largely 3D scenes.  Due to the similarities between these 

two programs and their base languages, 3D scenes and 

objects are often transferable between the two.  By 

applying an Extensible Stylesheet Language Transformation 

(XSLT), one schema or markup language can convert data into 

another.  This ability is especially beneficial for 

projects with the magnitude of virtual 3D worlds and 

geospatial display systems.  Additionally, it is beneficial 

to the prospects of this research. 
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F. X3D VIEWERS 

There is large distinction between the definitions of 

viewable data models using XML schemas within visual 

application programs.  The schema is a defined set of 

supported nodes or events.  A viewer will then take the 

information given by the schema and render it to the screen.  

Both Google Earth and NASA World Wind have their own viewers 

as part of the program package.  X3D has many dedicated 

viewers and is capable of being rendered in a web browser 

such as Microsoft Internet Explorer or Netscape using an X3D 

or VRML supporting plug-in.  The benefits of diverse support 

can cause challenges, however, some functions and 

capabilities of X3D were not readily available using certain 

plug-ins, as found during this research.  The benefit of a 

non dedicated viewer allows a user to choose a familiar 

browser and can far outweigh any difficulty.  For this 

thesis effort Cortona plug-in by Parallel Graphics was the 

most useful.  Publication of exemplars and results continues 

to improve the capabilities and conformance of all viewers, 

making X3D the most stable and reliable long-term option. 
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III. METHODS AND PROCEDURES 

A. VOLUMETRIC PROSPECTS 

The first consideration to build volumetric clouds is 

to define how to fill a 3D area with appropriate geometry 

and textures.  Initially the prospect of particle fields was 

an interesting option.  As meteorologists know a cloud 

structure is comprised of particles of condensed water or 

ice, and drawing such objects seems like a most logical way 

to form a virtual cloud.  The first issue was then how to 

define a particle in the XML and X3D schema chosen to 

represent as the geospatial display system.  Within the X3D 

scene a particle is given a geometric shape and appearance 

properties.  If a particle is given a radius in the 

micrometer range, relative to other scaled objects in the 

displayed scene, the resolution is far below the ability of 

the computer or graphics to render it.  This required the 

particle size be increased to a viewable size. Filling a 3D 

area required many particle geometries.  As more geometric 

shapes were added to a scene the graphics hardware needed to 

render and keep track of locations and appearance.  The 

amount of memory necessary to process the particles and view 

them is enormous for any virtual GIS scene with clouds.  It 

soon became apparent that the use of particles for 

volumetric filling was not yet a plausible technique. 

While still wanting to completely fill a 3D area for a 

true volumetric cloud, placing layers of textured pixels was 

studied next.  X3D includes a node with the ability to 

texture individual pixels or predefined 2D areas.  This 
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ability includes both color and transparency which is 

advantageous to cloud production.  A complete sky cover 

using a limited number of 2D surfaces was developed.  

Scripting for these surfaces use a white color, but employed 

random generation of pixel transparency.  Figure 8 displays 

an area of 200km by 200km comprised of 10 pixel textured 2D 

surfaces layered on top of each other at a distance of 100 

meters apart.  The surfaces remain static and a flythrough 

of the cloud structure is somewhat realistic for a cirrus 

type cloud layer.  A visual artifact of this method is if 

the view position is directly parallel with the textured 

surfaces, the user can look directly out the side of the 

cloud structure and see blue sky.  This certainly detracts 

from the realism. Besides the view difficulties, several 

other challenges arose before fully functional scenes can be 

developed.  The layer structure in Figure 8 was created 

using 100 by 100 grid spacing for pixels.  This implies each 

surface needs to generate 10,000 random pixel color and/or 

transparencies.  Filling a defined cloud area with any more 

than approximately 100 surfaces created stack overflow and 

memory errors within the Java virtual machine engine.  

Additionally, the visual rendering of the surfaces was 

dependant on individual display resolution.  When a display 

was given a high resolution, individual pixels were able to 

be distinguished.  However, this created an image that did 

not visually represent a cloud well at all.  Thus it was 

deemed not practical to fill volumetric areas using pixel 

layers.  Fortunately the methods used by Microsoft in Flight 

Simulator 2004 were similar to nodes available in X3D, and 

cloud production turned its course in that direction. 
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Figure 8.   Sky cover layer using pixel texturing formed 
from 10 100x100 pixel layers. 

 

B. CLOUD PRODUCTION 

The general difficulty in producing model-driven clouds 

in virtual 3D is the process is both scientific and 

artistic.  In Microsoft Flight Simulator 2004 the decision 

was made to not programmatically generate the clouds through 

an automated process.  Developing the clouds manually gave 

more control to fine tune the artistic look of the cloud, 

and the automated process had parameterized equations whose 

result did not yield desirable results (Wang 2003).  While 

being more difficult to produce virtual cloud structures in 

3D for meteorological purposes, it was deemed beneficial to 

produce clouds procedurally.  While preferable for a 

meteorological program, specialized programming needs to be 

accomplished for every different type of cloud.  The many 
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details of cloud structure and the method to best fill 3D 

regions for a particular type of cloud are daunting 

challenges and are more than can be completed in one thesis.  

However, the procedure outlined by this research cis a good 

start and be more fully developed to create a better visual 

representation and a more complete library of images and 

patterns for cloud production in virtual worlds. 

     1. Texture Images 

Many methods for image generation are viable for the 

production of clouds as shown in this research.  There is an 

essential understanding that the texture of the image, when 

rendered with a volumetric placement, must generate a 

visibly recognizable structure of the cloud it represents.  

It is these images, when textured and placed in and around 

the bulk of the cloud, which contain visual information 

regarding cloud density and texture.  Ultimately, in 

conjunction with placement in a 3D space, these textures 

need to accurately portray the cloud type.   

The most important visual aspect of realistic clouds in 

a virtual world is shadowing.  To the human eye, shadowing 

brings out the three dimensional aspect of any object.  

During this thesis research images used for textures were 

produced manually.  The GNU Image Manipulation Program 

(GIMP) is a robust and free image editing software that 

allowed many textures to be explored (GIMP, 2008).  It also 

allows for scripting to produce images automatically.  The 

file format chosen for the images was the Portable Network 

Graphics (PNG) format (PNG Home Site, 2008).  This image 

format is open and royalty free making usage and deployment 

easier.  Testing a variety of image textures in clouds 
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revealed that solid textures did not produce a realistic 

effect.  A certain amount of transparency dispersed 

throughout the texture especially along the edges of the 

square image, significantly aided in the cloud realism.  PNG 

file format images, unlike other formats, can be layered 

with a transparent background allowing for these effects. 

Figure 9 shows six images in 512x512 resolution that 

were created and tested for cloud structure.  An additional 

capability within X3D is the manipulation of images based on 

an alpha value, which determines the transparency of the 

image or object being rendered.  This benefit can be used 

for multiple purposes.  It can be applied to entire clouds 

to vary appearances within the browser or viewer.  

Transparency can be programmed and applied to individual 

images on billboards to simulate the growth or dissipation 

in the cloud life cycle.  This technique suggests that such 

a cloud production process can be utilized not only in 

static environment simulation, but also dynamic simulations. 
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Figure 9.   Individual PNG images created for billboard 
textures with white coloring and alpha layer. 

 

     2. X3D-Edit 

 During the research X3D-Edit version 3.1 was used for 

cloud production.  X3D Edit is a scene graph editor that 

allows production of X3D scenes conforming to the X3D schema 

and a viewing renderer.  Figure 10 is an example of the X3D 

Edit application (Brutzman, 2002). 
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Figure 10.   X3D Edit authoring tool for creation of 
Extensible 3D (X3D) graphics scenes showing an 
example of the scene graph for the cloud rending X3D 
file. (Brutzman, 2008) 

 

Within X3D-Edit is the ability to define other 

scripting via JavaScript (i.e. EcmaScript) to accomplish 

various tasks.  These scripted tasks represent the building 

or production of different cloud structures.  The script 

created X3D nodes representing the cloud and in turn 

presented to the browser as a VRML file.  While the methods 

researched and developed within this thesis are mostly 

manual, it is possible to completely author either an 

X3D(XML) or VRML file to produce the same cloud structures.  

For long-term data-driven production processes, the XML-

based X3D encoding is preferable in order to take best 

advantage of web-based services and best practices. 
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     3. Billboard Placement 

The billboard node in X3D transforms the rotation of 

its geometry to face in a given direction defined by the 

user.  The scripting for billboard placement was designed to 

not only create a viable 3D cloud, but to also minimize the 

number of billboards used.  By minimizing the number of 

billboards, the number of surface vertices is minimized and 

computations requiring graphics resources are reduced.  

Several placement methods involving various coordinate 

systems were used in the initial research, and each method 

has its own relative merits in producing different cloud 

types and physical appearances.  Regardless of which method 

is used, all computations for billboard placement are 

completed prior to the scene being rendered. This means 

graphic computations within the scene are not affected by 

the complexity of the calculations used to place the 

billboards. 

     4. Coordinate Systems 

Cloud structure takes on different shapes, suggesting 

that designing models for their shape ought to utilize 

different geometric shapes as well.  Cubic coordinates are 

given by the pseudo code: 

()
()
()

RandomCZ
RandomCY
RandomCX

∗=
∗=
∗=

 

Where C is a maximum value and Random() is a multiplier 

between zero and one yielding a random number between zero 

and the maximum value C.  It is also important to note that 

each invocation of Random() provides a different random 
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value.  This method may be best used when a larger area of a 

more uniform cloud structure needs to be created, or a 

smaller area in which only a few image textures are needed.  

It is certainly the simplest to define and code.  However, 

as larger quantities of billboards are rendered within the 

cubic area, its square dimensions become visible in the 

browser.  Cylindrical coordinate’s pseudo code is: 

θ

θ

φφ
πθ

αφ

sin*
()*

cos*

tan*tan*
()*2

()

rZ
RandomHY

rX
then

YHr
Random

Random

=
=
=

−=
=

∗=

 

α represents a maximum angle between zero and π /2 

corresponding to the angle φ , H is a defined maximum height 

of the cloud or section, and θ  the circular angle placement 

around the disk at layer y.  Conical coding is: 

θ

θ

πθ

sin*
()*

cos*

()*
()*2

rZ
RandomHY

rX
then

RandomMr
Random

=
=
=

=
=

 

Here the placement of the billboards is random about a disk 

of radius r at a random height Y.  Spherical coordinates can 

be coded as a complete sphere or half sphere by limiting φ  

to an angle of π /2: 
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     5. Random Placements 

During cloud development a random placement of 

billboards was adopted.  This randomness aids in varying the 

appearance from cloud to cloud or between cloud sections.  

Alternatively the number of billboards can be reduced by 

defining either the height Y or the radius r incrementally 

by dividing the maximum value by the total number of 

billboards filling the region.  This also prevents, to a 

certain extent, the over layering of billboards within a 

limited region.  Randomness will also become an important 

factor when it comes to model and data resolution.  Without 

the ability to resolve down to the smallest cloud rendered 

within a 3D scene, it is still necessary to program for this 

ability.  This aspect is further discussed in the chapter 

five.  This effect is not meant to replace 

parameterizations, rather at this point in the production 

process it is merely used to circumvent the lack of 

resolution and proper parameterizations. 

     6. Shading 

Shading of a cloud structure is an aspect in the cloud 

production that was not fully developed under this research.  

While accomplished to some extent to show a more detailed 
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appearance, no calculations for the complexity of scattering 

were programmed.  A darker shade was manually applied to the 

previously developed images.  Within the scripting, as a 3D 

coordinate is calculated for individual billboards, if the 

placement is designated within the lower portions of the 

cloud, the darker image is assigned to that billboard.  This 

method assumes the sunlight was from a purely nadir 

direction.  A limitation of this method of shading an X3D 

billboard node is for thinner clouds or billboards that have 

been assigned a position not completely beneath the cloud is 

rendered as shaded.  This is seen in side view of Figure 11 

and top view of Figure 12.  While not completely discernable 

from the side, viewing the cloud from above shows individual 

darker billboards that in the real world appear white.  This 

erroneous shading can be avoided, but in turn complicated 

the shading algorithms slightly. Chapter IV details future 

work suitable to cloud shading. 

 

 

Figure 11.   Side view of an X3D scene showing cirrus and 
multi shaded layer cumulus clouds. 
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Figure 12.   Top view of an X3D scene showing multi shaded 
layer cumulus clouds 

 

C. PERFORMANCE CALCULATIONS 

 Performance measurement of the cloud rendering method 

was accomplished by two processes.  The first is by simple 

calculation of total system memory allocated to the browser 

program and view plug-in to accomplish the rendering.  For 

comparison purposes of future work the system properties 

used are an AMD Turion dual core 1.9 processor with 2 

Gigabytes(GB) of random access memory(RAM).  Internet 

Explorer 7 is used as the browser with a Cortona plug-in for 

VRML viewing.  Besides system resource programs no other 

programs were running at the time of performance operations.  

Initial calculations use one of the predesigned image 

textures, which are 512x512 pixel resolution, normal scaling 

on a 100x100 meter flat X3D IndexedFaceSet geometry node.  

The resulting billboards are rendered in a cubic geometric 

area of 1 km.  Table 1 outlines the results and Figure 13 
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charts the responses.  These results assist in the 

computation for approximating the total number of billboards 

and associated cloud structures that can be rendered.  Of 

note during the 10,000 billboard test the listed system 

occasionally reached its limit and returned a fatal runtime 

error requiring shutdown of the browser program.  These 

results can vary based on how much system memory is 

allocated to other minor programs running in the background.  

Scale modifications were run on the same number of 

billboards however; scaling had no effect on the memory 

allocation.  This suggests cloud size will have no effect on 

the scene rendering, but rather simply the number of 

billboards used will dictate the grid size able to be 

rendered.  A moderately sized cumulus cloud with a base of 

approximately 1km built by previously described scripting 

methods using 5 cloud sections with 8 billboards each 

creates a total of 40 billboards.  Thus 15 square km 

complete cumulus sky coverage requires 225 clouds and 9000 

billboards.  This is close approaching the limit of 10000 

for the test system.  It is important to note these tests 

were for one cloud type production only.  This 15 km limit 

for cumulus does not take into account any additional layers 

and further billboards that may be needed to complete the 

rendering.  This is a severe limitation to overcome.  There 

are a couple concepts that can be further researched to 

expand the grid memory limits.  The first is the use of 

imposters or full cloud image on one texture.  The second 

would be to use a Level of Detail X3D node to limit the 

number of billboards used based on either direction or 

distance from any given cloud.  These concepts are further 

discussed in Chapter IV. 
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Table 1.   Memory performance for 1 to 10000 billboards. 

Billboards 1 10 100 1000 2000 5000 10000 
          

Memory 
(mb) 31 41 55 150 225 485 900 
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Figure 13.   Memory allocation increase with increased 

billboard production. 

 

A second performance test was completed that applies to 

the visual notion of navigation through the virtual world.  

A snapshot of the sky about any location will most likely be 

preferable to the majority of customers from a 

meteorological standpoint.  However, to be able to navigate 

through a scene is advantageous for mission planning whether 

by ground or flight.  To test for limitations in navigation, 

frame rate is computed within the browser.  See Appendix 2 
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for the XML code.  The frame rate indicates how often the 

browser/viewer combination can recalculate and display the 

3D scene.  The frame rate speed is not completely dependant 

on the number of billboards used within the API script, but 

other factors to include the filled pixels within the view 

frustum or visible screen.  The method for frame rate 

testing of the cloud scene can be accomplished by many 

methods. The method used for thesis testing was simply 

layering billboards horizontally behind each other and to 

automatically navigate through the scene.  This method 

allows for the frames per second (FPS) calculation with an 

increasing number of filled pixels and layers in the visible 

window.  The Cortona viewer has the ability to designate one 

of four different navigation speeds in essence changing the 

navigation FPS rate.  Additionally the navigation speed can 

be increased within the browser by pressing the shift key 

during movement.  This test can not therefore, be used as a 

finite limitation of frame rate.  It is shown as a benchmark 

for limitations, as well as future work.  Speed designated 

by the user, in addition to whether the navigation is manual 

or automated will affect the frame rate.  Table 2 outlines 

the results and Figure 14 charts the responses.  There are 

many practical applications to discuss the minimum FPS for a 

software program.  However, the fact is Phase Altering Line 

(PAL), National Television System Committee (NTSC), Digital 

Television (DTV), commercial films, computer video cards and 

screens range from the 20’s to hundreds of FPS.  The basis 

for many applications usually rests upon the ability of the 

human eye to make a distinction between moving images.  This 

distinction can vary based on whether the image is a flicker 

of light or the blur of a moving object.  For the general 
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purposes of this endeavor a common benchmark is 

approximately 15 FPS.  However, during the testing, a 

measured 11 FPS showed very little “jump” between displayed 

images.  If the same calculation is applied to this speed 

test for navigation, the acceptable number of billboards is 

limited to 1,000.  This is a far less than memory limitation 

of 10,000.  Applying this number to the 1 km sized cumulus, 

it seems a mere 25 clouds can be rendered for navigational 

purposes.  For complete sky coverage this is 5 square km. 

 

Table 2.   Frame rate performance in frames per second 
for 1 to 10000 billboards. 

Billboards 1 10 100 1000 2000 5000 10000 
          

FPS 35 31 25 11 7 3 1.5 
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Figure 14.   Decline in frame rate with increased 
billboard production. 

While total memory is system independent using the same 

methods, limitations of memory and frame rate are system 
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dependant.  As with all computer software any enhancements 

in system speed and related technology will improve the 

individual software performance.  With these methods shown 

there is a definite need to improve the cloud rendering with 

a fewer number of billboards to maximize the grid area 

viewed at any given time.  Section B in the Chapter V 

discusses some of these methods and other possibilities. 
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IV. DATA PROCESS 

A. METEOROLOGICAL INPUTS 

The process to fill the GIS scene with procedurally 

created clouds is straight forward and depicted in Figure 

15. 

 

      

   
 
    

 
    

 
  

      

      
      
      
      
      
      
      
    
    
    
     
      
     
     
     
   

 

  
     
      
      
      

Figure 15.   Flowchart depicting the rendering process 
from raw data to scene visualization on a user side 
computer. 
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While creating 3D clouds is the goal of this thesis 

research, there is a need to locate a data source for their 

production.  While it is beyond the scope of this research 

to determine the most meteorologically or statistically 

correct data, certain features of data are desirable.  Many 

different methods can be used to define the 3D region of a 

cloud, and many have been researched for the purpose of 

creating 3D clouds.  NPS studies have been accomplished 

using IR satellite data (Owen 1998) and a combination of 

satellite, upper air soundings, and surface observations 

(Stone 1992).  While other options include radar or 

stereographic satellite compilations, the realization of 

available data for any particular area remains a challenge.  

Ultimate remote sensing capabilities for 3D cloud structure 

include recent use of cloud profiling radars on satellites. 

The CloudSat project images (Figure 16) show cloud and 

storm structure, intensity and rainfall rates.  Never 

before has such detailed structure been available for such 

a complete atmospheric profile.  However, for thesis 

research purposes use of this data by itself is not 

practical as it only represents a thin horizontal slice of 

atmosphere.  Inclusion of this data in future research 

could prove invaluable.  However, for a nearly complete 3D 

data set that allows for the definition of clouds using a 

weather forecast model is proposed. 
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Figure 16.   CloudSat profile imagery for storms over 
Texas (Colorado State University 2008). 

 

While it is beneficial for procedurally generated 

clouds to be rendered independent of any particular data, 

the methods researched and produced in XML at minimum need a 

cloud classification. 

1. Cloud Depiction and Forecast System (CDFS) II 

The CDFS can serve at least as a partial input to the 

cloud rendering method.  The model incorporates satellite 

and conventional analysis through four levels of processing 

in its final output, the Worldwide Merged Analysis as 

depicted in Figure 17. 

 



 42

 

Figure 17.   CDFS multilevel data, processing, and 
analysis methods for creating the Worldwide Merged 
Cloud Analysis (Plonski 1998). 

 

Cloud typing begins in level two where clouds are 

detected from the raw data and classified into three initial 

groups of cirrus, cumulonimbus, and fog based on spectral 

analysis.  In level three, further typing of cumuliform or 

stratiform is calculated based on spatial extent of the 

cloud formation. Finally, based on data, height of the cloud 

is classified as low, medium or high cloud.  The model then 

classifies the cloud as one of nine cloud types.  Cloud 

layer thickness is predefined and assigned based on 

classification.  The cloud base is then calculated by 

subtracting the assigned thickness from the cloud top 
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height, and can later be changed when level four processing 

is accomplished with real world observations and other 

conventional reports are merged. 

2. Combined Sources 

This model discussion does not imply there are not 

superior algorithmic methods for the determination of cloud 

regions in 3D space.  It is assumed beneficial and practical 

for cloud rendering methods to have a high resolution model 

in both the horizontal and vertical.  Using a high 

resolution model saves further extrapolations to be 

accomplished within the cloud rendering API, introducing 

further error.  Regardless of model resolution, a certain 

amount of approximation might be necessary.  The 

quantitative resolution visible within a 3D virtual world is 

essentially in the sub meter range.  As discussed the method 

of filling 3D space is guided by a particular cloud type 

structure.  Different types of clouds are associated with 

different methods and calculations as well as base images.  

Thus, determination of cloud typing within the model is 

useful.  These two processes of cloud region and cloud type 

determination can also presumably be obtained from different 

sources, so there is no need to find a single model or data 

set defining the two aspects.  Variables of cloud mixing 

ratio and ice mixing ratio are common to many forecast 

models.  A separate model can provide the high resolution 

spatial input and a typing model such as CDFS, or 3DCAS can 

drive the rendering API. 

This thesis concept initially was to research the 

ability to create clouds near real time for the purpose of a 

theater sensing strategy.  The proof of concept question 
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becomes how to quantify the accurate depiction of 3D GIS or 

virtual world clouds.  Ultimately the closer the virtual 

clouds appear to the real world clouds of the same time, the 

more accurate the production rendering can be considered.  

This comparison is essential in a cloud rendering process 

proof of concept for operational use.  In addition to 

approximated areas of clouds being accurate, relaying to a 

customer the visual aspect of a weather scenario associated 

with a certain type of cloud ought to be accomplished by the 

rendering.  The comparison is essentially a model and 

rendering API verification. 

The process of cloud rendering for meteorological 

purposes is only limited by model input.  As discussed, the 

dual model input is currently seen as the most logical 

choice.  However, the process can be employed for nowcast or 

forecast purposes.  A single model would need to be 

developed to drive both region and method.  The algorithms 

as used by CDFS for cloud typing are derived from current 

satellite data.  Therefore algorithms for cloud typing would 

need to be developed in conjunction to the spatial regions 

associated with clouds. 

B. INPUT METHODS 

 Under current design, meteorological input occurs in 

multiple areas dependent on type of model data used.  Table 

3 is a general outline for the cloud production process.  

The cloud rendering process and model input will vary 

slightly depending on the cloud type. 
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Table 3.   Individual steps of the cloud production 
process programming. 

 

Step 1 Origin Designation 
  
Step 2 Cloud Location 
  
Step 3 Cloud Type 
  
Step 4 Cloud Quantity 
  
Step 5 Cloud Size 
   - Cloud Sections 
   - Section Size 
   - Billboard Size 
   - Billboard Quantity 
  
Step 6 Cloud Production 
   - Coordinate System Used 
   - Billboard Texture Selection 
   - Billboard Rotation 
   - Billboard Geometry 

 

Step 1 – Origin Designation: The first step entails 

designating the general grid location for display.  If the 

model file name or header data contains location 

information, automatic retrieval and designation within the 

API is suggested.  The X3D XML schema allows for a curved 

earth surface or orientation on a flat plane, based on user 

needs.  Additionally, objects can be assigned a location 

based on simple scene coordinate system or in geospatial 

coordinates.  Regardless of how the earth’s surface is 

displayed X3D schema uses a coordinate location designated 

in meters.  This is useful when using model data gridded in  
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meters or km.  For the cloud rendering, a corner of the grid 

can be designated as the scene “origin” for the local 

coordinate system. 

Step 2 - Cloud Location: Based on their origin, clouds 

will be placed by coordinates designated in meters and 

heights relative to the surface.  Care must be taken here to 

adjust for height if elevation data is used to display the 

surface.  Surface height must be added to model data height 

if the model layer is terrain following.  There will 

invariably be some randomness or artistic license taken in 

placement. Display resolution in the virtual world will 

simply be higher than the mixture of model data used. 

Step 3 - Cloud Type:  Based on the data from CDFS or 

similar cloud typing model the API will search for the 

cataloged method.  This implies a minimum of nine different 

cloud creation methods be created.  Research methods of 

cloud typing and differentiating the visual aspects of 

clouds are virtually endless. 

Step 4 - Cloud Quantity:  Related to the placement is 

the cloud quantity.  The current method design is for user 

input to define the number of clouds placed within a 

quadrant.  As model data is included the number of clouds 

will vary based on cloud type, number of adjacent model grid 

sections designated with clouds, and cross referenced with 

cloud size.  Step four would likely benefit from the dual 

model input as higher resolution input from humidity, ice 

mixing ratio or water mixing ratio can assist in the 

quantity determination. 

Step 5 - Cloud Size:  Cloud size is again directly 

related to cloud type and can partially be defined by the 
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layer depth from CDFS.  Additional steps are required within 

the API as it was found that construction of the cloud 

structure was best handled with multiple sections.  The 

number of sections will be designated based on cloud type 

and overall cloud size.  Section size will be calculated as 

a percentage of the cloud size and can be standard or given 

a range for visual diversity.  Part of defining the size of 

the cloud is related to the size of the textured billboard.  

Thought and testing must be given to the size of the 

billboard.  When textures are applied to the stated size, 

the image will be displayed as created.  Cloud size can also 

be varied by scaling.  Scaling, as seen in testing, does not 

affect the performance, but it will affect the appearance of 

the texture.  This affect can be favorable or not, which 

dictates methods must be tested in various and multiple ways 

for a desirable final visualization.  Billboard quantity 

will also assist in the cloud size, but also the cloud 

density.  Some correlation is needed between the amounts of 

moisture variable as described in step four, as well as 

reference the texture used in step six. 

Step 6 - Cloud Production:  The rest of the cloud 

rendering process will be defined by model inputs already 

used in previous steps.  The cloud type input from CDFS will 

drive the coordinate system used for billboard placement, 

billboard geometry, and rotation.  Billboard selection is 

guided by the dual input of type and moisture variables as 

well as shading principles discussed below in this section.  

The proposal exists that some cloud types may require other 

inputs.  For example, which direction an overshooting top is 

developed would be dependant on wind direction and speed.  

Wind patterns can also be used in the general tilt of a 
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larger cumulonimbus structure.  Cloud physics and dynamics 

are certainly a useful knowledge in this area, but once 

again how to visually represent the cloud phenomena with 

meteorological inputs rests upon the data available. 
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V. RENDERING IMPROVEMENTS 

A. SHADING 

The shading of cloud structures in computer graphics 

terms is related to the meteorological principle of the 

scattering of visible light by the water or ice particles 

within the cloud.  The computer graphics chore is the 

simulation of these principles of scattering.  This principle 

of shading takes in several different aspects and can be 

defined as complex or as simply as the designer likes.  In 

practice, the shading should represent a realistic cloud to 

pass along the intended weather effects of the cloud structure 

to the viewer.  In Chapter III, example of a simple 

characteristic for clouds to be darker in lower levels is 

shown.  This, of course, is not a color difference, but rather 

the lack of visible light at these levels.  Figure 18 shows 

light from a source is scattered away and toward the path to 

the eye, and progressive distances along this path have fewer 

photons available to observe.  Realistically if given 

meteorological information to render the virtual scene, the 

sun position would be defined by the time of day as defined in 

the data set.  The shading would then be darkened in positions 

of the cloud that are opposite the position of the sun.  

Additionally, the algorithm for cloud shading can be 

calculated to increase darkness based on cloud depth in 

relation to the sun.  The shading algorithm can be further 

developed by including computation of ambient light scattered 

into the direction of the camera view angle.  A certain amount 

of shading control can be accomplished through texture 

manipulation. 
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Figure 18.   Single source light principles for shading 
indicating scatterings along the light path to the 
viewer. 

Further control can be accomplished within X3D by one 

of three different light nodes: directional light, point 

light, and spot light.  With introduction of internal scene 

lighting, consideration must be taken into account for shape 

of the textured billboards.  Internal lighting is 

accomplished on geometry surface normal.  Given a flat 

surface any internal lighting will be rendered the same 

across the billboard texture and across the entire cloud 

structure.  This effect can be changed slightly by giving a 

certain rotation to the defined geometry prior to 

designating the billboard node.  The geometric shape 

allocated for the billboard can also affect this internal 

lighting.  Due to the changing normal across a curved 
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surface, the billboard will show a difference of applied 

internal lighting.  Testing was attempted with different 

categories of curved surfaces.  When mapping to a complete 

sphere structure, image textures must be edited by scaling 

the image smaller.  When texture mapping occurs the smaller 

image is then mapped to only one side of the sphere, which 

is preferable for the billboard rendering.  Additionally the 

sphere node within X3D is not editable to increase the 

number of vertices defining the sphere.  This presents an 

unfavorable visual artifact of seams and vertices from the 

defined sphere visible on the image texture.  Half spheres 

were also tested using extrusions of arcs, however in 

texture mapping the image is applied to the arc instead of 

the entire hemisphere, rendering this geometry unusable. 

Non-Uniform Rational B-Splines (NURBS) curves are an 

available node within the X3D schema.  The surfaces formed 

by NURBS present a smoother surface than a defined sphere.  

Testing was attempted, however the node was not supported by 

the Cortona plug-in.  More research is needed to determine 

shading control of the billboard surface. 

A separate approach would be to utilize the 

ShaderProgram and ProgramShader nodes available in X3D.  

These nodes give separate programs the ability to define 

shading per vertex or per fragment within the X3D scene.  

Many different methods can be utilized in this separate 

program, and no suggested method can be made at this time.  

Research points to using Open Graphics Library Shading 

Language (GLSL) or Phong shaders.  These shaders can be used  
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to replace manual production of image textures representing 

a more realistic cloud, however, this is acknowledged as a 

more advanced approach. 

B. PERFORMANCE 

As can be seen from the performance tests, memory 

allocations and frame rate are very limiting to the display 

of large spatial regions of clouds.  Further research must 

employ system memory cost saving measures to display as many 

visual aspects of current weather and cloud conditions while 

maximizing system resources. 

1. Imposters 

Taking a cue from the previous work of Microsoft and 

Sun Dog Software, complete images of clouds can be displayed 

on one dedicated piece of geometry.  Questions include:  At 

what range from the user or camera view would using the 

imposter process begin?  This is surely a question that must 

be tested within the designated browser/viewer.  This 

question of range may be influenced by the purpose of the 

rendering whether the view be static or for navigational 

purposes.  If a static view for the geolocation is used, 

imposters can simply be images of clouds.  This 

significantly decreases further effort in texture 

production.  These images communicate the weather associated 

within the region, at a fraction of the system memory cost.  

If future design incorporates the option to navigate through 

the virtual world, imposter creation becomes more 

challenging.  One idea is to create procedural imposters.  

With procedural cloud production, every cloud structure is 

slightly different.  At some distance from the cloud 
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structure the imposter is replaced by a 3D procedural cloud.  

For visual accuracy the imposter needs to be very similar in 

size and shape to the imposter.  A second option is to 

encompass the view position with a textured ring of 

imposters.  The ring of imposters moves in conjunction with 

the view position.  This option is slightly limiting in that 

these “distant” cloud structures never actually become 

closer to the camera view.  Thus if the model data suggests 

a different cloud pattern at some point the images on the 

surrounding ring would need to be replaced.  If the cloud 

structures have been in position throughout the entire 

navigation and such an exchange can appear abrupt. 

2. Texture Switching 

Another option exists, but is likely not as 

computationally cost effective as single image imposters.  

This alternative is to limit the number of rendered 

billboards dependant on the camera view direction and range.  

If a normal cloud structure is made of 40 texture images 

only a certain number of images are actually seen at any 

given angle.  If the images are semi transparent there is a 

certain perceived color meshing between the front and rear 

image giving the appearance of thickness.  This density can 

be compensated for by simply assigning a less transparent or 

nontransparent image to the few billboards in the view of 

the camera.  As the camera view came within a defined 

distance from the cloud structure, the remaining billboards 

are rendered and the images replaced by the regular 3D 

textures.  X3D and GIS systems calculate or perform this 

function as a Level of Detail (LOD) determination as defined 
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by a node.  LOD is a method of loading or unloading data to 

improve visualization and performance. 

C. DISPLAY 

While these methods are developed for the purpose of 

insertion into present or future GIS systems, it is not too 

difficult to design a general display system unique for 

meteorological purposes.  A concern over insertion into a 

GIS platform is the focus of the application.  Certain GIS 

applications place a larger emphasis on high resolution 

elevation data and imagery.  These attributes are important 

but also require sharing system resources.  As seen by the 

performance testing, current ability is limited.  This being 

the case, a simpler virtual world design will allow for a 

greater spatial area to be displayed.  Again the option for 

surface displays is varied.  Determination would need to be 

made between a curved or flat Earth surface and with or 

without elevation data.  Conversely, switching between Earth 

surfaces can be accomplished as a user directed input. 
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VI. CONCLUSION AND RECOMMENDATIONS 

A. CONCLUSIONS 

Through the general methods researched and developed 

here, a simple XML language representation of 3D clouds has 

been shown.  At the present time, X3D is the most useful and 

accessible schema to use for the cloud structure production.  

The available nodes in the X3D schema are fully compatible 

with production methods.  Texture images were produced 

manually using image editing software while cloud structure, 

position, and lighting are automated within the file 

scripting.  An interesting concept of this method is that 

the visualization processing step currently in use by the 

Joint Air Force and Army Information Network (JAAWIN) can be 

bypassed.  The rendering API can be programmed to pull data 

directly from a server thus saving processing power on the 

JAAWIN server side. 

Limitations are apparent in current versions of the 

cloud rendering.  Most significant is the limitation of 

textures by memory.  For these methods to be productive and 

useful, a balance of volumetric and 2D cloud structures must 

be used.  Additionally a lack of full compatibility between 

the X3D schema and plug-in viewers hampered the efforts.  To 

take full advantage of available X3D nodes a fully X3D 

compliant viewer plug-in must be used. 

With further research and development this 3D cloud 

rendering process can be utilized as the next generation of 

meteorological visualization products. 
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B. RECOMMENDATIONS FOR FUTURE WORK 

To further improve production methods the following 

tasks are suggested: 

- Edit the API script to ingest and display clouds from 
model data: CDFS typing and high spatial resolution 
moisture model data. 

- Explore the option of using Sun Dog Software’s Silver 
Lining SDK.  A further option is to contract the 
company to develop the processes.  For a more rapid 
production of 3D cloud rendering, this would be the 
preferred method. 

- Further develop a minimum of 9 methods of cloud 
production to match the types designated by CDFS.  This 
process would include image texture improvement for an 
accurate cloud representation.  In contrast 
artistically created clouds of the nine types can be 
used.  The limitations of memory would still be 
present, but this can enhance visual features and 
simplify production process. 

- Research an automated texture production process.  If 
automated this can assist in the generation of 2D cloud 
structures 

- Select or design a rendering scene for the 
visualization.  This selection can be through working 
with Google Earth, NASA World Wind, or X3D Earth, Sun 
Dog Software, or implementing a low resolution 
elevation and Earth surface image package.  Based on 
this decision it may or may not be necessary to also 
choose a viewer plug-in to negate the X3D compatibility 
issues. 

- Develop a testing for proof of concept purposes.  The 
concept challenge will be an accurate depiction of the 
current sky conditions and atmospheric state that they 
represent. 
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APPENDIX A. EXEMPLAR X3D SCENES 

<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE X3D PUBLIC 
"http://www.web3d.org/specifications/x3d-3.1.dtd" 

                     
"file:///www.web3d.org/TaskGroups/x3d/translation/x3d-
3.1.dtd"> 

<!--Warning:  transitional DOCTYPE in source .x3d file--> 

<X3D profile="Immersive" version="3.1" 

  xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance" 
xsd:noNamespaceSchemaLocation="http://www.web3d.org/specific
ations/x3d-3.1.xsd"> 

  <head> 

    <meta content="CloudScene.x3d" name="title"/> 

    <meta 

      content="X3D utilizing ecmascript to develop quasi 
volumetric 3D clouds from png image textured billboard 
nodes." name="description"/> 

    <meta content="Capt Darren W. Murphy" name="creator"/> 

    <meta content="1 Nov 2007" name="created"/> 

    <meta content="23 March 2008" name="modified"/> 

    <meta 

      
content="https://savage.nps.edu/Savage/Environment/Meteorolo
gy/CloudScene.x3d" name="identifier"/> 

    <meta 

      content="Additional png images to use in cloud 
rendering:&#10;https://savage.nps.edu/Savage/Environment/Met
eorology/Cloudtexture1.png&#10;https://savage.nps.edu/Savage
/Environment/Meteorology/Cloudtexture1_1.png&#10;https://sav
age.nps.edu/Savage/Environment/Meteorology/Cloudtexture1_2.p
ng&#10;https://savage.nps.edu/Savage/Environment/Meteorology
/Cloudtexture1_3.png&#10;https://savage.nps.edu/Savage/Envir
onment/Meteorology/Cloudtexture2.png&#10;https://savage.nps.
edu/Savage/Environment/Meteorology/Cloudtexture3.png&#10;htt
ps://savage.nps.edu/Savage/Environment/Meteorology/Cloudtext
ure4.png&#10;https://savage.nps.edu/Savage/Environment/Meteo
rology/Cloudtexture6.png&#10;https://savage.nps.edu/Savage/E
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nvironment/Meteorology/Cloudtexture7.png&#10;https://savage.
nps.edu/Savage/Environment/Meteorology/Spheretexture.png&#10
;" name="image"/> 

    <meta 

      content="The ecmascript used was found to renderable 
only by Cortona plug-in.&#10;Care should be taken when using 
CreateVrmlFromString node.&#10;\ before quotations in the 
string, and must be in accurate vrml form.&#10;" 
name="bugs"/> 

    <meta 

      content="X3D-Edit, 
http://www.web3d.org/x3d/content/README.X3D-Edit.html" 
name="generator"/> 

    <meta content="../../license.html" name="license"/> 

  </head> 

  <Scene><!--png image files for the cloud textures must be 
designated 

      in the ecmascript node. Cloud sizes and shapes are 
designated in 

      the ecmascript node. Scaling, translations, and size 
of geometry 

      controls sizes and shapes.--><Viewpoint 
description="Main" 

      jump="false" orientation="0 1 0 1.57" position="50000 
1000 42000"/> 

    <Viewpoint description="Light House Tower" jump="false" 

      orientation="0 1 0 1.3" position="45000 1290 44000"/> 

    <Viewpoint description="centerWest" jump="false" 

      orientation="0 1 0 2.5" position="48000 1000 20000"/> 

    <Background groundColor="0 0 1" skyColor="0 0 1"/> 

    <DirectionalLight ambientIntensity="1" color="1 1 1" 

      direction="-1 0 0" global="true" intensity="1" 
on="true"/> 

    <Group DEF="Terrain"> 

      <Transform scale="50 50 50" translation="25000 0 
25000"> 
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        <Inline 
url="&quot;MontereyBayLargeMesh.wrl&quot;&#10;&quot;../../Lo
cations/MontereyBayCalifornia/MontereyBayLargeMesh.x3d&quot;
&#10;&quot;https://savage.nps.edu/Savage/Locations/MontereyB
ayCalifornia/MontereyBayLargeMesh.x3d&quot;&#10;&quot;../../
Locations/MontereyBayCalifornia/MontereyBayLargeMesh.wrl&quo
t;&#10;&quot;https://savage.nps.edu/Savage/Locations/Montere
yBayCalifornia/MontereyBayLargeMesh.wrl&quot;"/> 

      </Transform> 

      <Transform rotation="1 0 0 1.57" translation="25000 0 
25000"> 

        <Shape> 

          <Rectangle2D size="77000 55000" solid="false"/> 

          <Appearance> 

            <ImageTexture 
url="&quot;ocean.png&quot;&#10;&quot;https://savage.nps.edu/
Savage/Environment/Meteorology/ocean.png&quot;"/> 

          </Appearance> 

        </Shape> 

      </Transform> 

    </Group> 

    <Group DEF="Placemarks"> 

      <Transform scale="50 50 50" translation="45000 30 
44000"> 

        <Inline 
url="&quot;Lighthouse.wrl&quot;&#10;&quot;../../Locations/Mo
ntereyBayCalifornia/Lighthouse.wrl&quot;&#10;&quot;https://s
avage.nps.edu/Savage/Locations/ShipIslandMississippi/LightHo
use.wrl&quot;&#10;&quot;../../Locations/MontereyBayCaliforni
a/LightHouse.x3d&quot;&#10;&quot;https://savage.nps.edu/Sava
ge/Locations/MontereyBayCalifornia/LightHouse.x3d&quot;&#10;
"/> 

      </Transform> 

    </Group> 

    <Group DEF="Clouds"> 

      <Transform DEF="Cumulus"/> 

      <Transform DEF="Cirrus"/> 

      <Transform DEF="Fog"/> 
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      <Transform DEF="Stratus"/> 

      <Script DEF="PixelScript" directOutput="true"> 

        <field accessType="initializeOnly" name="Cumulus" 
type="SFNode"> 

          <Transform USE="Cumulus"/> 

        </field> 

        <field accessType="initializeOnly" name="Cirrus" 
type="SFNode"> 

          <Transform USE="Cirrus"/> 

        </field> 

        <field accessType="initializeOnly" name="Fog" 
type="SFNode"> 

          <Transform USE="Fog"/> 

        </field> 

        <field accessType="initializeOnly" name="Stratus" 
type="SFNode"> 

          <Transform USE="Stratus"/> 

</field><![CDATA[ecmascript: 

 

 

function cumulustranslation() // These values designate the 
boundary location of the cloud 

{ 

 X = 50000*Math.random();          //  X horizontal 
range 

 Y = 1000 + 300*Math.random();  //  Y vertical base + 
range 

 Z = 50000*Math.random();         // z horizontal range 

 

 randomt = new String(X+' '+Y+' '+Z); 

 return randomt; 

} 
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function cumulusscale() // these values scale a cloud within 
a designated size 

{ 

 maxscale = 1; 

 scale = Math.round(9+maxscale*Math.random()); 

 X = 1.5*scale; 

 Y = scale; 

 Z = scale; 

 

 randomscale = new String(X+' '+Y+' '+Z); 

 return randomscale;  

} 

 

 

function cumulussectiontranslation() // These random values 
place another portion of cumulus type cloud 

{ 

 randomtheta = 6.28319*Math.random(); 

 randomphi = .7854*Math.random(); 

 randomradius = 90 + 5*Math.random();//the first whole 
number should be close to the sectionradius 

 X = 
randomradius*Math.cos(randomtheta)*Math.sin(randomphi); 

 Z = 
randomradius*Math.sin(randomtheta)*Math.sin(randomphi); 

 Y = randomradius*Math.cos(randomphi); 

  

 randomt = new String(X+' '+Y+' '+Z); 

 return randomt; 

} 

 

function cirrustranslation() 

{ 
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 X = 50000*Math.random(); 

 Y = 8000 + 1000*Math.random(); 

 Z = 50000*Math.random(); 

 

 randomt = new String(X+' '+Y+' '+Z); 

 return randomt; 

} 

 

function cirrusscale() 

{ 

 maxscale = 1; 

 scale = Math.round(9+maxscale*Math.random()); 

 X = 1.5*scale; 

 Y = 1+0.5*Math.random(); 

 Z = 1.5*scale; 

 

 randomscale = new String(X+' '+Y+' '+Z); 

 return randomscale;  

} 

 

function cirrussectiontranslation() 

{ 

 randomtheta = 6.28319*Math.random(); 

 randomphi = .7854*Math.random(); 

 randomradius = 90 + 5*Math.random(); 

 

 X = 
randomradius*Math.cos(randomtheta)*Math.sin(randomphi); 

 Z = 
randomradius*Math.sin(randomtheta)*Math.sin(randomphi); 

 Y = randomradius*Math.cos(randomphi); 

  

 randomt = new String(X+' '+Y+' '+Z); 



 63

 return randomt; 

} 

 

function fogtranslation() 

{ 

 X = 40000+5000*Math.random(); 

 Y = 300*Math.random(); 

 Z = 40000+5000*Math.random(); 

 

 randomt = new String(X+' '+Y+' '+Z); 

 return randomt; 

} 

 

function fogscale() 

{ 

 X = 7; 

 Y = 7; 

 Z = 7; 

 

 randomscale = new String(X+' '+Y+' '+Z); 

 return randomscale;  

} 

 

function fogsectiontranslation() 

{ 

 randomdistance = 950 + 100*Math.random(); 

 

 X = randomdistance; 

 Z = randomdistance; 

 Y = 100*Math.random(); 

  

 randomt = new String(X+' '+Y+' '+Z); 
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 return randomt; 

} 

 

function stratustranslation() 

{ 

 X = 50000*Math.random(); 

 Y = 2000 + 1000*Math.random(); 

 Z = 50000*Math.random(); 

 

 randomt = new String(X+' '+Y+' '+Z); 

 return randomt; 

} 

 

function stratusscale() 

{ 

 maxscale = 10; 

 scale = Math.round(30+maxscale*Math.random()); 

 X = scale; 

 Y = 2+0.5*Math.random(); 

 Z = scale; 

 

 randomscale = new String(X+' '+Y+' '+Z); 

 return randomscale;  

} 

 

function stratussectiontranslation() 

{ 

 randomtheta = 6.28319*Math.random(); 

 randomphi = .7854*Math.random(); 

 randomradius = 90 + 5*Math.random(); 
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 X = 
randomradius*Math.cos(randomtheta)*Math.sin(randomphi); 

 Z = 
randomradius*Math.sin(randomtheta)*Math.sin(randomphi); 

 Y = randomradius*Math.cos(randomphi); 

  

 randomt = new String(X+' '+Y+' '+Z); 

 return randomt; 

} 

 

function rotation() 

{ 

 radians = 6.28*Math.random(); 

 randomr = new String('0 0 1 ' + radians );  

 return randomr; 

} 

 

function cumulus() 

{ 

maxi = 20;  // number of clouds 

maxj = 5; // denotes how many portions affecting the size of 
the cloud 

maxk = 8;  // number of billboards indicating cloud density 

sectionradius = 100;  //radius of individual cloud sections 

 

for (var i=0; i < maxi; i++)  

{ 

 

CloudStringA = ' Transform {  \n' + 

'    scale '+ cumulusscale() + '                \n' + 

'    translation '+ cumulustranslation() + '    \n' +    // 
cloud placement 

'    children [                                \n'; 
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CloudStringB = new Array(); 

CloudStringF = new Array(); 

 

    for (var j=0; j < maxj; j++) 

    { 

 

 radius = 0; 

 

 CloudStringB[j]= '  Transform {           \n' + 

 '    translation '+ cumulussectiontranslation() + '    
\n' +     // section placement 

 '    children [                              \n'; 

 

 CloudStringC = new Array(); 

 image = new String(); 

 

        for (var k=1; k < maxk; k++)  // maxk value 
denotes how many textured billboards make up the cloud  

        { 

 

  randomtheta = 6.28319*Math.random(); 

  randomphi = 1.5708*Math.random(); 

  radius = radius+(sectionradius/maxk); // radius 
incremental steps based on billow radius and max billboards 

 

  X = 
radius*Math.cos(randomtheta)*Math.sin(randomphi); 

  Z = 
radius*Math.sin(randomtheta)*Math.sin(randomphi); 

  Y = radius*Math.cos(randomphi); 

 

  if (Y <= 30) //cloud shading and lighting control 

   {  
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 image = ' \"CloudTexture1_5.png\" 
\"https://savage.nps.edu/Savage/Environment//Meteorology/Clo
udTexture1_5.png\" \n'; 

   } 

 

    else 

   {  

 image = ' \"CloudTexture1_4.png\" 
\"https://savage.nps.edu/Savage/Environment//Meteorology/Clo
udTexture1_4.png\" \n'; 

   } 

   

  Billboardtranslation = new String(X+' '+Y+' '+Z); 

 

  CloudStringC[k] = ' Transform {      \n' + 

  'translation '+ Billboardtranslation + '    \n' +     
// random billboard placement within radius designated above 

  '   children [                          \n' + 

  '       Billboard {                    \n' + 

  '         axisOfRotation 0 0 0          \n' +     
// 0 0 0 designates rotation on all axis 

  '   children [                          \n' + 

  '    Transform {                   \n' + 

  '       rotation  0 0 0 0           \n' +     
// a rotation of the individual billboards can be defined 

  '   children [                         \n' + 

  '     Shape {                         \n' + 

  '       appearance Appearance {         \n' + 

  '    material Material {  \n' + 

  '                    }    \n' + 

  '        texture ImageTexture {         \n' + 

  '         url [ ' + image + ' ]           \n' +  

  '    }                                 \n' + 

  '    }                                 \n' + 
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  '     geometry IndexedFaceSet {         \n' +     
// define type of geometry to texture 

  '      coordIndex [ 0, 1, 2, 3 ]        \n' + 

  '      solid FALSE          \n' + 

  '            coord Coordinate {         \n' + 

  '      point [ 50 50 0,         \n' +     // 
define size of the geometry. Here 100 meter 2D square. 

  '                     50 -50 0,         \n' + 

  '                   -50 -50 0,         \n' + 

  '                     -50 50 0 ]        \n' + 

  '                       }               \n' + 

  '                     }                \n' + 

  '                   }                    \n' + 

  '               ]                        \n' + 

  '             }                         \n' + 

  '        ]                           \n' + 

  '    }                                  \n' + 

  '      ]                                  \n' + 

  '     }                                     \n';       

   

  } 

 

 CloudStringD = CloudStringC.join(' '); 

 

 CloudStringE = '   ]                 \n' + 

 ' }                          \n'; 

 

 CloudStringF[j] = CloudStringB[j] + CloudStringD 
+CloudStringE; 

 

 } 

 

CloudStringG = CloudStringF.join(' '); 
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CloudStringH = '      ]                              \n' + 

'     }                                              \n' + 

'#####################################################  \n'; 

 

CloudString = CloudStringA + CloudStringG + CloudStringH; 

 

newNode = Browser.createVrmlFromString(CloudString); 

Cumulus.children[i] = newNode[0]; 

 

   } 

} 

 

function cirrus() 

 

{ 

 

maxi = 2; 

maxj = 5; 

maxk = 8; 

sectionradius = 1000; 

 

for (var i=0; i < maxi; i++)  

{ 

 

CloudStringA = ' Transform {   \n' + 

'    scale '+ cirrusscale() + '                 \n' + 

'    translation '+ cirrustranslation() + '      \n' + 

'    children [                                 \n'; 

 

CloudStringB = new Array(); 

CloudStringF = new Array(); 
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    for (var j=0; j < maxj; j++) 

    { 

 radius = 0; 

 

 CloudStringB[j]= '  Transform {            \n' + 

 'translation '+ cirrussectiontranslation() + '    \n' + 

 '    children [                                 \n'; 

  

 CloudStringC = new Array(); 

 

        for (var k=1; k < maxk; k++) 

        { 

 

  randomtheta = 6.28319*Math.random(); 

  randomphi = 1.5708*Math.random(); 

  radius = radius+(sectionradius/maxk); 

 

  X = 
radius*Math.cos(randomtheta)*Math.sin(randomphi); 

  Z = 
radius*Math.sin(randomtheta)*Math.sin(randomphi); 

  Y = radius*Math.cos(randomphi); 

   

  Billboardtranslation = new String(X+' '+Y+' '+Z); 

 

  CloudStringC[k] = ' Transform {       \n' + 

  'translation '+ Billboardtranslation   + '   \n' + 

  '   children [                          \n' + 

  '       Billboard {                \n' + 

  '         axisOfRotation 0 0 0          \n' + 

  '         children [                    \n' + 

  '    Transform {                   \n' + 



 71

  '   rotation '  + rotation() + '        \n' + 

  '      children [                        \n' + 

  '        Shape {                         \n' + 

  '       appearance Appearance {         \n' + 

  '      material Material {  \n' + 

  '       }     \n' + 

   '         texture ImageTexture {        \n' + 

  '                         url 
[\"cloudtexture3.png\" 
\"https://savage.nps.edu/Savage/Environment/Meteorology/clou
dtexture1_4.png\" ] \n' + 

  '     }                               \n' + 

  '     }                              \n' + 

  '     geometry IndexedFaceSet {         \n' + 

  '      coordIndex [ 0, 1, 2, 3 ]        \n' + 

  '         solid FALSE     \n' + 

  '           coord Coordinate {         \n' + 

  '          point [ 500 500 0,         \n' + 

  '                   500 -500 0,         \n' + 

  '                  -500 -500 0,         \n' + 

  '                  -500 500 0 ]         \n' + 

  '                       }                \n' + 

  '                     }               \n' + 

  '                   }                    \n' + 

  '               ]                         \n' + 

  '             }                         \n' + 

  '        ]                             \n' + 

  '    }                                  \n' + 

  '      ]                                   \n' + 

  '     }                                \n';      
  

 

  } 
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 CloudStringD = CloudStringC.join(' '); 

 

 CloudStringE = '   ]                 \n' + 

 ' }                          \n'; 

 

 CloudStringF[j] = CloudStringB[j] + CloudStringD 
+CloudStringE; 

 

 } 

 

CloudStringG = CloudStringF.join(' '); 

 

CloudStringH = '      ]                             \n' + 

'     }                                          \n' + 

'#########################################################      
\n'; 

 

CloudString = CloudStringA + CloudStringG + CloudStringH; 

 

newNode = Browser.createVrmlFromString(CloudString); 

Cirrus.children[i] = newNode[0]; 

  } 

} 

 

function fog() 

{ 

 

maxi = 2; 

maxj = 5; 

maxk = 8; 

sectionlength = 1000; 
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for (var i=0; i < maxi; i++)  

{ 

 

CloudStringA = ' Transform {  \n' + 

'    scale '+ fogscale() + '                \n' + 

'    translation '+ fogtranslation() + '        \n' + 

'    children [                                \n'; 

 

CloudStringB = new Array(); 

CloudStringF = new Array(); 

 

    for (var j=0; j < maxj; j++) 

    { 

 

 length = 0; 

 

 CloudStringB[j]= '  Transform {            \n' + 

 '    translation '+ fogsectiontranslation() + '  \n' + 

 '    children [                              \n'; 

  

 CloudStringC = new Array(); 

 image = new String(); 

 

        for (var k=1; k < maxk; k++) 

        { 

   

  length = length+(sectionlength/maxk); 

 

  X = length; 

  Z = 100*Math.random(); 

  Y = 100*Math.random(); 
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 image = ' \"CloudTexture1_4.png\" 
\"https://savage.nps.edu/Savage/Environment/Meteorology/Clou
dTexture1_4.png\" \n'; 

  

  Billboardtranslation = new String(X+' '+Y+' '+Z); 

 

  CloudStringC[k] = ' Transform {      \n' + 

  ' translation '+ Billboardtranslation + '    \n' + 

  '   children [                         \n' + 

  '       Billboard {                     \n' + 

  '    axisOfRotation 0 0 0                \n' + 

  ' children [                              \n' + 

  '     Transform {                  \n' + 

  '     rotation  0 0 0 0           \n' + 

  '      children [                        \n' + 

  '        Shape {                         \n' + 

  '       appearance Appearance {         \n' + 

  '    material Material {  \n' + 

  '                    }    \n' + 

  '        texture ImageTexture {         \n' + 

  '        url [ ' + image + ' ]           \n' +  

  '    }                                 \n' + 

  '    }                                 \n' + 

  '      geometry IndexedFaceSet {        \n' + 

  '       coordIndex [ 0, 1, 2, 3 ]      \n' + 

  '         solid FALSE      \n' + 

  '        coord Coordinate {        \n' + 

  '           point [ 500 500 0,         \n' + 

  '                   500 -500 0,         \n' + 

  '                  -500 -500 0,         \n' + 

  '                  -500 500 0 ]         \n' + 

  '                       }               \n' + 

  '                     }                \n' + 
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  '                   }                    \n' + 

  '               ]                         \n' + 

  '             }                          \n' + 

  '        ]                           \n' + 

  '    }                                   \n' + 

  '      ]                                    \n' + 

  '     }                                     \n';       

   

  } 

 

 CloudStringD = CloudStringC.join(' '); 

 

  

 CloudStringE = '   ]                 \n' + 

 ' }                          \n'; 

 

 CloudStringF[j] = CloudStringB[j] + CloudStringD 
+CloudStringE; 

 

 } 

 

CloudStringG = CloudStringF.join(' '); 

 

CloudStringH = '      ]                               \n' + 

'     }                                             \n' + 

'#########################################################      
\n'; 

 

CloudString = CloudStringA + CloudStringG + CloudStringH; 

 

newNode = Browser.createVrmlFromString(CloudString); 

Fog.children[i] = newNode[0]; 

   } 
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} 

 

function stratus() 

{ 

 

maxi = 1; 

maxj = 10; 

maxk = 10; 

sectionlength = 1000; 

 

for (var i=0; i < maxi; i++)  

{ 

 

CloudStringA = ' Transform {  \n' + 

'    scale '+ stratusscale() + '                \n' + 

'    translation '+ stratustranslation() + '    \n' + 

'    children [                                \n'; 

 

CloudStringB = new Array(); 

CloudStringF = new Array(); 

 

    for (var j=0; j < maxj; j++) 

    { 

 

 length = 0; 

 

 CloudStringB[j]= '  Transform {            \n' + 

 ' translation '+ stratussectiontranslation() + '  \n' + 

 '    children [                              \n'; 

  

 CloudStringC = new Array(); 

 image = new String(); 
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        for (var k=1; k < maxk; k++) 

        { 

 

  length = length+(sectionlength/maxk); 

 

  X = length; 

  Z = 1000*Math.random(); 

  Y = 1000*Math.random(); 

   

 image = ' \"CloudTexture1_4.png\" 
\"https://savage.nps.edu/Savage/Environment/Meteorology/Clou
dTexture1_4.png\" \n'; 

      

  Billboardtranslation = new String(X+' '+Y+' '+Z); 

 

  CloudStringC[k] = ' Transform {       \n' + 

  '  translation '+ Billboardtranslation   + ' \n' + 

  '   children [                          \n' + 

  '       Billboard {                    \n' + 

  '         axisOfRotation 0 0 0           \n' + 

  '         children [                     \n' + 

  '    Transform {                   \n' + 

  '     rotation  0 0 0 0           \n' + 

  '     children [                         \n' + 

  '      Shape {                         \n' + 

  '        appearance Appearance {        \n' + 

  '    material Material {  \n' + 

  '                    }    \n' + 

  '         texture ImageTexture {        \n' + 

  '         url [ ' + image + ' ]           \n' +  

  '     }                             \n' + 

  '         }                              \n' + 
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  '      geometry IndexedFaceSet {        \n' + 

  '     coordIndex [ 0, 1, 2, 3 ]         \n' + 

  '         solid FALSE      \n' + 

  '             coord Coordinate {        \n' + 

  '                  point [ 500 500 0, \n' + 

  '                         500 -500 0,  \n' + 

  '                       -500 -500 0,     \n' + 

  '                        -500 500 0 ]   \n' + 

  '                       }                \n' + 

  '                     }               \n' + 

  '                   }                    \n' + 

  '               ]                        \n' + 

  '             }                         \n' + 

  '        ]                           \n' + 

  '    }                                   \n' + 

  '      ]                                   \n' + 

  '     }                                    \n';       

 

  } 

 

 CloudStringD = CloudStringC.join(' '); 

 

 CloudStringE = '   ]                 \n' + 

 ' }                          \n'; 

 

 CloudStringF[j] = CloudStringB[j] + CloudStringD 
+CloudStringE; 

 

 } 

 

CloudStringG = CloudStringF.join(' '); 
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CloudStringH = '      ]                               \n' + 

'     }                                              \n' + 

'#########################################################      
\n'; 

 

CloudString = CloudStringA + CloudStringG + CloudStringH; 

 

newNode = Browser.createVrmlFromString(CloudString); 

Stratus.children[i] = newNode[0]; 

   } 

} 

 

function initialize() 

{ 

 

cumulus(); 

cirrus(); 

fog(); 

stratus(); 

 

}]]></Script> 

      <DirectionalLight ambientIntensity="1" color="1 1 1" 

        direction="-1 -1 0" global="true" intensity="1" 
on="true"/> 

    </Group> 

  </Scene> 

</X3D> 
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APPENDIX B. MODEL AVAILABILITY 
 

The X3D files with included scripts and png image files 

are available for download and viewing online at 

https://savage.nps.edu/Savage/Environment/Oceanography/index

.html.  The Monterey elevation and lighthouse files are also 

available in the Savage archives. 
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