

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited.

EXTENSIBLE 3D (X3D) GRAPHICS CLOUDS FOR
GEOGRAPHIC INFORMATION SYSTEMS

by

Darren W. Murphy

March 2008

 Thesis Advisor: Philip A. Durkee
 Second Reader: Don Brutzman

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2008

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Extensible 3d (X3d) Graphics
Clouds for Geographic Information Systems
6. AUTHOR(S) Darren W. Murphy

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and
do not reflect the official policy or position of the Department of Defense or the U.S.
Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT

This research evaluates the production of three dimensional (3D) clouds
for geospatial viewing programs such as Google Earth, NASA World Wind, and X3D
Earth. This thesis took advantage of iso-standard X3D graphics and X3D Edit in
conjunction with manually produced image textures to represent 3D clouds.
While a 3D geospatial viewing might never completely characterize the current
state of the atmosphere, a sufficiently realistic virtual 3D rendering can be
created to present current sky coverage given adequate satellite and model
data. Various visualization demonstration results are presented that can be
rendered and navigated in real time. Further research and development is
needed to match a cloud typing model output with a particular method of 3D
cloud production. Data-driven adaptation and production of cloud models for
web-based delivery is an achievable capability given continued research and
development.

15. NUMBER OF
PAGES

101

14. SUBJECT TERMS X3D Cloud GIS

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

EXTENSIBLE 3D (X3D) GRAPHICS CLOUDS FOR GEOGRAPHIC
INFORMATION SYSTEMS

Darren W. Murphy
Captain, United States Air Force

B.S., University of California at Davis, 2000

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN METEOROLOGY

from the

NAVAL POSTGRADUATE SCHOOL
March 2008

Author: Darren W. Murphy

Approved by: Philip A. Durkee
Thesis Advisor

Don Brutzman
Second Reader

Philip A. Durkee
Chair, Department of Meteorology

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This research evaluates the production of three

dimensional (3D) clouds for geospatial viewing programs such

as Google Earth, NASA World Wind, and X3D Earth. This

thesis took advantage of iso-standard X3D graphics and X3D

Edit in conjunction with manually produced image textures to

represent 3D clouds. While a 3D geospatial viewing might

never completely characterize the current state of the

atmosphere, a sufficiently realistic virtual 3D rendering

can be created to present current sky coverage given

adequate satellite and model data. Various visualization

demonstration results are presented that can be rendered and

navigated in real time. Further research and development is

needed to match a cloud typing model output with a

particular method of 3D cloud production. Data-driven

adaptation and production of cloud models for web-based

delivery is an achievable capability given continued

research and development.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
II. BACKGROUND ..5

A. CONCEPT ..5
B. SCIENTIFIC VIZUALIZATION6
C. VIRTUAL VISUALIZATION9
D. GEOSPATIAL DISPLAY APPLICATIONS16

1. Google Earth and NASA World Wind17
2. X3D Earth17

E. EXTENSIBLE MARKUP LANGUAGE (XML)18
F. X3D VIEWERS19

III. METHODS AND PROCEDURES21
A. VOLUMETRIC PROSPECTS21
B. CLOUD PRODUCTION23

1. Texture Images24
2. X3D-Edit26
3. Billboard Placement28
4. Coordinate Systems28
5. Random Placements30
6. Shading30

C. PERFORMANCE CALCULATIONS32
IV. DATA PROCESS ...39

A. METEOROLOGICAL INPUTS39
1. Cloud Depiction and Forecast System (CDFS) II 41
2. Combined Sources43

B. INPUT METHODS44
V. RENDERING IMPROVEMENTS49

A. SHADING ...49
B. PERFORMANCE52

1. Imposters52
2. Texture Switching53

C. DISPLAY ...54
VI. CONCLUSION AND RECOMMENDATIONS55

A. CONCLUSIONS55
B. RECOMMENDATIONS FOR FUTURE WORK56

APPENDIX A. EXEMPLAR X3D SCENES57
APPENDIX B. MODEL AVAILABILITY81
LIST OF REFERENCES ..83
INITIAL DISTRIBUTION LIST85

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. 3D example of Vis5D showing ensemble forecast
data at approximately 1:1800000 ratio for
vertical exaggeration (SSEC,1998)................8

Figure 2. Realistic clouds at sunset produced from
textured sprites for Microsoft Flight Simulator
(Wang, 2003)....................................10

Figure 3. A cloud scene for Flight Simulator showing
stratus, cumulus congestus, and altocumulus
(Wang,2003).....................................10

Figure 4. Bounding boxes are created in Microsoft Flight
Simulator for regions of clouds (Wang, 2003)....12

Figure 5. Textured sprites are scattered throughout the
bounding boxes to visually represent different
cloud types (Wang, 2003)........................13

Figure 6. An example of procedurally generated cloud
using Silver Lining software (Sundog, 2008).....15

Figure 7. NWS composite radar layered at ground level
viewed in Google Earth (Google Earth 2008)......16

Figure 8. Sky cover layer using pixel texturing formed
from 10 100x100 pixel layers....................23

Figure 9. Individual PNG images created for billboard
textures with white coloring and alpha layer....26

Figure 10. X3D Edit authoring tool for creation of
Extensible 3D (X3D) graphics scenes showing an
example of the scene graph for the cloud
rending X3D file. (Brutzman, 2008)..............27

Figure 11. Side view of an X3D scene showing cirrus and
multi shaded layer cumulus clouds...............31

Figure 12. Top view of an X3D scene showing multi shaded
layer cumulus clouds............................32

Figure 13. Memory allocation increase with increased
billboard production............................34

Figure 14. Decline in frame rate with increased billboard
production......................................36

Figure 15. Flowchart depicting the rendering process from
raw data to scene visualization on a user side
computer..39

Figure 16. CloudSat profile imagery for storms over Texas
(Colorado State University 2008)................41

Figure 17. CDFS multilevel data, processing, and analysis
methods for creating the Worldwide Merged Cloud
Analysis (Plonski 1998).........................42

 x

Figure 18. Single source light principles for shading
indicating scatterings along the light path to
the viewer......................................50

 xi

LIST OF TABLES

Table 1. Memory performance for 1 to 10000 billboards....34
Table 2. Frame rate performance in frames per second for

1 to 10000 billboards...........................36
Table 3. Individual steps of the cloud production

process programming.............................45

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

It has been a pleasure to work with the Meteorological

Department and the MOVES Institute at the Naval Postgraduate

School. Many thanks to Professors Philip Durkee, Don

Brutzman, and Jeff Weekley for hours of dedicated

assistance. Thank you to my family for the encouragement.

Above all, thank you to my wife Sydni for living and working

with me side by side the whole way.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Cloud visualization continues to present a challenge

for both the meteorological and computer visual graphics

communities. The ever-increasing ability to have larger

amounts of computer memory, as well as allocated memory for

graphics cards in a personal desktop or laptop computer are

allowing for improvement in cloud generation and

visualization techniques. Bringing together computer

graphics and meteorological knowledge bases makes it

possible to represent cloud phenomena in a manner that is

scientifically accurate and aesthetically pleasing.

While meteorologists are trained to conceptually

visualize 3D aspects from a 2D cloud rendering or even

numerical data, it is difficult to pass this knowledge on to

a customer. A 3D visualization that encompasses a certain

meteorological correctness and an artistically correct

rendering of clouds can be a valuable addition to Air Force

weather products. Such visualizations must provide a direct

path from numerical model fields to a customer-oriented

viewing platform, in order to improve end-user understanding

and utilization of weather data. Such a platform can be

used at all levels of planning and encompass all types of

missions from ground patrol to flight paths. Additionally,

such visualizations must permit the military forecaster to

note areas of particular interest and focus on the

meteorological soundness of a forecast thereby saving time

and avoiding possible errors by eliminating the mental

conversion to numerical or 2D data.

 2

A theater-wide sensing strategy continues to be a top

priority for the Air Force Weather forces. With ingest of

available insitu instrumental, observer, and remote sensing

data, perhaps a comprehensive virtual 3D sky rendering can

be used for critical mission oriented decisions. By

utilizing this study’s 3D cloud visualization platform

combined with already available model data as a “nowcast,”

the forecaster in the field, while not having the ability to

have eyes on the desired observation area, can get a

synthetic approximation of what the cloud conditions are.

This will significantly improve or, in part, imitate a

remote theater sensing strategy.

A number of questions can be raised as to why such an

endeavor with 3D clouds is appropriate for the Air Force or

to the US Military in general. One such question is what

are the advantages of rendering clouds in this manner rather

than the traditional 2D visualizations or simply creating

the appearance of clouds for the GIS systems? Very simply

we live in a 3D world. Every flight, maneuver, and

operation requires the planner or operator to visualize his

3D mission from a 2D map. A whole new era of mission

planning and execution is upon us with the ability to

conceptualize the plans on a computer with 3D visualization.

Creation of full 3D volumetric clouds, rather than an

appearance of clouds within a 3D environment, is needed to

represent the current state of the measured atmosphere as we

would see it. Most importantly these volumetric clouds give

a realistic view to customers whose central mission is of an

aerial nature.

 3

The presentation of cloud data within a 3D virtual

environment is beneficial for more than military or

government uses. The consumer use of GIS programs has

become varied and broad. Thus the general benefit of 3D

cloud rendering as presented by this thesis is also broad.

It represents the next step in the evolution of weather

visualization products.

The ultimate goal of this thesis is to connect the new

and popular consumer 3D visualization programs with

meteorological variables, creating a cloud representation

using a standard personal computer. With this purpose in

mind a collection of fog, stratus, cirrus, and cumulus cloud

cases are developed for visual display. Within the program,

full analysis of the cloud structures can be accomplished by

using predefined scene navigation. User interaction can

include a land-based examination of the surrounding sky, or

a full flight plan that follows a mission path through

different levels and types of clouds.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

A. CONCEPT

When looking back on the history of 3D applications for

cloud visualization, it is helpful to look at both

scientific and visual graphic efforts. While focused on the

same topic, these two efforts tend to take a different

approach toward 3D cloud visualization. A brief look at

these two approaches to designing 3D clouds is essential for

understanding the research directions applied in this

thesis.

Meteorologists and the scientific community tend to be

focused on all aspects of defining areas of clouds precisely

and correctly using either data-driven or mathematical

modeling techniques. Efforts to more accurately define the

cloud base, cloud top, and incremental resolution have been

the objectives of much research. Many different sources of

data can ultimately provide input for the 3D space occupied

by a cloud structure. Satellite, radar, atmospheric

soundings, and ground observations can all be sources of

input data, with availability dependent on the area and time

period under scrutiny. For example, there is a large

disparity in data available from the Continental U.S.

(CONUS) vs. data sparse regions such as Afghanistan or Iraq.

Regardless of the rendering program, the scientific

visualization of environmental data tends to be quite

logical showing clear delineation between incremental

changes in the data. This often leads to colorful 2D map

presentations with a legend that details the data for the

user. While perfectly useful for the scientific community,

 6

this type of display requires the customer to conceptualize

the data as a 3D cloud. Such conceptualization is a learned

skill and not inherently intuitive.

It is important to emphasize when data visualization

attempts to render a better resolution than the data

captures, a certain amount of interpolation is required. In

practice, interpolation is seen in the parameterization and

grid placement of data variables within a weather model.

Ingestion of data from various different locations to a

gridded model requires the use of parameterizations to not

only fit the data to a computational grid, but also to

forecast the variables forward in time. In the

visualization of such data the opposite process often

occurs. Algorithms are used to modify the gridded data into

a more realistic area for the interpolated data to occupy.

The result is data values are no longer constrained to fit a

gridded mesh, but rather correspond better to geographic

features.

B. SCIENTIFIC VIZUALIZATION

The number of available scientific applications used to

view meteorological data is large. It is worthwhile to

investigate such applications to determine if there are any

features desirable for a 3D application as studied by this

research. One such application long used by the scientific

and academic world is the Vis5D program.

VIS5D software is an OpenGL based volume renderer for

2D as well as 3D graphics. At the heart of the Vis5D

software is a process called 3D texture mapping. This

process takes advantage of graphics-acceleration hardware to

 7

rasterize polygonal slices from texture memory to view a 3D

image (Meibner et al, 2000). The process of volume or

volumetric rendering can be slightly difficult to

understand. The goal of 3D volume visualization is to

display an object, or in most cases data, that fills a 3D

volume. In order to represent this continuous data field to

a viewer, usually an internal surface of interest is the

only part of the object that needs to be rendered. Hence, a

patchwork of connected polygons in 3D virtual space is used

to represent the 3D object. Figure 1 is an example of a

Vis5D 3D rendering of a yellow isosurface enclosing constant

parameter values and white 2D contours following constant

parameter values. Prominent in the figure is the 3D box

with an isosurface and volumetric displays overlaid on a

raised surface physical map projection. While Vis5D can

display large volumes of gridded data, and represent them in

a smoothly shaded visualization, rendering of data becomes

more complex at higher resolutions. These renderings are

primarily used for exterior viewing without the option of

being able to navigate through the scene of individual

clouds. If this option were available, the fly-through

navigation of internal cloud structures would not seem

realistic.

 8

Figure 1. 3D example of Vis5D showing ensemble forecast
data at approximately 1:1800000 ratio for vertical
exaggeration (SSEC,1998).

Of all the features of the Vis5D software, arguably the

most beneficial is open source licensing. While the

definition of open source has evolved over the years, the

benefits are consistent, primary among them being that the

cost is free for any use. Open source coding also allows

for open dialog from developers and users alike. This free

sharing of ideas encourages development and improvement of

the software, adding features and fixing bugs. Such is the

case with the Vis5D community. While the software is no

longer supported in its original form as created by the

 9

Space Science and Engineering Center of the University of

Wisconsin-Madison, the original code has been used and

improved in various ways by multiple organizations (Hibbard,

1989).

Regardless of the form of software, algorithms for

rendering, or amount of shading all the scientific software

visualization tools use data to drive the rendering process.

Gridded data can be rendered in 3D independent of file

format.

C. VIRTUAL VISUALIZATION

In other visualization applications, the endeavor to

represent reality is the challenge. Software developers in

gaming and graphics animation companies have come a long way

in their ability to visualize a realistic sky. In the case

of this thesis, there are many tips and methods that can be

acquired from studying these endeavors. One such endeavor

is the process of making the video game software - Microsoft

Flight Simulator 2004. Figures 2 and 3 are examples of the

cloud renderings from the program. These examples are

notional renderings in a virtual world for the purposes of

the flight simulator game and do not try to represent a real

cloud at a particular place and time.

 10

Figure 2. Realistic clouds at sunset produced from
textured sprites for Microsoft Flight Simulator
(Wang, 2003).

Figure 3. A cloud scene for Flight Simulator showing
stratus, cumulus congestus, and altocumulus
(Wang,2003).

 11

For virtual flight simulation, it was necessary to

develop a process to render realistic clouds while using as

little of the computer memory and graphics resources as

possible. Likewise, the graphics process of developing

clouds for geospatial display programs needs to be

computationally inexpensive. Adding data driven clouds to

such programs is a capability the programs were not

originally designed for.

The Flight Simulator team was successful in creating

artistic clouds using a different technical approach when

compared to the clouds rendered by Vis5D. No collected data

or numerical models were used in the production of Flight

Simulator clouds. Ten types of clouds were manually created

for the program using image-editing software and proprietary

scripting. Bounding boxes, as seen in Figure 4, defining

the areas of clouds are placed throughout the 3D scene.

These clouds are not the volumetric polygon surface

renderings common to 3D scientific data clouds. The clouds

are created by assigning locations within the bounding boxes

for 16 different 2D images on “sprites” that face toward the

camera view at all times. This process as seen in Figure 5

gives the viewer the appearance of a 3D image formation.

The patterns of the 2D images, sprite density, location, and

rotational aspect of the images assist in the composition of

different cloud types. Within the software program,

calculations are completed for time of day and depth-of-

image location within the cloud for shading purposes, giving

an even more realistic appearance. Not all of the cloud

structures are of a volumetric design. For faster rendering

additional cloud “imposters” were created. Only a certain

number of real volumetric clouds are rendered within a

 12

finite region around the camera or user view. The imposters

are images of clouds applied to a ring surrounding the

viewer at the horizon. While adding to the realism of the

flight simulator by providing clouds at a distance, there is

no interaction with the cloud imposters and the viewer

(Wang, 2003).

Figure 4. Bounding boxes are created in Microsoft
Flight Simulator for regions of clouds (Wang, 2003).

 13

Figure 5. Textured sprites are scattered throughout the
bounding boxes to visually represent different cloud
types (Wang, 2003).

Other companies have created similar volumetric 3D

clouds. Generally the processes of creating volumetric

clouds are proprietary, as are the software visualization

packages. Likewise, these cloud representations are

customarily artistically driven and therefore created “by

hand.” Once a particularly striking resemblance of a cloud

is formed, it can be copied and manually placed in a

different location within the 3D environment. The gaming

community is most likely satisfied with these cloud-making

procedures. The process is computationally inexpensive

 14

while the frame rate of displayed images remains high, and

most importantly the realism of actual clouds are present.

Even while research of possible connections between

meteorological data and virtual clouds was being

accomplished for this thesis new methods were created.

Sundog Software has recently introduced a product named

Silver Lining. Silver Lining is slightly different from the

artistically created clouds in that the clouds are

procedurally created. There are no copies of clouds. All

clouds as well as imposters are dynamically created within

the software. Within the Graphical User Interface (GUI) the

user can determine selections for meteorological variables,

time of day, and the determination of computational

limitations. Currently four types of clouds are scripted to

be built: cumulus congestus, cumulus mediocris, cumulonimbus

stratus and cirrus. Figure 6 shows how realistic

procedurally created clouds can be in a 3D geospatial viewer

with high resolution surface imagery. The company offers a

commercial software development kit (SDK) for software

developers to use the Silver Lining application program

interface (API) with other programs (Sundog, 2008).

 15

Figure 6. An example of procedurally generated cloud

using Silver Lining software (Sundog, 2008).

With the advent of the 3D geospatial display systems such as

Google Earth and NASA World Wind the benefit of displaying

meteorological data is more apparent. The National Ocean

Atmospheric Administration (NOAA) and the National Weather

Service (NWS) have embraced the use of such visualization

programs especially Google Earth. Satellite, radar images,

and weather warnings are just a few of the weather products

produced for visualization in Google Earth. While this

shows a step past customer-based 3D programs, the images of

satellite and radar are still the 2D images the

meteorological community is familiar with. The composite

radar image for the Monterey Bay area as seen in Figure 7 is

 16

a flat rendering of the composite radar data that has been

added as a layer to the Google Earth program. This is

useful, but still is not quite the 3D aspect of

meteorological data outcome for geospatial visualization

systems desired by this research.

Figure 7. NWS composite radar layered at ground level
viewed in Google Earth (Google Earth 2008).

D. GEOSPATIAL DISPLAY APPLICATIONS

With the determination made to research volumetric

clouds for a real-time interactive visualization program the

question is raised as to which program. Based on successful

deployment, currently at the top of the list are, as

suggested above, Google Earth and NASA World Wind. Both

have their good points as well as bad. Looking at the

programs in different areas such as ease of use, features,

 17

and the learning curve associated with its use, helps to

determine which program is better suited toward the weather

customer. The areas examined to determine if certain

aspects of this thesis research will be supported by the

programs are: detailing, if the program is an open source

project, the type of programming language used, and the

functionality.

1. Google Earth and NASA World Wind

While Google Earth was the simplest to use and quickest

to learn, it does not completely support the methods to be

used in the volumetric cloud formation. Additionally it is

not an open source project, so software features cannot be

scripted in to function with the volumetric clouds as

created with a viewer facing image node. NASA World Wind is

an open source project with a SDK available so that an

application program can be written to allow the

functionality necessary for the volumetric cloud method.

2. X3D Earth

There is one aspect of this research area that is a

larger undertaking and beyond the scope of this thesis, but

which is hopefully of keen interest to the DoD - a cross-

service web-based 3D geospatial display system that can

cover many roles of planning and training. One such

possibility exists via the undertaking of X3D Earth by the

Modeling, Virtual Environments and Simulation (MOVES)

Institute of NPS as part of the X3D Earth Working Group of

the Web3D Consortium. These groups are working to use “Web

architecture, XML languages and open protocols to build a

standards-based X3D Earth usable by governments, industry,

 18

scientists, academia and the general public.” (Brutzman,

2006) An open source, scalable, sustainable platform can

branch through all services and career fields. The very

basis of this plan rests upon Extensible Markup Language

(XML) standards, especially Extensible 3D (X3D) Graphics.

E. EXTENSIBLE MARKUP LANGUAGE (XML)

X3D Earth, Google Earth, and NASA World Wind have a

common thread in their base languages. XML is a text-based

language used to define the data languages that transmit

and store data defined by the user or author. The XML

language does not actually perform any functions or

processes. These abilities are defined by specific tags as

allocated by a particular schema. Google Earth’s Keyhole

Markup Language (KML) is a specialized markup language used

in transporting large amounts of geographic data, and

implemented by the Google Earth browser. X3D is a royalty-

free International Standards Organization (ISO) compliant

schema defining features for the viewing of XML data,

largely 3D scenes. Due to the similarities between these

two programs and their base languages, 3D scenes and

objects are often transferable between the two. By

applying an Extensible Stylesheet Language Transformation

(XSLT), one schema or markup language can convert data into

another. This ability is especially beneficial for

projects with the magnitude of virtual 3D worlds and

geospatial display systems. Additionally, it is beneficial

to the prospects of this research.

 19

F. X3D VIEWERS

There is large distinction between the definitions of

viewable data models using XML schemas within visual

application programs. The schema is a defined set of

supported nodes or events. A viewer will then take the

information given by the schema and render it to the screen.

Both Google Earth and NASA World Wind have their own viewers

as part of the program package. X3D has many dedicated

viewers and is capable of being rendered in a web browser

such as Microsoft Internet Explorer or Netscape using an X3D

or VRML supporting plug-in. The benefits of diverse support

can cause challenges, however, some functions and

capabilities of X3D were not readily available using certain

plug-ins, as found during this research. The benefit of a

non dedicated viewer allows a user to choose a familiar

browser and can far outweigh any difficulty. For this

thesis effort Cortona plug-in by Parallel Graphics was the

most useful. Publication of exemplars and results continues

to improve the capabilities and conformance of all viewers,

making X3D the most stable and reliable long-term option.

 20

THIS PAGE INTENTIONALLY LEFT BLANK

 21

III. METHODS AND PROCEDURES

A. VOLUMETRIC PROSPECTS

The first consideration to build volumetric clouds is

to define how to fill a 3D area with appropriate geometry

and textures. Initially the prospect of particle fields was

an interesting option. As meteorologists know a cloud

structure is comprised of particles of condensed water or

ice, and drawing such objects seems like a most logical way

to form a virtual cloud. The first issue was then how to

define a particle in the XML and X3D schema chosen to

represent as the geospatial display system. Within the X3D

scene a particle is given a geometric shape and appearance

properties. If a particle is given a radius in the

micrometer range, relative to other scaled objects in the

displayed scene, the resolution is far below the ability of

the computer or graphics to render it. This required the

particle size be increased to a viewable size. Filling a 3D

area required many particle geometries. As more geometric

shapes were added to a scene the graphics hardware needed to

render and keep track of locations and appearance. The

amount of memory necessary to process the particles and view

them is enormous for any virtual GIS scene with clouds. It

soon became apparent that the use of particles for

volumetric filling was not yet a plausible technique.

While still wanting to completely fill a 3D area for a

true volumetric cloud, placing layers of textured pixels was

studied next. X3D includes a node with the ability to

texture individual pixels or predefined 2D areas. This

 22

ability includes both color and transparency which is

advantageous to cloud production. A complete sky cover

using a limited number of 2D surfaces was developed.

Scripting for these surfaces use a white color, but employed

random generation of pixel transparency. Figure 8 displays

an area of 200km by 200km comprised of 10 pixel textured 2D

surfaces layered on top of each other at a distance of 100

meters apart. The surfaces remain static and a flythrough

of the cloud structure is somewhat realistic for a cirrus

type cloud layer. A visual artifact of this method is if

the view position is directly parallel with the textured

surfaces, the user can look directly out the side of the

cloud structure and see blue sky. This certainly detracts

from the realism. Besides the view difficulties, several

other challenges arose before fully functional scenes can be

developed. The layer structure in Figure 8 was created

using 100 by 100 grid spacing for pixels. This implies each

surface needs to generate 10,000 random pixel color and/or

transparencies. Filling a defined cloud area with any more

than approximately 100 surfaces created stack overflow and

memory errors within the Java virtual machine engine.

Additionally, the visual rendering of the surfaces was

dependant on individual display resolution. When a display

was given a high resolution, individual pixels were able to

be distinguished. However, this created an image that did

not visually represent a cloud well at all. Thus it was

deemed not practical to fill volumetric areas using pixel

layers. Fortunately the methods used by Microsoft in Flight

Simulator 2004 were similar to nodes available in X3D, and

cloud production turned its course in that direction.

 23

Figure 8. Sky cover layer using pixel texturing formed
from 10 100x100 pixel layers.

B. CLOUD PRODUCTION

The general difficulty in producing model-driven clouds

in virtual 3D is the process is both scientific and

artistic. In Microsoft Flight Simulator 2004 the decision

was made to not programmatically generate the clouds through

an automated process. Developing the clouds manually gave

more control to fine tune the artistic look of the cloud,

and the automated process had parameterized equations whose

result did not yield desirable results (Wang 2003). While

being more difficult to produce virtual cloud structures in

3D for meteorological purposes, it was deemed beneficial to

produce clouds procedurally. While preferable for a

meteorological program, specialized programming needs to be

accomplished for every different type of cloud. The many

 24

details of cloud structure and the method to best fill 3D

regions for a particular type of cloud are daunting

challenges and are more than can be completed in one thesis.

However, the procedure outlined by this research cis a good

start and be more fully developed to create a better visual

representation and a more complete library of images and

patterns for cloud production in virtual worlds.

 1. Texture Images

Many methods for image generation are viable for the

production of clouds as shown in this research. There is an

essential understanding that the texture of the image, when

rendered with a volumetric placement, must generate a

visibly recognizable structure of the cloud it represents.

It is these images, when textured and placed in and around

the bulk of the cloud, which contain visual information

regarding cloud density and texture. Ultimately, in

conjunction with placement in a 3D space, these textures

need to accurately portray the cloud type.

The most important visual aspect of realistic clouds in

a virtual world is shadowing. To the human eye, shadowing

brings out the three dimensional aspect of any object.

During this thesis research images used for textures were

produced manually. The GNU Image Manipulation Program

(GIMP) is a robust and free image editing software that

allowed many textures to be explored (GIMP, 2008). It also

allows for scripting to produce images automatically. The

file format chosen for the images was the Portable Network

Graphics (PNG) format (PNG Home Site, 2008). This image

format is open and royalty free making usage and deployment

easier. Testing a variety of image textures in clouds

 25

revealed that solid textures did not produce a realistic

effect. A certain amount of transparency dispersed

throughout the texture especially along the edges of the

square image, significantly aided in the cloud realism. PNG

file format images, unlike other formats, can be layered

with a transparent background allowing for these effects.

Figure 9 shows six images in 512x512 resolution that

were created and tested for cloud structure. An additional

capability within X3D is the manipulation of images based on

an alpha value, which determines the transparency of the

image or object being rendered. This benefit can be used

for multiple purposes. It can be applied to entire clouds

to vary appearances within the browser or viewer.

Transparency can be programmed and applied to individual

images on billboards to simulate the growth or dissipation

in the cloud life cycle. This technique suggests that such

a cloud production process can be utilized not only in

static environment simulation, but also dynamic simulations.

 26

Figure 9. Individual PNG images created for billboard
textures with white coloring and alpha layer.

 2. X3D-Edit

 During the research X3D-Edit version 3.1 was used for

cloud production. X3D Edit is a scene graph editor that

allows production of X3D scenes conforming to the X3D schema

and a viewing renderer. Figure 10 is an example of the X3D

Edit application (Brutzman, 2002).

 27

Figure 10. X3D Edit authoring tool for creation of
Extensible 3D (X3D) graphics scenes showing an
example of the scene graph for the cloud rending X3D
file. (Brutzman, 2008)

Within X3D-Edit is the ability to define other

scripting via JavaScript (i.e. EcmaScript) to accomplish

various tasks. These scripted tasks represent the building

or production of different cloud structures. The script

created X3D nodes representing the cloud and in turn

presented to the browser as a VRML file. While the methods

researched and developed within this thesis are mostly

manual, it is possible to completely author either an

X3D(XML) or VRML file to produce the same cloud structures.

For long-term data-driven production processes, the XML-

based X3D encoding is preferable in order to take best

advantage of web-based services and best practices.

 28

 3. Billboard Placement

The billboard node in X3D transforms the rotation of

its geometry to face in a given direction defined by the

user. The scripting for billboard placement was designed to

not only create a viable 3D cloud, but to also minimize the

number of billboards used. By minimizing the number of

billboards, the number of surface vertices is minimized and

computations requiring graphics resources are reduced.

Several placement methods involving various coordinate

systems were used in the initial research, and each method

has its own relative merits in producing different cloud

types and physical appearances. Regardless of which method

is used, all computations for billboard placement are

completed prior to the scene being rendered. This means

graphic computations within the scene are not affected by

the complexity of the calculations used to place the

billboards.

 4. Coordinate Systems

Cloud structure takes on different shapes, suggesting

that designing models for their shape ought to utilize

different geometric shapes as well. Cubic coordinates are

given by the pseudo code:

()
()
()

RandomCZ
RandomCY
RandomCX

∗=
∗=
∗=

Where C is a maximum value and Random() is a multiplier

between zero and one yielding a random number between zero

and the maximum value C. It is also important to note that

each invocation of Random() provides a different random

 29

value. This method may be best used when a larger area of a

more uniform cloud structure needs to be created, or a

smaller area in which only a few image textures are needed.

It is certainly the simplest to define and code. However,

as larger quantities of billboards are rendered within the

cubic area, its square dimensions become visible in the

browser. Cylindrical coordinate’s pseudo code is:

θ

θ

φφ
πθ

αφ

sin*
()*

cos*

tan*tan*
()*2

()

rZ
RandomHY

rX
then

YHr
Random

Random

=
=
=

−=
=

∗=

α represents a maximum angle between zero and π /2

corresponding to the angle φ , H is a defined maximum height

of the cloud or section, and θ the circular angle placement

around the disk at layer y. Conical coding is:

θ

θ

πθ

sin*
()*

cos*

()*
()*2

rZ
RandomHY

rX
then

RandomMr
Random

=
=
=

=
=

Here the placement of the billboards is random about a disk

of radius r at a random height Y. Spherical coordinates can

be coded as a complete sphere or half sphere by limiting φ

to an angle of π /2:

 30

φθ
φ

φθ

πφ
πθ

cos*sin*
cos*

sin*cos*

()*
()*

()*2

rZ
rY
rX

then
RandomMr

Random
Random

=
=
=

=
=
=

 5. Random Placements

During cloud development a random placement of

billboards was adopted. This randomness aids in varying the

appearance from cloud to cloud or between cloud sections.

Alternatively the number of billboards can be reduced by

defining either the height Y or the radius r incrementally

by dividing the maximum value by the total number of

billboards filling the region. This also prevents, to a

certain extent, the over layering of billboards within a

limited region. Randomness will also become an important

factor when it comes to model and data resolution. Without

the ability to resolve down to the smallest cloud rendered

within a 3D scene, it is still necessary to program for this

ability. This aspect is further discussed in the chapter

five. This effect is not meant to replace

parameterizations, rather at this point in the production

process it is merely used to circumvent the lack of

resolution and proper parameterizations.

 6. Shading

Shading of a cloud structure is an aspect in the cloud

production that was not fully developed under this research.

While accomplished to some extent to show a more detailed

 31

appearance, no calculations for the complexity of scattering

were programmed. A darker shade was manually applied to the

previously developed images. Within the scripting, as a 3D

coordinate is calculated for individual billboards, if the

placement is designated within the lower portions of the

cloud, the darker image is assigned to that billboard. This

method assumes the sunlight was from a purely nadir

direction. A limitation of this method of shading an X3D

billboard node is for thinner clouds or billboards that have

been assigned a position not completely beneath the cloud is

rendered as shaded. This is seen in side view of Figure 11

and top view of Figure 12. While not completely discernable

from the side, viewing the cloud from above shows individual

darker billboards that in the real world appear white. This

erroneous shading can be avoided, but in turn complicated

the shading algorithms slightly. Chapter IV details future

work suitable to cloud shading.

Figure 11. Side view of an X3D scene showing cirrus and
multi shaded layer cumulus clouds.

 32

Figure 12. Top view of an X3D scene showing multi shaded
layer cumulus clouds

C. PERFORMANCE CALCULATIONS

 Performance measurement of the cloud rendering method

was accomplished by two processes. The first is by simple

calculation of total system memory allocated to the browser

program and view plug-in to accomplish the rendering. For

comparison purposes of future work the system properties

used are an AMD Turion dual core 1.9 processor with 2

Gigabytes(GB) of random access memory(RAM). Internet

Explorer 7 is used as the browser with a Cortona plug-in for

VRML viewing. Besides system resource programs no other

programs were running at the time of performance operations.

Initial calculations use one of the predesigned image

textures, which are 512x512 pixel resolution, normal scaling

on a 100x100 meter flat X3D IndexedFaceSet geometry node.

The resulting billboards are rendered in a cubic geometric

area of 1 km. Table 1 outlines the results and Figure 13

 33

charts the responses. These results assist in the

computation for approximating the total number of billboards

and associated cloud structures that can be rendered. Of

note during the 10,000 billboard test the listed system

occasionally reached its limit and returned a fatal runtime

error requiring shutdown of the browser program. These

results can vary based on how much system memory is

allocated to other minor programs running in the background.

Scale modifications were run on the same number of

billboards however; scaling had no effect on the memory

allocation. This suggests cloud size will have no effect on

the scene rendering, but rather simply the number of

billboards used will dictate the grid size able to be

rendered. A moderately sized cumulus cloud with a base of

approximately 1km built by previously described scripting

methods using 5 cloud sections with 8 billboards each

creates a total of 40 billboards. Thus 15 square km

complete cumulus sky coverage requires 225 clouds and 9000

billboards. This is close approaching the limit of 10000

for the test system. It is important to note these tests

were for one cloud type production only. This 15 km limit

for cumulus does not take into account any additional layers

and further billboards that may be needed to complete the

rendering. This is a severe limitation to overcome. There

are a couple concepts that can be further researched to

expand the grid memory limits. The first is the use of

imposters or full cloud image on one texture. The second

would be to use a Level of Detail X3D node to limit the

number of billboards used based on either direction or

distance from any given cloud. These concepts are further

discussed in Chapter IV.

 34

Table 1. Memory performance for 1 to 10000 billboards.

Billboards 1 10 100 1000 2000 5000 10000

Memory
(mb) 31 41 55 150 225 485 900

Memory Allocation per Billboards Rendered

0
100
200
300
400
500
600
700
800
900

1 10 100 1000 2000 5000 10000

Billboards

M
em

or
y

(m
b)

Figure 13. Memory allocation increase with increased

billboard production.

A second performance test was completed that applies to

the visual notion of navigation through the virtual world.

A snapshot of the sky about any location will most likely be

preferable to the majority of customers from a

meteorological standpoint. However, to be able to navigate

through a scene is advantageous for mission planning whether

by ground or flight. To test for limitations in navigation,

frame rate is computed within the browser. See Appendix 2

 35

for the XML code. The frame rate indicates how often the

browser/viewer combination can recalculate and display the

3D scene. The frame rate speed is not completely dependant

on the number of billboards used within the API script, but

other factors to include the filled pixels within the view

frustum or visible screen. The method for frame rate

testing of the cloud scene can be accomplished by many

methods. The method used for thesis testing was simply

layering billboards horizontally behind each other and to

automatically navigate through the scene. This method

allows for the frames per second (FPS) calculation with an

increasing number of filled pixels and layers in the visible

window. The Cortona viewer has the ability to designate one

of four different navigation speeds in essence changing the

navigation FPS rate. Additionally the navigation speed can

be increased within the browser by pressing the shift key

during movement. This test can not therefore, be used as a

finite limitation of frame rate. It is shown as a benchmark

for limitations, as well as future work. Speed designated

by the user, in addition to whether the navigation is manual

or automated will affect the frame rate. Table 2 outlines

the results and Figure 14 charts the responses. There are

many practical applications to discuss the minimum FPS for a

software program. However, the fact is Phase Altering Line

(PAL), National Television System Committee (NTSC), Digital

Television (DTV), commercial films, computer video cards and

screens range from the 20’s to hundreds of FPS. The basis

for many applications usually rests upon the ability of the

human eye to make a distinction between moving images. This

distinction can vary based on whether the image is a flicker

of light or the blur of a moving object. For the general

 36

purposes of this endeavor a common benchmark is

approximately 15 FPS. However, during the testing, a

measured 11 FPS showed very little “jump” between displayed

images. If the same calculation is applied to this speed

test for navigation, the acceptable number of billboards is

limited to 1,000. This is a far less than memory limitation

of 10,000. Applying this number to the 1 km sized cumulus,

it seems a mere 25 clouds can be rendered for navigational

purposes. For complete sky coverage this is 5 square km.

Table 2. Frame rate performance in frames per second
for 1 to 10000 billboards.

Billboards 1 10 100 1000 2000 5000 10000

FPS 35 31 25 11 7 3 1.5

Frame Rate per Billboard Rendered

0

5

10

15

20

25

30

35

40

1 10 100 1000 2000 5000 10000

Billboards

Fr
am

e
Ra

te
 (F

PS
)

Figure 14. Decline in frame rate with increased
billboard production.

While total memory is system independent using the same

methods, limitations of memory and frame rate are system

 37

dependant. As with all computer software any enhancements

in system speed and related technology will improve the

individual software performance. With these methods shown

there is a definite need to improve the cloud rendering with

a fewer number of billboards to maximize the grid area

viewed at any given time. Section B in the Chapter V

discusses some of these methods and other possibilities.

 38

THIS PAGE INTENTIONALLY LEFT BLANK

 39

IV. DATA PROCESS

A. METEOROLOGICAL INPUTS

The process to fill the GIS scene with procedurally

created clouds is straight forward and depicted in Figure

15.

Figure 15. Flowchart depicting the rendering process
from raw data to scene visualization on a user side
computer.

Satellite Ingest

CDFS Model
Processing

High Resolution
Model Moisture

Input

Cloud Script
Processing

Scene Rendering

 40

While creating 3D clouds is the goal of this thesis

research, there is a need to locate a data source for their

production. While it is beyond the scope of this research

to determine the most meteorologically or statistically

correct data, certain features of data are desirable. Many

different methods can be used to define the 3D region of a

cloud, and many have been researched for the purpose of

creating 3D clouds. NPS studies have been accomplished

using IR satellite data (Owen 1998) and a combination of

satellite, upper air soundings, and surface observations

(Stone 1992). While other options include radar or

stereographic satellite compilations, the realization of

available data for any particular area remains a challenge.

Ultimate remote sensing capabilities for 3D cloud structure

include recent use of cloud profiling radars on satellites.

The CloudSat project images (Figure 16) show cloud and

storm structure, intensity and rainfall rates. Never

before has such detailed structure been available for such

a complete atmospheric profile. However, for thesis

research purposes use of this data by itself is not

practical as it only represents a thin horizontal slice of

atmosphere. Inclusion of this data in future research

could prove invaluable. However, for a nearly complete 3D

data set that allows for the definition of clouds using a

weather forecast model is proposed.

 41

Figure 16. CloudSat profile imagery for storms over
Texas (Colorado State University 2008).

While it is beneficial for procedurally generated

clouds to be rendered independent of any particular data,

the methods researched and produced in XML at minimum need a

cloud classification.

1. Cloud Depiction and Forecast System (CDFS) II

The CDFS can serve at least as a partial input to the

cloud rendering method. The model incorporates satellite

and conventional analysis through four levels of processing

in its final output, the Worldwide Merged Analysis as

depicted in Figure 17.

 42

Figure 17. CDFS multilevel data, processing, and
analysis methods for creating the Worldwide Merged
Cloud Analysis (Plonski 1998).

Cloud typing begins in level two where clouds are

detected from the raw data and classified into three initial

groups of cirrus, cumulonimbus, and fog based on spectral

analysis. In level three, further typing of cumuliform or

stratiform is calculated based on spatial extent of the

cloud formation. Finally, based on data, height of the cloud

is classified as low, medium or high cloud. The model then

classifies the cloud as one of nine cloud types. Cloud

layer thickness is predefined and assigned based on

classification. The cloud base is then calculated by

subtracting the assigned thickness from the cloud top

 43

height, and can later be changed when level four processing

is accomplished with real world observations and other

conventional reports are merged.

2. Combined Sources

This model discussion does not imply there are not

superior algorithmic methods for the determination of cloud

regions in 3D space. It is assumed beneficial and practical

for cloud rendering methods to have a high resolution model

in both the horizontal and vertical. Using a high

resolution model saves further extrapolations to be

accomplished within the cloud rendering API, introducing

further error. Regardless of model resolution, a certain

amount of approximation might be necessary. The

quantitative resolution visible within a 3D virtual world is

essentially in the sub meter range. As discussed the method

of filling 3D space is guided by a particular cloud type

structure. Different types of clouds are associated with

different methods and calculations as well as base images.

Thus, determination of cloud typing within the model is

useful. These two processes of cloud region and cloud type

determination can also presumably be obtained from different

sources, so there is no need to find a single model or data

set defining the two aspects. Variables of cloud mixing

ratio and ice mixing ratio are common to many forecast

models. A separate model can provide the high resolution

spatial input and a typing model such as CDFS, or 3DCAS can

drive the rendering API.

This thesis concept initially was to research the

ability to create clouds near real time for the purpose of a

theater sensing strategy. The proof of concept question

 44

becomes how to quantify the accurate depiction of 3D GIS or

virtual world clouds. Ultimately the closer the virtual

clouds appear to the real world clouds of the same time, the

more accurate the production rendering can be considered.

This comparison is essential in a cloud rendering process

proof of concept for operational use. In addition to

approximated areas of clouds being accurate, relaying to a

customer the visual aspect of a weather scenario associated

with a certain type of cloud ought to be accomplished by the

rendering. The comparison is essentially a model and

rendering API verification.

The process of cloud rendering for meteorological

purposes is only limited by model input. As discussed, the

dual model input is currently seen as the most logical

choice. However, the process can be employed for nowcast or

forecast purposes. A single model would need to be

developed to drive both region and method. The algorithms

as used by CDFS for cloud typing are derived from current

satellite data. Therefore algorithms for cloud typing would

need to be developed in conjunction to the spatial regions

associated with clouds.

B. INPUT METHODS

 Under current design, meteorological input occurs in

multiple areas dependent on type of model data used. Table

3 is a general outline for the cloud production process.

The cloud rendering process and model input will vary

slightly depending on the cloud type.

 45

Table 3. Individual steps of the cloud production
process programming.

Step 1 Origin Designation

Step 2 Cloud Location

Step 3 Cloud Type

Step 4 Cloud Quantity

Step 5 Cloud Size
 - Cloud Sections
 - Section Size
 - Billboard Size
 - Billboard Quantity

Step 6 Cloud Production
 - Coordinate System Used
 - Billboard Texture Selection
 - Billboard Rotation
 - Billboard Geometry

Step 1 – Origin Designation: The first step entails

designating the general grid location for display. If the

model file name or header data contains location

information, automatic retrieval and designation within the

API is suggested. The X3D XML schema allows for a curved

earth surface or orientation on a flat plane, based on user

needs. Additionally, objects can be assigned a location

based on simple scene coordinate system or in geospatial

coordinates. Regardless of how the earth’s surface is

displayed X3D schema uses a coordinate location designated

in meters. This is useful when using model data gridded in

 46

meters or km. For the cloud rendering, a corner of the grid

can be designated as the scene “origin” for the local

coordinate system.

Step 2 - Cloud Location: Based on their origin, clouds

will be placed by coordinates designated in meters and

heights relative to the surface. Care must be taken here to

adjust for height if elevation data is used to display the

surface. Surface height must be added to model data height

if the model layer is terrain following. There will

invariably be some randomness or artistic license taken in

placement. Display resolution in the virtual world will

simply be higher than the mixture of model data used.

Step 3 - Cloud Type: Based on the data from CDFS or

similar cloud typing model the API will search for the

cataloged method. This implies a minimum of nine different

cloud creation methods be created. Research methods of

cloud typing and differentiating the visual aspects of

clouds are virtually endless.

Step 4 - Cloud Quantity: Related to the placement is

the cloud quantity. The current method design is for user

input to define the number of clouds placed within a

quadrant. As model data is included the number of clouds

will vary based on cloud type, number of adjacent model grid

sections designated with clouds, and cross referenced with

cloud size. Step four would likely benefit from the dual

model input as higher resolution input from humidity, ice

mixing ratio or water mixing ratio can assist in the

quantity determination.

Step 5 - Cloud Size: Cloud size is again directly

related to cloud type and can partially be defined by the

 47

layer depth from CDFS. Additional steps are required within

the API as it was found that construction of the cloud

structure was best handled with multiple sections. The

number of sections will be designated based on cloud type

and overall cloud size. Section size will be calculated as

a percentage of the cloud size and can be standard or given

a range for visual diversity. Part of defining the size of

the cloud is related to the size of the textured billboard.

Thought and testing must be given to the size of the

billboard. When textures are applied to the stated size,

the image will be displayed as created. Cloud size can also

be varied by scaling. Scaling, as seen in testing, does not

affect the performance, but it will affect the appearance of

the texture. This affect can be favorable or not, which

dictates methods must be tested in various and multiple ways

for a desirable final visualization. Billboard quantity

will also assist in the cloud size, but also the cloud

density. Some correlation is needed between the amounts of

moisture variable as described in step four, as well as

reference the texture used in step six.

Step 6 - Cloud Production: The rest of the cloud

rendering process will be defined by model inputs already

used in previous steps. The cloud type input from CDFS will

drive the coordinate system used for billboard placement,

billboard geometry, and rotation. Billboard selection is

guided by the dual input of type and moisture variables as

well as shading principles discussed below in this section.

The proposal exists that some cloud types may require other

inputs. For example, which direction an overshooting top is

developed would be dependant on wind direction and speed.

Wind patterns can also be used in the general tilt of a

 48

larger cumulonimbus structure. Cloud physics and dynamics

are certainly a useful knowledge in this area, but once

again how to visually represent the cloud phenomena with

meteorological inputs rests upon the data available.

 49

V. RENDERING IMPROVEMENTS

A. SHADING

The shading of cloud structures in computer graphics

terms is related to the meteorological principle of the

scattering of visible light by the water or ice particles

within the cloud. The computer graphics chore is the

simulation of these principles of scattering. This principle

of shading takes in several different aspects and can be

defined as complex or as simply as the designer likes. In

practice, the shading should represent a realistic cloud to

pass along the intended weather effects of the cloud structure

to the viewer. In Chapter III, example of a simple

characteristic for clouds to be darker in lower levels is

shown. This, of course, is not a color difference, but rather

the lack of visible light at these levels. Figure 18 shows

light from a source is scattered away and toward the path to

the eye, and progressive distances along this path have fewer

photons available to observe. Realistically if given

meteorological information to render the virtual scene, the

sun position would be defined by the time of day as defined in

the data set. The shading would then be darkened in positions

of the cloud that are opposite the position of the sun.

Additionally, the algorithm for cloud shading can be

calculated to increase darkness based on cloud depth in

relation to the sun. The shading algorithm can be further

developed by including computation of ambient light scattered

into the direction of the camera view angle. A certain amount

of shading control can be accomplished through texture

manipulation.

 50

Figure 18. Single source light principles for shading
indicating scatterings along the light path to the
viewer.

Further control can be accomplished within X3D by one

of three different light nodes: directional light, point

light, and spot light. With introduction of internal scene

lighting, consideration must be taken into account for shape

of the textured billboards. Internal lighting is

accomplished on geometry surface normal. Given a flat

surface any internal lighting will be rendered the same

across the billboard texture and across the entire cloud

structure. This effect can be changed slightly by giving a

certain rotation to the defined geometry prior to

designating the billboard node. The geometric shape

allocated for the billboard can also affect this internal

lighting. Due to the changing normal across a curved

 51

surface, the billboard will show a difference of applied

internal lighting. Testing was attempted with different

categories of curved surfaces. When mapping to a complete

sphere structure, image textures must be edited by scaling

the image smaller. When texture mapping occurs the smaller

image is then mapped to only one side of the sphere, which

is preferable for the billboard rendering. Additionally the

sphere node within X3D is not editable to increase the

number of vertices defining the sphere. This presents an

unfavorable visual artifact of seams and vertices from the

defined sphere visible on the image texture. Half spheres

were also tested using extrusions of arcs, however in

texture mapping the image is applied to the arc instead of

the entire hemisphere, rendering this geometry unusable.

Non-Uniform Rational B-Splines (NURBS) curves are an

available node within the X3D schema. The surfaces formed

by NURBS present a smoother surface than a defined sphere.

Testing was attempted, however the node was not supported by

the Cortona plug-in. More research is needed to determine

shading control of the billboard surface.

A separate approach would be to utilize the

ShaderProgram and ProgramShader nodes available in X3D.

These nodes give separate programs the ability to define

shading per vertex or per fragment within the X3D scene.

Many different methods can be utilized in this separate

program, and no suggested method can be made at this time.

Research points to using Open Graphics Library Shading

Language (GLSL) or Phong shaders. These shaders can be used

 52

to replace manual production of image textures representing

a more realistic cloud, however, this is acknowledged as a

more advanced approach.

B. PERFORMANCE

As can be seen from the performance tests, memory

allocations and frame rate are very limiting to the display

of large spatial regions of clouds. Further research must

employ system memory cost saving measures to display as many

visual aspects of current weather and cloud conditions while

maximizing system resources.

1. Imposters

Taking a cue from the previous work of Microsoft and

Sun Dog Software, complete images of clouds can be displayed

on one dedicated piece of geometry. Questions include: At

what range from the user or camera view would using the

imposter process begin? This is surely a question that must

be tested within the designated browser/viewer. This

question of range may be influenced by the purpose of the

rendering whether the view be static or for navigational

purposes. If a static view for the geolocation is used,

imposters can simply be images of clouds. This

significantly decreases further effort in texture

production. These images communicate the weather associated

within the region, at a fraction of the system memory cost.

If future design incorporates the option to navigate through

the virtual world, imposter creation becomes more

challenging. One idea is to create procedural imposters.

With procedural cloud production, every cloud structure is

slightly different. At some distance from the cloud

 53

structure the imposter is replaced by a 3D procedural cloud.

For visual accuracy the imposter needs to be very similar in

size and shape to the imposter. A second option is to

encompass the view position with a textured ring of

imposters. The ring of imposters moves in conjunction with

the view position. This option is slightly limiting in that

these “distant” cloud structures never actually become

closer to the camera view. Thus if the model data suggests

a different cloud pattern at some point the images on the

surrounding ring would need to be replaced. If the cloud

structures have been in position throughout the entire

navigation and such an exchange can appear abrupt.

2. Texture Switching

Another option exists, but is likely not as

computationally cost effective as single image imposters.

This alternative is to limit the number of rendered

billboards dependant on the camera view direction and range.

If a normal cloud structure is made of 40 texture images

only a certain number of images are actually seen at any

given angle. If the images are semi transparent there is a

certain perceived color meshing between the front and rear

image giving the appearance of thickness. This density can

be compensated for by simply assigning a less transparent or

nontransparent image to the few billboards in the view of

the camera. As the camera view came within a defined

distance from the cloud structure, the remaining billboards

are rendered and the images replaced by the regular 3D

textures. X3D and GIS systems calculate or perform this

function as a Level of Detail (LOD) determination as defined

 54

by a node. LOD is a method of loading or unloading data to

improve visualization and performance.

C. DISPLAY

While these methods are developed for the purpose of

insertion into present or future GIS systems, it is not too

difficult to design a general display system unique for

meteorological purposes. A concern over insertion into a

GIS platform is the focus of the application. Certain GIS

applications place a larger emphasis on high resolution

elevation data and imagery. These attributes are important

but also require sharing system resources. As seen by the

performance testing, current ability is limited. This being

the case, a simpler virtual world design will allow for a

greater spatial area to be displayed. Again the option for

surface displays is varied. Determination would need to be

made between a curved or flat Earth surface and with or

without elevation data. Conversely, switching between Earth

surfaces can be accomplished as a user directed input.

 55

VI. CONCLUSION AND RECOMMENDATIONS

A. CONCLUSIONS

Through the general methods researched and developed

here, a simple XML language representation of 3D clouds has

been shown. At the present time, X3D is the most useful and

accessible schema to use for the cloud structure production.

The available nodes in the X3D schema are fully compatible

with production methods. Texture images were produced

manually using image editing software while cloud structure,

position, and lighting are automated within the file

scripting. An interesting concept of this method is that

the visualization processing step currently in use by the

Joint Air Force and Army Information Network (JAAWIN) can be

bypassed. The rendering API can be programmed to pull data

directly from a server thus saving processing power on the

JAAWIN server side.

Limitations are apparent in current versions of the

cloud rendering. Most significant is the limitation of

textures by memory. For these methods to be productive and

useful, a balance of volumetric and 2D cloud structures must

be used. Additionally a lack of full compatibility between

the X3D schema and plug-in viewers hampered the efforts. To

take full advantage of available X3D nodes a fully X3D

compliant viewer plug-in must be used.

With further research and development this 3D cloud

rendering process can be utilized as the next generation of

meteorological visualization products.

 56

B. RECOMMENDATIONS FOR FUTURE WORK

To further improve production methods the following

tasks are suggested:

- Edit the API script to ingest and display clouds from
model data: CDFS typing and high spatial resolution
moisture model data.

- Explore the option of using Sun Dog Software’s Silver
Lining SDK. A further option is to contract the
company to develop the processes. For a more rapid
production of 3D cloud rendering, this would be the
preferred method.

- Further develop a minimum of 9 methods of cloud
production to match the types designated by CDFS. This
process would include image texture improvement for an
accurate cloud representation. In contrast
artistically created clouds of the nine types can be
used. The limitations of memory would still be
present, but this can enhance visual features and
simplify production process.

- Research an automated texture production process. If
automated this can assist in the generation of 2D cloud
structures

- Select or design a rendering scene for the
visualization. This selection can be through working
with Google Earth, NASA World Wind, or X3D Earth, Sun
Dog Software, or implementing a low resolution
elevation and Earth surface image package. Based on
this decision it may or may not be necessary to also
choose a viewer plug-in to negate the X3D compatibility
issues.

- Develop a testing for proof of concept purposes. The
concept challenge will be an accurate depiction of the
current sky conditions and atmospheric state that they
represent.

 57

APPENDIX A. EXEMPLAR X3D SCENES

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE X3D PUBLIC
"http://www.web3d.org/specifications/x3d-3.1.dtd"

"file:///www.web3d.org/TaskGroups/x3d/translation/x3d-
3.1.dtd">

<!--Warning: transitional DOCTYPE in source .x3d file-->

<X3D profile="Immersive" version="3.1"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance"
xsd:noNamespaceSchemaLocation="http://www.web3d.org/specific
ations/x3d-3.1.xsd">

 <head>

 <meta content="CloudScene.x3d" name="title"/>

 <meta

 content="X3D utilizing ecmascript to develop quasi
volumetric 3D clouds from png image textured billboard
nodes." name="description"/>

 <meta content="Capt Darren W. Murphy" name="creator"/>

 <meta content="1 Nov 2007" name="created"/>

 <meta content="23 March 2008" name="modified"/>

 <meta

content="https://savage.nps.edu/Savage/Environment/Meteorolo
gy/CloudScene.x3d" name="identifier"/>

 <meta

 content="Additional png images to use in cloud
rendering:
https://savage.nps.edu/Savage/Environment/Met
eorology/Cloudtexture1.png
https://savage.nps.edu/Savage
/Environment/Meteorology/Cloudtexture1_1.png
https://sav
age.nps.edu/Savage/Environment/Meteorology/Cloudtexture1_2.p
ng
https://savage.nps.edu/Savage/Environment/Meteorology
/Cloudtexture1_3.png
https://savage.nps.edu/Savage/Envir
onment/Meteorology/Cloudtexture2.png
https://savage.nps.
edu/Savage/Environment/Meteorology/Cloudtexture3.png
htt
ps://savage.nps.edu/Savage/Environment/Meteorology/Cloudtext
ure4.png
https://savage.nps.edu/Savage/Environment/Meteo
rology/Cloudtexture6.png
https://savage.nps.edu/Savage/E

 58

nvironment/Meteorology/Cloudtexture7.png
https://savage.
nps.edu/Savage/Environment/Meteorology/Spheretexture.png

;" name="image"/>

 <meta

 content="The ecmascript used was found to renderable
only by Cortona plug-in.
Care should be taken when using
CreateVrmlFromString node.
\ before quotations in the
string, and must be in accurate vrml form.
"
name="bugs"/>

 <meta

 content="X3D-Edit,
http://www.web3d.org/x3d/content/README.X3D-Edit.html"
name="generator"/>

 <meta content="../../license.html" name="license"/>

 </head>

 <Scene><!--png image files for the cloud textures must be
designated

 in the ecmascript node. Cloud sizes and shapes are
designated in

 the ecmascript node. Scaling, translations, and size
of geometry

 controls sizes and shapes.--><Viewpoint
description="Main"

 jump="false" orientation="0 1 0 1.57" position="50000
1000 42000"/>

 <Viewpoint description="Light House Tower" jump="false"

 orientation="0 1 0 1.3" position="45000 1290 44000"/>

 <Viewpoint description="centerWest" jump="false"

 orientation="0 1 0 2.5" position="48000 1000 20000"/>

 <Background groundColor="0 0 1" skyColor="0 0 1"/>

 <DirectionalLight ambientIntensity="1" color="1 1 1"

 direction="-1 0 0" global="true" intensity="1"
on="true"/>

 <Group DEF="Terrain">

 <Transform scale="50 50 50" translation="25000 0
25000">

 59

 <Inline
url=""MontereyBayLargeMesh.wrl"
"../../Lo
cations/MontereyBayCalifornia/MontereyBayLargeMesh.x3d"

"https://savage.nps.edu/Savage/Locations/MontereyB
ayCalifornia/MontereyBayLargeMesh.x3d"
"../../
Locations/MontereyBayCalifornia/MontereyBayLargeMesh.wrl&quo
t;
"https://savage.nps.edu/Savage/Locations/Montere
yBayCalifornia/MontereyBayLargeMesh.wrl""/>

 </Transform>

 <Transform rotation="1 0 0 1.57" translation="25000 0
25000">

 <Shape>

 <Rectangle2D size="77000 55000" solid="false"/>

 <Appearance>

 <ImageTexture
url=""ocean.png"
"https://savage.nps.edu/
Savage/Environment/Meteorology/ocean.png""/>

 </Appearance>

 </Shape>

 </Transform>

 </Group>

 <Group DEF="Placemarks">

 <Transform scale="50 50 50" translation="45000 30
44000">

 <Inline
url=""Lighthouse.wrl"
"../../Locations/Mo
ntereyBayCalifornia/Lighthouse.wrl"
"https://s
avage.nps.edu/Savage/Locations/ShipIslandMississippi/LightHo
use.wrl"
"../../Locations/MontereyBayCaliforni
a/LightHouse.x3d"
"https://savage.nps.edu/Sava
ge/Locations/MontereyBayCalifornia/LightHouse.x3d"

"/>

 </Transform>

 </Group>

 <Group DEF="Clouds">

 <Transform DEF="Cumulus"/>

 <Transform DEF="Cirrus"/>

 <Transform DEF="Fog"/>

 60

 <Transform DEF="Stratus"/>

 <Script DEF="PixelScript" directOutput="true">

 <field accessType="initializeOnly" name="Cumulus"
type="SFNode">

 <Transform USE="Cumulus"/>

 </field>

 <field accessType="initializeOnly" name="Cirrus"
type="SFNode">

 <Transform USE="Cirrus"/>

 </field>

 <field accessType="initializeOnly" name="Fog"
type="SFNode">

 <Transform USE="Fog"/>

 </field>

 <field accessType="initializeOnly" name="Stratus"
type="SFNode">

 <Transform USE="Stratus"/>

</field><![CDATA[ecmascript:

function cumulustranslation() // These values designate the
boundary location of the cloud

{

 X = 50000*Math.random(); // X horizontal
range

 Y = 1000 + 300*Math.random(); // Y vertical base +
range

 Z = 50000*Math.random(); // z horizontal range

 randomt = new String(X+' '+Y+' '+Z);

 return randomt;

}

 61

function cumulusscale() // these values scale a cloud within
a designated size

{

 maxscale = 1;

 scale = Math.round(9+maxscale*Math.random());

 X = 1.5*scale;

 Y = scale;

 Z = scale;

 randomscale = new String(X+' '+Y+' '+Z);

 return randomscale;

}

function cumulussectiontranslation() // These random values
place another portion of cumulus type cloud

{

 randomtheta = 6.28319*Math.random();

 randomphi = .7854*Math.random();

 randomradius = 90 + 5*Math.random();//the first whole
number should be close to the sectionradius

 X =
randomradius*Math.cos(randomtheta)*Math.sin(randomphi);

 Z =
randomradius*Math.sin(randomtheta)*Math.sin(randomphi);

 Y = randomradius*Math.cos(randomphi);

 randomt = new String(X+' '+Y+' '+Z);

 return randomt;

}

function cirrustranslation()

{

 62

 X = 50000*Math.random();

 Y = 8000 + 1000*Math.random();

 Z = 50000*Math.random();

 randomt = new String(X+' '+Y+' '+Z);

 return randomt;

}

function cirrusscale()

{

 maxscale = 1;

 scale = Math.round(9+maxscale*Math.random());

 X = 1.5*scale;

 Y = 1+0.5*Math.random();

 Z = 1.5*scale;

 randomscale = new String(X+' '+Y+' '+Z);

 return randomscale;

}

function cirrussectiontranslation()

{

 randomtheta = 6.28319*Math.random();

 randomphi = .7854*Math.random();

 randomradius = 90 + 5*Math.random();

 X =
randomradius*Math.cos(randomtheta)*Math.sin(randomphi);

 Z =
randomradius*Math.sin(randomtheta)*Math.sin(randomphi);

 Y = randomradius*Math.cos(randomphi);

 randomt = new String(X+' '+Y+' '+Z);

 63

 return randomt;

}

function fogtranslation()

{

 X = 40000+5000*Math.random();

 Y = 300*Math.random();

 Z = 40000+5000*Math.random();

 randomt = new String(X+' '+Y+' '+Z);

 return randomt;

}

function fogscale()

{

 X = 7;

 Y = 7;

 Z = 7;

 randomscale = new String(X+' '+Y+' '+Z);

 return randomscale;

}

function fogsectiontranslation()

{

 randomdistance = 950 + 100*Math.random();

 X = randomdistance;

 Z = randomdistance;

 Y = 100*Math.random();

 randomt = new String(X+' '+Y+' '+Z);

 64

 return randomt;

}

function stratustranslation()

{

 X = 50000*Math.random();

 Y = 2000 + 1000*Math.random();

 Z = 50000*Math.random();

 randomt = new String(X+' '+Y+' '+Z);

 return randomt;

}

function stratusscale()

{

 maxscale = 10;

 scale = Math.round(30+maxscale*Math.random());

 X = scale;

 Y = 2+0.5*Math.random();

 Z = scale;

 randomscale = new String(X+' '+Y+' '+Z);

 return randomscale;

}

function stratussectiontranslation()

{

 randomtheta = 6.28319*Math.random();

 randomphi = .7854*Math.random();

 randomradius = 90 + 5*Math.random();

 65

 X =
randomradius*Math.cos(randomtheta)*Math.sin(randomphi);

 Z =
randomradius*Math.sin(randomtheta)*Math.sin(randomphi);

 Y = randomradius*Math.cos(randomphi);

 randomt = new String(X+' '+Y+' '+Z);

 return randomt;

}

function rotation()

{

 radians = 6.28*Math.random();

 randomr = new String('0 0 1 ' + radians);

 return randomr;

}

function cumulus()

{

maxi = 20; // number of clouds

maxj = 5; // denotes how many portions affecting the size of
the cloud

maxk = 8; // number of billboards indicating cloud density

sectionradius = 100; //radius of individual cloud sections

for (var i=0; i < maxi; i++)

{

CloudStringA = ' Transform { \n' +

' scale '+ cumulusscale() + ' \n' +

' translation '+ cumulustranslation() + ' \n' + //
cloud placement

' children [\n';

 66

CloudStringB = new Array();

CloudStringF = new Array();

 for (var j=0; j < maxj; j++)

 {

 radius = 0;

 CloudStringB[j]= ' Transform { \n' +

 ' translation '+ cumulussectiontranslation() + '
\n' + // section placement

 ' children [\n';

 CloudStringC = new Array();

 image = new String();

 for (var k=1; k < maxk; k++) // maxk value
denotes how many textured billboards make up the cloud

 {

 randomtheta = 6.28319*Math.random();

 randomphi = 1.5708*Math.random();

 radius = radius+(sectionradius/maxk); // radius
incremental steps based on billow radius and max billboards

 X =
radius*Math.cos(randomtheta)*Math.sin(randomphi);

 Z =
radius*Math.sin(randomtheta)*Math.sin(randomphi);

 Y = radius*Math.cos(randomphi);

 if (Y <= 30) //cloud shading and lighting control

 {

 67

 image = ' \"CloudTexture1_5.png\"
\"https://savage.nps.edu/Savage/Environment//Meteorology/Clo
udTexture1_5.png\" \n';

 }

 else

 {

 image = ' \"CloudTexture1_4.png\"
\"https://savage.nps.edu/Savage/Environment//Meteorology/Clo
udTexture1_4.png\" \n';

 }

 Billboardtranslation = new String(X+' '+Y+' '+Z);

 CloudStringC[k] = ' Transform { \n' +

 'translation '+ Billboardtranslation + ' \n' +
// random billboard placement within radius designated above

 ' children [\n' +

 ' Billboard { \n' +

 ' axisOfRotation 0 0 0 \n' +
// 0 0 0 designates rotation on all axis

 ' children [\n' +

 ' Transform { \n' +

 ' rotation 0 0 0 0 \n' +
// a rotation of the individual billboards can be defined

 ' children [\n' +

 ' Shape { \n' +

 ' appearance Appearance { \n' +

 ' material Material { \n' +

 ' } \n' +

 ' texture ImageTexture { \n' +

 ' url [' + image + '] \n' +

 ' } \n' +

 ' } \n' +

 68

 ' geometry IndexedFaceSet { \n' +
// define type of geometry to texture

 ' coordIndex [0, 1, 2, 3] \n' +

 ' solid FALSE \n' +

 ' coord Coordinate { \n' +

 ' point [50 50 0, \n' + //
define size of the geometry. Here 100 meter 2D square.

 ' 50 -50 0, \n' +

 ' -50 -50 0, \n' +

 ' -50 50 0] \n' +

 ' } \n' +

 ' } \n' +

 ' } \n' +

 '] \n' +

 ' } \n' +

 '] \n' +

 ' } \n' +

 '] \n' +

 ' } \n';

 }

 CloudStringD = CloudStringC.join(' ');

 CloudStringE = '] \n' +

 ' } \n';

 CloudStringF[j] = CloudStringB[j] + CloudStringD
+CloudStringE;

 }

CloudStringG = CloudStringF.join(' ');

 69

CloudStringH = '] \n' +

' } \n' +

'### \n';

CloudString = CloudStringA + CloudStringG + CloudStringH;

newNode = Browser.createVrmlFromString(CloudString);

Cumulus.children[i] = newNode[0];

 }

}

function cirrus()

{

maxi = 2;

maxj = 5;

maxk = 8;

sectionradius = 1000;

for (var i=0; i < maxi; i++)

{

CloudStringA = ' Transform { \n' +

' scale '+ cirrusscale() + ' \n' +

' translation '+ cirrustranslation() + ' \n' +

' children [\n';

CloudStringB = new Array();

CloudStringF = new Array();

 70

 for (var j=0; j < maxj; j++)

 {

 radius = 0;

 CloudStringB[j]= ' Transform { \n' +

 'translation '+ cirrussectiontranslation() + ' \n' +

 ' children [\n';

 CloudStringC = new Array();

 for (var k=1; k < maxk; k++)

 {

 randomtheta = 6.28319*Math.random();

 randomphi = 1.5708*Math.random();

 radius = radius+(sectionradius/maxk);

 X =
radius*Math.cos(randomtheta)*Math.sin(randomphi);

 Z =
radius*Math.sin(randomtheta)*Math.sin(randomphi);

 Y = radius*Math.cos(randomphi);

 Billboardtranslation = new String(X+' '+Y+' '+Z);

 CloudStringC[k] = ' Transform { \n' +

 'translation '+ Billboardtranslation + ' \n' +

 ' children [\n' +

 ' Billboard { \n' +

 ' axisOfRotation 0 0 0 \n' +

 ' children [\n' +

 ' Transform { \n' +

 71

 ' rotation ' + rotation() + ' \n' +

 ' children [\n' +

 ' Shape { \n' +

 ' appearance Appearance { \n' +

 ' material Material { \n' +

 ' } \n' +

 ' texture ImageTexture { \n' +

 ' url
[\"cloudtexture3.png\"
\"https://savage.nps.edu/Savage/Environment/Meteorology/clou
dtexture1_4.png\"] \n' +

 ' } \n' +

 ' } \n' +

 ' geometry IndexedFaceSet { \n' +

 ' coordIndex [0, 1, 2, 3] \n' +

 ' solid FALSE \n' +

 ' coord Coordinate { \n' +

 ' point [500 500 0, \n' +

 ' 500 -500 0, \n' +

 ' -500 -500 0, \n' +

 ' -500 500 0] \n' +

 ' } \n' +

 ' } \n' +

 ' } \n' +

 '] \n' +

 ' } \n' +

 '] \n' +

 ' } \n' +

 '] \n' +

 ' } \n';

 }

 72

 CloudStringD = CloudStringC.join(' ');

 CloudStringE = '] \n' +

 ' } \n';

 CloudStringF[j] = CloudStringB[j] + CloudStringD
+CloudStringE;

 }

CloudStringG = CloudStringF.join(' ');

CloudStringH = '] \n' +

' } \n' +

'###
\n';

CloudString = CloudStringA + CloudStringG + CloudStringH;

newNode = Browser.createVrmlFromString(CloudString);

Cirrus.children[i] = newNode[0];

 }

}

function fog()

{

maxi = 2;

maxj = 5;

maxk = 8;

sectionlength = 1000;

 73

for (var i=0; i < maxi; i++)

{

CloudStringA = ' Transform { \n' +

' scale '+ fogscale() + ' \n' +

' translation '+ fogtranslation() + ' \n' +

' children [\n';

CloudStringB = new Array();

CloudStringF = new Array();

 for (var j=0; j < maxj; j++)

 {

 length = 0;

 CloudStringB[j]= ' Transform { \n' +

 ' translation '+ fogsectiontranslation() + ' \n' +

 ' children [\n';

 CloudStringC = new Array();

 image = new String();

 for (var k=1; k < maxk; k++)

 {

 length = length+(sectionlength/maxk);

 X = length;

 Z = 100*Math.random();

 Y = 100*Math.random();

 74

 image = ' \"CloudTexture1_4.png\"
\"https://savage.nps.edu/Savage/Environment/Meteorology/Clou
dTexture1_4.png\" \n';

 Billboardtranslation = new String(X+' '+Y+' '+Z);

 CloudStringC[k] = ' Transform { \n' +

 ' translation '+ Billboardtranslation + ' \n' +

 ' children [\n' +

 ' Billboard { \n' +

 ' axisOfRotation 0 0 0 \n' +

 ' children [\n' +

 ' Transform { \n' +

 ' rotation 0 0 0 0 \n' +

 ' children [\n' +

 ' Shape { \n' +

 ' appearance Appearance { \n' +

 ' material Material { \n' +

 ' } \n' +

 ' texture ImageTexture { \n' +

 ' url [' + image + '] \n' +

 ' } \n' +

 ' } \n' +

 ' geometry IndexedFaceSet { \n' +

 ' coordIndex [0, 1, 2, 3] \n' +

 ' solid FALSE \n' +

 ' coord Coordinate { \n' +

 ' point [500 500 0, \n' +

 ' 500 -500 0, \n' +

 ' -500 -500 0, \n' +

 ' -500 500 0] \n' +

 ' } \n' +

 ' } \n' +

 75

 ' } \n' +

 '] \n' +

 ' } \n' +

 '] \n' +

 ' } \n' +

 '] \n' +

 ' } \n';

 }

 CloudStringD = CloudStringC.join(' ');

 CloudStringE = '] \n' +

 ' } \n';

 CloudStringF[j] = CloudStringB[j] + CloudStringD
+CloudStringE;

 }

CloudStringG = CloudStringF.join(' ');

CloudStringH = '] \n' +

' } \n' +

'###
\n';

CloudString = CloudStringA + CloudStringG + CloudStringH;

newNode = Browser.createVrmlFromString(CloudString);

Fog.children[i] = newNode[0];

 }

 76

}

function stratus()

{

maxi = 1;

maxj = 10;

maxk = 10;

sectionlength = 1000;

for (var i=0; i < maxi; i++)

{

CloudStringA = ' Transform { \n' +

' scale '+ stratusscale() + ' \n' +

' translation '+ stratustranslation() + ' \n' +

' children [\n';

CloudStringB = new Array();

CloudStringF = new Array();

 for (var j=0; j < maxj; j++)

 {

 length = 0;

 CloudStringB[j]= ' Transform { \n' +

 ' translation '+ stratussectiontranslation() + ' \n' +

 ' children [\n';

 CloudStringC = new Array();

 image = new String();

 77

 for (var k=1; k < maxk; k++)

 {

 length = length+(sectionlength/maxk);

 X = length;

 Z = 1000*Math.random();

 Y = 1000*Math.random();

 image = ' \"CloudTexture1_4.png\"
\"https://savage.nps.edu/Savage/Environment/Meteorology/Clou
dTexture1_4.png\" \n';

 Billboardtranslation = new String(X+' '+Y+' '+Z);

 CloudStringC[k] = ' Transform { \n' +

 ' translation '+ Billboardtranslation + ' \n' +

 ' children [\n' +

 ' Billboard { \n' +

 ' axisOfRotation 0 0 0 \n' +

 ' children [\n' +

 ' Transform { \n' +

 ' rotation 0 0 0 0 \n' +

 ' children [\n' +

 ' Shape { \n' +

 ' appearance Appearance { \n' +

 ' material Material { \n' +

 ' } \n' +

 ' texture ImageTexture { \n' +

 ' url [' + image + '] \n' +

 ' } \n' +

 ' } \n' +

 78

 ' geometry IndexedFaceSet { \n' +

 ' coordIndex [0, 1, 2, 3] \n' +

 ' solid FALSE \n' +

 ' coord Coordinate { \n' +

 ' point [500 500 0, \n' +

 ' 500 -500 0, \n' +

 ' -500 -500 0, \n' +

 ' -500 500 0] \n' +

 ' } \n' +

 ' } \n' +

 ' } \n' +

 '] \n' +

 ' } \n' +

 '] \n' +

 ' } \n' +

 '] \n' +

 ' } \n';

 }

 CloudStringD = CloudStringC.join(' ');

 CloudStringE = '] \n' +

 ' } \n';

 CloudStringF[j] = CloudStringB[j] + CloudStringD
+CloudStringE;

 }

CloudStringG = CloudStringF.join(' ');

 79

CloudStringH = '] \n' +

' } \n' +

'###
\n';

CloudString = CloudStringA + CloudStringG + CloudStringH;

newNode = Browser.createVrmlFromString(CloudString);

Stratus.children[i] = newNode[0];

 }

}

function initialize()

{

cumulus();

cirrus();

fog();

stratus();

}]]></Script>

 <DirectionalLight ambientIntensity="1" color="1 1 1"

 direction="-1 -1 0" global="true" intensity="1"
on="true"/>

 </Group>

 </Scene>

</X3D>

 80

THIS PAGE INTENTIONALLY LEFT BLANK

 81

APPENDIX B. MODEL AVAILABILITY

The X3D files with included scripts and png image files

are available for download and viewing online at

https://savage.nps.edu/Savage/Environment/Oceanography/index

.html. The Monterey elevation and lighthouse files are also

available in the Savage archives.

 82

THIS PAGE INTENTIONALLY LEFT BLANK

 83

LIST OF REFERENCES

Bouthors, A., Neyret, 2004: Modeling Cloud Shapes.
Eurographics Digital Library, 5 pp. [Available online
at
http://www.eg.org/EG/DL/Conf/EG2004/short/short54.pdf].
Last accessed Feb 08.

Brutzman, D. X3D-Edit Authoring Tool for Extensible 3D
(X3D) Graphics, 7 pp. [Available online at
http://www.web3d.org/x3d/content/X3D-
EditAuthoringTool.pdf]. Last accessed Mar 08.

Brutzman, D., Daly, L., X3D: Extensible 3D Graphics for Web
Authors. Morgan Kaufman, 441 pp.

GNU Image Manipulation Program [Available online at
http://www.gimp.org]. Last accessed Mar 08.

Harris, M.J., 2003: Real-Time Cloud Simulation and
Rendering. PhD dissertation. Department of Computer
Science, University of North Carolina at Chapel Hill,
173 pp.

Hibbard, W., Santek, D., Interactivity is the Key.
Proceedings of the 1989 Chapel Hill Workshop on Volume
Visualization, 39-43.

Meibner, M., Huang, J., Bartz, D. Mueller, K., Crawfis, R.,
A Practical Evaluation of Popular Volume Rendering
Algorithms. October 2000, IEEE Symposium on Volume
Visualization 2000, 81-89.

Plonski, M., 1998: Cloud Depiction and Forecast System II
Overview, 1998 IEEE Aerospace Conference 7 pp.
[Available at
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel4/5
608/15054/00685807.pdf?tp=&isnumber=&arnumber=685807.].
Last accessed Feb 08.

Portable Network Graphics Home Site [Available online at
http://www.libpng.org/pub/png]. Last accessed Mar 08.

 84

Schpok, J., Simons, J., Ebert, D.S., Hansen, C., 2003: A
Real-Time Cloud Modeling, Rendering and Animation
System. SIGRAPH Symposium on Computer Animation. 8 pp.
[Available online at
www.ecn.purdue.edu/purpl/level2/papers/ scaclouds.pdf].
Last accessed Feb 08.

Tarantilis, G.E., 2004: Simulating Clouds with Procedural
Texturing Techniques Using the GPU. M.S. Thesis. MOVES
Institute, Naval Postgraduate School, 69 pp.

Taylor, M.G. Evaluation of a Cloud Fraction Analysis
Product. M.S. Thesis. Dept. of Meteorology, Air Force
Institute of Technology, 93 pp.

Treinish, L., 1999: Task-Specific Visualization Design. IEEE
Computer Graphics and Applications. October 1999, 72-
77.

Wang, N., Realistic and Fast Cloud Modeling. 17 pp.
[Available online at http://ofb.net/~niniane/clouds-
jgt.pdf]. Last accessed Jan 08.

 85

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Air Force Weather Technical Library
Asheville, NC

4. Professor Philip Durkee (CODE MR/DE)
Department of Meteorology
Naval Postgraduate School
Monterey, CA

5. Professor Don Brutzman
MOVES Institute of the Naval Postgraduate School
Monterey, CA

6. Sun Dog Software
Sammamish, WA

7. Capt. Darren W. Murphy
Naval Postgraduate School
Monterey, CA

