Analysis of Passive Vibration Measurement and Data Interrogation Issues in Health Monitoring of a HMMWV Using a Dynamic Simulation Model

D. Adams, Purdue University
J. Gothamy, P. Decker, D. Lamb, D. Gorsich, TARDEC
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE
24 MAR 2008

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
Analysis of Passive Vibration Measurement and Data Interrogation Issues in Health Monitoring of a HMMWV Using a Dynamic Simulation Model

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)
D. Adams; J. Gothamy; P. Decker; D. Lamb; D. Gorsich

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000

8. PERFORMING ORGANIZATION REPORT NUMBER
18705

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)
TACOM/TARDEC

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
18705

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at SAE 2008 World Congress, April 14-17, 2008, Detroit, MI, USA, The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT
classified

b. ABSTRACT
classified

c. THIS PAGE
classified

17. LIMITATION OF ABSTRACT
SAR

18. NUMBER OF PAGES
12

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Motivation

HMMWV comes in over a dozen variants:

- Some heavier than others;
- Variation in loading;
 - Durability of suspension,
 - Frame and cross members.

- A method is desirable through which passive vibration response is used to detect faults.
Issues

Issues with using vibration for fault detection:

- Which frequency range?
- Sensors, how many and where to place?
- Damage variety (suspension, frame, etc.).
- Non-stationary excitation due to terrain:
 - L/R wheels in phase,
 - L/R wheels out of phase,
 - Must identify operating regime first.
- Variability from vehicle-to-vehicle.
Approach

87 degree of freedom dynamic model:

\[
[M]\{\ddot{x}\} + [C]\{\dot{x}\} + [K]\{x\} = \{f\}
\]

- x and z forcing functions;
- Free response analysis:
 \[
 [M]^{-1}[K]\{X\} = \lambda \{X\}
 \]
- Force response analysis:
 \[
 \frac{d}{dt}\begin{bmatrix} \{x\} \\ \{\dot{x}\} \end{bmatrix} =\begin{bmatrix} 0 & I \\ -[M]^{-1}[K] & -[M]^{-1}[C] \end{bmatrix}\begin{bmatrix} \{x\} \\ \{\dot{x}\} \end{bmatrix} + \begin{bmatrix} 0 \\ [M]^{-1} \end{bmatrix}\{f\}
 \]
 \[
 = [A]\begin{bmatrix} \{x\} \\ \{\dot{x}\} \end{bmatrix} + [B]\{u\}
 \]
Results (Free Response)

Suspension, cross member, and frame damage:

- Low, high, and broad frequency changes,
- 40-50% damage results in 10% variation.
Results (Free Response)

Modal deflection shapes show that:
- Sensors on F/R cross members are optimal,
- Sensors on wheel are suboptimal (filtering).
Results (Force response)

Faults in suspension, frame, cross members are:

• detected in different frequency ranges;
• best detected for certain terrains (modes).
Technical Barrier

HMMWV forced response varies significantly:

- Without regime recognition, fault detection is difficult using conventional methods.

Excessive variation!
Proposed Approach

Method to control vibration input for diagnosis:

• Timing, and
• diagnostic cleats.

• “Weigh station” approach will target certain faults.
Experimental Setup

Pickup truck with 2 vertical accelerometers:
• F/R control arm and F/R frame.
Experimental Results

Sway bar link loosened to 400, 200, 0 lb-in:

• Low freq insensitive to fault;
• Both sensors sensitive from 2.6-3.9 kHz.
Conclusions

Fault detection using vibration data is feasible:

• Free response (modal) changes depend on frequency range;
• Forced response changes depend on regime;
• To control variability in fault indicators, diagnostic cleat approach is proposed;
• Experiments indicate fault in stabilizer bar link can be detected amidst variability in data.