Award Number: DAMD17-03-1-0224

TITLE: Angiogenesis and therapeutic approaches to NF1 tumors

PRINCIPAL INVESTIGATOR: David F. Muir, Ph.D.

CONTRACTING ORGANIZATION: University of Florida
Gainesville, FL 32610

REPORT DATE: April 2007

TYPE OF REPORT: Revised Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Angiogenesis and therapeutic approaches to NF1 tumors

Invivo and in vitro models were used to firmly conclude that Nf1 haploinsufficiency in endothelial cells results in exaggerated proliferation and angiogenesis in response to key pro-angiogenic factors. Results implicate these growthfactor pathways as potential targets for therapeutic agents. In addition, endostatin was found to be a potent inhibitor of NF1 endothelial cell migration in vitro, suggesting endostatin may be an effective anti-angiogenic agent for reducing NF1 tumor growth. Two intraneural xenograft models of NF1 peripheral nerve sheath tumors were developed and characterized. Tumor growth and vascularity of NF1 tumor xenografts were quantified by advanced MRI, gadolinium permeability and dynamic contrast enhancement that match results obtained by conventional histological measurements. Several methods to deliver endostatin in vivo were tested and several difficulties were encountered. Finally, cell factories made by alginate-encapsulation of 293 cells transfected with AAV-endostatin were developed and are being refined to deliver consistent, high-dose systemic levels of endostatin. The effects of systemic endostatin on NF1 xenograft tumor growth will be completed in a no-cost extension of this project.

Cancer biology, angiogenesis, xenograft, gene therapy, anti-angiogenic therapy, MRI

The goal of this project is to specify how anti-angiogenic approaches can be effectively applied to NF1 tumors. Invivo and in vitro models were used to firmly conclude that Nf1 haploinsufficiency in endothelial cells results in exaggerated proliferation and angiogenesis in response to key pro-angiogenic factors. Results implicate these growthfactor pathways as potential targets for therapeutic agents. In addition, endostatin was found to be a potent inhibitor of NF1 endothelial cell migration in vitro, suggesting endostatin may be an effective anti-angiogenic agent for reducing NF1 tumor growth. Two intraneural xenograft models of NF1 peripheral nerve sheath tumors were developed and characterized. Tumor growth and vascularity of NF1 tumor xenografts were quantified by advanced MRI, gadolinium permeability and dynamic contrast enhancement that match results obtained by conventional histological measurements. Several methods to deliver endostatin in vivo were tested and several difficulties were encountered. Finally, cell factories made by alginate-encapsulation of 293 cells transfected with AAV-endostatin were developed and are being refined to deliver consistent, high-dose systemic levels of endostatin. The effects of systemic endostatin on NF1 xenograft tumor growth will be completed in a no-cost extension of this project.
Table of Contents

- **Introduction** ... 4
- **Body** .. 5
- **Key Research Accomplishments** 15
- **Reportable Outcomes** ... 15
- **Conclusions** ... 17
- **References** ... 17
- **Appendices** ... 18-
INTRODUCTION

Neurofibromatosis type 1 (NF1) is a common genetic disease with a wide variety of features which primarily involve the nervous system and related tissues. NF1 is characterized by abnormal cell growth and a high incidence of neurofibroma, a nerve tumor composed predominantly of Schwann cells. Plexiform neurofibromas often grow very large and are debilitating or fatal to NF1 patients. Thus, there is a serious need for better therapies to manage NF1 tumor growth. To this end, we have developed and exploited two animal models of NF1. The first involves a strain of mice in which the Nfl gene was functionally deleted. These Nfl knockout mice are a valuable model for examining the biology of Nfl tissues both in vivo and in vitro. Secondly, we have cultured tumor cells from human NF1 tumors. These human cell lines form neurofibroma-like tumors when implanted into the mouse nerve. Using these resources and animal models we can examine the formation of NF1 tumors under controlled conditions. The Aims of this proposal are to determine how NF1 tumors induce the formation of new blood vessels and to test therapies to inhibit this process as an means to stop tumor growth.

There is considerable heterogeneity in the vasculature found in different tissue and tumor types. The first Aim of this work is to determine whether blood vessel formation might be altered in NF1 patients. For this we will use the Nfl knockout mouse. Endothelial cells will be cultured from wild-type and Nfl-/- mouse tissues. The ability of these cells to form blood vessels in response to pro-angiogenic and anti-angiogenic factors will be tested in tissue culture assays. Important differences in the responsiveness of Nfl endothelial cells will be confirmed using in vivo assays conducted in wild-type and Nfl knockout mice.

We have established and characterized numerous cell cultures from human NF1 tumors, many of which have been grown as tumor grafts in the nerves of Nfl mice. We will test the hypothesis that the rate of growth by these NF1 tumor xenografts is associated with the degree of newly formed vasculature. Also, comparisons will be made between xenografts implanted in normal mice and Nfl mice. In vivo tumor growth and vascularity will be correlated with the expression of angiogenic regulators by the implanted cell lines. These experiments will test the hypothesis that tumor growth and invasion is dependent on the responsiveness of Nfl endothelial cells and other reactive cells in the nerve that contribute to tumor formation.

There are several anti-angiogenic factors that show excellent promise as potent inhibitors tumor growth. In this aim we will test endostatin as an anti-tumor treatment for peripheral nerve tumors in NF1. This Aim will be expanded to include other anti-angiogenic therapies based on discoveries made in the Aims described above. Gene therapy using endogenous angiogenic inhibitors, like endostatin, is considered by many to be the most promising approach to bring the anti-angiogenic therapy into the clinic. As a simplified experimental model, we will examine the growth and vascularity of tumor xenografts that are engineered to produce endostatin. Second, using a strategy more relevant to clinic treatment, we will apply an endostatin-viral vector (AAV-endostatin) to Nfl tumors already growing in the mouse. In both treatment models, growth and regression of tumor and neovasculature will be monitored in vivo by non-invasive magnetic resonance imaging (MRI) followed by autopsy examination of the tumor tissues. Our overall goal is to discover effective therapies for the treatment of plexiform neurofibromas by blocking the ability of these aggressive tumors to recruit the blood vessels required for their growth.
BODY

Technical Objective 1: EXAMINE THE RESPONSE OF NF1 ENDOTHELIAL CELLS TO ANGIOGENIC REGULATORS.

Task 1: Perform in vitro assays of Nf1+/- endothelial cell responses to pro-angiogenic factors:

Progress: This Task was completed. In this aim we are testing the hypothesis that the in vitro response of Nf1+/- endothelial cells to pro-angiogenic factors differs from that of wild-type endothelial cells. We established cultures of endothelial cells from Nf1+/- knockout and wild-type mice. These cultures were characterized by immunocytochemistry for endothelial cell markers and for tube (vessel-like) formation in 3-dimensional culture. Endothelial cell cultures were established from microvessels isolated from Nf1+/- and wild-type littermates. In a base medium (containing serum but no endothelial cell mitogen supplements) approximately 5% of the wild-type endothelial cells had BrdU-positive nuclei compared to 7% of their Nf1+/- counterparts (Fig. 1). Treatment with endothelial cell growth supplement (a pituitary extract rich in mitogens) increased the BrdU-DNA to 13% for wild-type and 27% for Nf1+/- endothelial cultures. VEGF treatment caused a similar but less pronounced differential response. bFGF was a potent mitogen and more than doubled the proliferation of wild-type endothelial cells over that seen in the base medium alone. The response to bFGF by Nf1+/- endothelial cells was 3.6-fold greater than in base medium and nearly equaled that to the pituitary growth supplement. Overall, the response of Nf1+/- endothelial cells to mitogens was approximately double that exhibited by wild-type cells. These findings indicate that Nf1 heterozygous endothelial cells have an exaggerated mitogenic response. These findings were described in detail in a published report (Wu et al., 2006; appended). In addition proliferation response, we also tested the effects of pro-angiogenic factors on endothelial cell migration in vitro. In brief, Nf1+/- and wild-type endothelial cells showed no significant differences in migratory responses to pro-angiogenic factors (as shown for VEGF in Fig. 2).

Mouse brain endothelial cell response to mitogens

![Fig. 1. BrdU incorporation assay of brain microvessel endothelial cell cultures](image)

Nf1+/- and wild-type endothelial cell cultures were treated with a base medium (80% DMEM/F12, 10% horse plasma-derived serum, 10% fetal bovine serum, and 100 μg/ml heparin) or base medium containing either VEGF (50 ng/ml), bFGF (50 ng/ml), or endothelial cell growth supplement (100 μg/ml). Data represent the means (+SE) of more than 8 replicates for each condition performed in two separate assays on two independent culture preparations.
Task 2: Perform in vitro assays of Nf1+/- endothelial cell responses to anti-angiogenic factors:

Progress: This Task was completed using the anti-angiogenic factor, endostatin. Nf1+/- and wild-type endothelial cells showed no significant differences in proliferation responses to endostatin (not shown). Next, we tested endothelial cell migration, another feature of ECs that is functionally important in angiogenesis. Cell migration was stimulated by VEGF in a Boyden chamber assay (which, as stated above, stimulated endothelial cells of both genotypes equally). To assess the susceptibility of Nf1 haploinsufficient endothelial cells to angiogenic inhibitors, we then treated the stimulated cells with endostatin. Endostatin inhibited the migration of both genotypes and had a more pronounced effect on Nf1 haploinsufficient endothelial cells (Fig. 2). This indicates that Nf1 haploinsufficiency in endothelial cells may cause these cells to be more susceptible to the effects of this angiogenic inhibitor and provides a logical rationale for testing endostatin to inhibit tumor angiogenesis and negate tumors growth in NF1 patients.

Task 3: Perform in vivo assays for angiogenesis in Nf1+/- knockout mice:

Progress: This Task was completed. It this aim we are testing the hypothesis that the angiogenic responses of mice with an Nf1 background differ from wild-type mice. The main goal of our in vivo angiogenesis assays has been accomplished. Developing, executing and analyzing in vivo assays for angiogenesis has been challenging and labor intensive. First, we established an in vivo angiogenesis assay that involves exposing newborn mice to an elevated oxygen atmosphere for 1 week followed by a return to normal atmosphere. The latter evokes a hypoxic response, including retinal neovascularization. New vessel formation was assessed by histological examination of sectioned retinas. Results showed that neovascularization in retinas from Nf1+/- mice was 66% greater than in wild-type litter mates ($p \leq 0.008$). These data indicate that Nf1 heterozygosity may, in general, exaggerate the angiogenic response. Results are shown in Fig. 3.
To corroborate these findings, a mouse corneal neovascularization model was developed. In this model, the avascularity of the cornea highly facilitates the quantification of neovascularization induced by growth factors. Also, intrastromal implantation of a sucralfate bFGF pellet can induce a reproducible angiogenic response in a dose-responsive manner without inflammation. We conducted an initial test to confirm that \textit{Nf1}+/- \textit{scid} mice do not have an increased inflammatory response to the sucralfate pellet and could show reliable corneal NV response to a growth factor. All eyes implanted with a pellet containing bFGF (90 ng) (n = 20) showed abundant new blood vessel growth extending from limbal vessels and advancing toward the pellet (Fig 4A). In contrast, eyes implanted with placebo (n = 10), like normal cornea, showed no vessel formation. For a quantitative assay, we prepared corneal flat-mounts stained with CD31 to reveal new blood vessels. Confocal fluorescence microscopy of CD31 immunostain showed greater new blood vessels in corneas implanted with 96 ng bFGF (Fig 4B) compared to 31 ng pellets (Fig 4C). Measurements of maximum new vessel length and circumference showed a positive correlation between the level of corneal NV and the concentration of bFGF. Increasing bFGF concentration from 31 ng to 96 ng per pellet resulted in 71% (P = 0.003, n=3) increase in maximum vessel length and one fold increase in vessel circumference (P = 0.0006, n=3). These data confirmed that the corneal NV induced by bFGF in \textit{Nf1}+/- \textit{scid} mice is reliably reproducible in a dose-responsive fashion, and thus may provide a sensitive and reliable means to assess the effects of \textit{Nf1} heterozygosity on angiogenesis. This finding indicates that heightened angiogenesis may play an important role in tumor development in NF1 patients and provides a foundation and justification for exploring anti-angiogenic therapies for neurofibroma.
To verify the effect of \(Nf1 \) heterozygosity on angiogenic response, corneal NV induced by bFGF micro-implantation was compared between \(Nf1^{+/+} \) and \(Nf1^{+/+} /scid \) mice. CD31-stained corneas at 6 days post-implantation (90 ng bFGF) showed an apparent increase of vascularity in \(Nf1 \) heterozygous mice comparing to wild-type little mates (Figs. 5A and B). The maximum new blood vessel length measured from corneas of \(Nf1 \) heterozygous mice (n=13) was 67% greater than that of wild-type controls (n=13) (\(P < 0.00002 \)), while there was no significant difference between the circumferences in \(Nf1 \) heterozygous and wild-type mice (\(P > 0.6 \)) (Fig. 5C and D). Although corneal NV was apparent 4 days after bFGF implantation, the new blood vessel length examined at this time point showed no significant difference between \(Nf1 \) heterozygous (n=9) and wild-type (n=9) mice (\(P>0.1 \)), indicating a cumulative temporal effect of \(Nf1 \) heterozygosity on angiogenesis. Together, these findings provide convincing *in vivo* evidence that \(Nf1 \) heterozygosity increases angiogenic response to both hypoxia and bFGF.

Task 4: Determine the angiotrophic potential of human tumor cell lines:
Progress: This Task was completed. For this aim we have collected extracts from numerous NF1 tumor cultures and normal Schwann cell control cultures. We have tested many of these to determine the proliferative and migratory responses of Nf1+/- endothelial cells to factors produced by NF1 tumor cultures. Thus far results have been varied and sometimes ambiguous. It is our belief that the tumor cultures produce both promoters and inhibitors of endothelial cell proliferation and migration. We conclude that the cultures have a balanced biological activity which, in most cases, is neither net promotive or inhibitory. This was confirmed by western immunoblotting that showed all of our NF1 tumor cultures produce the endothelial cell mitogen VEGF and the antiangiogenic factor endostatin. The prevalence of these two antagonist might well explain the neutrality of these culture extracts in our in vitro assays.

Technical Objective 2: EXAMINE THE VASCULARITY AND ANGIOGENIC PROPERTIES OF NF1 TUMOR XENOGRAFTS.

Task 1: Develop MRI imaging of tumor growth and vascularity:

Progress: This Task was completed. Our goal in this Task was to establish methods and parameters for MRI imaging of tumor growth and regression in a xenograft model of neurofibroma. Schwann cell cultures from NF1 patient tumors were implanted in the nerves of mice with an Nf1 background. The methods and characterizations of these tumors by histology and MRI were compiled into two publications (Perrin et al., 2007a, 2007b). We have established and imaged numerous xenografts using various MRI parameters including T1 and T2-weighting. Also, the vascular properties of tumor xenografts were imaged using gadolinium enhancement. Xenografted tumors appeared as hyperintense regions on in vivo T2-weighted MRI. Figure 6 shows T2-weighted images from a representative xenografted mouse over time. A slight hyperintensity is seen two weeks after xenograft of sNF96.2 cells at the site of tumor cell injection (Fig. 6A). By five weeks, the tumor is easily visible (Fig. 6B) and is shown to increased in size by week eight (Fig. 6C). In this and other experiments, the hyperintense tumor regions were shown to increase in size as the tumor developed and grew over time and were subsequently verified as xenografted sNF96.2 cells by huGST immunostaining. Thus T2-weighted, in vivo MRI is a useful tool for use in monitoring tumor growth over time and can subsequently be used to test the effectiveness of therapeutic agents in vivo. We have made excellent progress in imaging tumor xenografts by MRI and are ready to apply these techniques to monitor tumor growth and, in particular, tumor regression in response to anti-angiogenic treatments as required for subsequent aims. Methods and characterizations of an novel NF1 intraneural xenograft tumor model were reported in Perrin et al. (2007a) (appended). Extensive MRI studies were conducted using a second NF1 intraneural xenograft model. These findings were submitted for publication and the manuscript is under revision (Perrin et al., 2007b) (appended).
Task 2: Develop volumetric MRI and histology methods for tumor quantitation:

Progress: This Task was completed. We developed precise methods and applications for volumetric quantitation of tumor growth by MRI and histology. We made 3D renderings of many tumor MRI image sets (from consecutive slices) and have performed volumetrics of tumor size. An example is provided in Figure 7 showing a subset of representative MRI slices (4 of 11 in which tumor was detected), tumor definition and volume calculations. In summary, we successfully applied MRI methods for in vivo tumor monitoring and these measurements correlate well with follow-up histology assessments. Although applying this to subtle aspects of tumor growth is an evolving skill, our methods are in place to assess tumor volume for conservative the quantitative scoring required in subsequent aims.

Figure 7.

<table>
<thead>
<tr>
<th>Slice</th>
<th>Volume (mm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3689</td>
</tr>
<tr>
<td>2</td>
<td>0.4557</td>
</tr>
<tr>
<td>3</td>
<td>0.7812</td>
</tr>
<tr>
<td>4</td>
<td>0.7595</td>
</tr>
<tr>
<td>5</td>
<td>0.8898</td>
</tr>
<tr>
<td>6</td>
<td>0.5859</td>
</tr>
<tr>
<td>7</td>
<td>0.8680</td>
</tr>
<tr>
<td>8</td>
<td>0.6510</td>
</tr>
<tr>
<td>9</td>
<td>0.6944</td>
</tr>
<tr>
<td>10</td>
<td>0.3906</td>
</tr>
<tr>
<td>11</td>
<td>0.2821</td>
</tr>
<tr>
<td>Total</td>
<td>6.7271</td>
</tr>
</tbody>
</table>
Task 3: Quantify the growth and neovascularity of NF1 tumor xenografts:

Progress: This Task was completed. Our goal was to analyze and compare the growth and vascularity of various xenografts with different growth properties. Vascularity assessed by in vivo gadolinium enhancement has been established and quantified. To demonstrate increased vascular permeability, an assessment of angiogenesis, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was also performed 8 weeks after xenograft. DCE-MRI showed a hyperintense region in the xenografted area of the nerve, shown later by human GST immunostaining to be xenografted tumor, while a contralateral, uninjected sciatic nerve showed only a slight rise in contrast intensity. Approximately 17 minutes after contrast injection, when the level of contrast enhancement peaked, (Fig. 8), the xenografted tumor displayed an average contrast enhancement 7.9 fold higher than the surrounding muscle while the normal, uninjected nerve showed only an average 2.1 fold increase over the surrounding muscle over the next 15 minutes. These results suggest an increased vascular permeability in the xenografted tumor, which correlate with our histological findings of tumor-induced angiogenesis. A detailed report was published in Perrin et al. (2007b) (appended).

![Fig. 8](image)

Fig. 8. sNF96.2 xenograft tumor growth was monitored by in vivo MRI. (A) T2-weighted MRI reveals a large tumor mass (arrow) 8 weeks after implantation. (B) T1 weighted, DCE-MRI from the same mouse shown in A after systemic injection of the contrast agent gadolinium: The left image shows the contralateral sciatic nerve, which was not injected with tumor cells. DCE-MRI shows increased tumor blood vessel permeability. (C) The graph shows the % enhancement in specified regions of interest (indicated by the circles; n, normal nerve; t, xenograft tumor; m, muscle) over time after injection of the contrast agent. This increase in % enhancement corresponds to increased vascular perfusion in xenografted tumor and tumor vascularity.

Task 4: Determine the effect of the Nf1+/- background on NF1 tumor xenografts:

Progress: This Task was completed. This aim involves examining the growth of human cell line xenografts in wild-type and mice with an Nf1 background. Our aim is to determine if the host Nf1 background has an effect on tumor growth and if Nf1+/- cells might promote tumor growth compared to wild-type cells. We examined the growth of two human NF1 tumor xenografts in Nf1+/- and wild-type mice. Tumors (n=6) were examined for extent of growth (size), proliferation, vascularity and infiltration of mast cells. Xenografts of sNF96.2 Schwann cells consistently proliferated rapidly and expanded quickly to large MPNST-like tumors. The resulting large tumors were firm, gray-tan in color, rapidly
growing, and were similar in appearance to human NF1 MPNSTs. Figure 7 shows the gross morphology of a normal mouse sciatic nerve (Fig 9A) and a representative large 8 week-old sNF96.2 xenograft (Fig 9B). Nerves with large sNF96.2 MPNST-like tumors were up to five times the size of normal mouse sciatic nerves. Tumors in scid mouse sciatic nerves weighed 3.1 times more per millimeter (1.17 mg/mm +/- 0.293, n=5) than tumors from scid/Nf1 +/- mouse sciatic nerves (0.38 mg/mm +/- 0.070, n=4) (Fig. 9C). Similar findings, though somewhat less dramatic were obtained for a second xenograft tumor type (results not shown). Therefore, we conclude that Nf1 +/- background does not enhance xenograft tumor growth. This findings was confirmed using other cell lines and contradicts recent findings by other labs using transgenic mouse models. We believe our xenograft model (using tumor cells with a more complex and representative genotype) is more predictive of tumorigenic growth in NF1 patients. Detailed results were published in Perrin et al., 2007a, 2007b.

Figure 9.

Task 5: Examine the angiogenic properties of Nf1 +/- host cells within the NF1 tumor xenograft:

Progress:. In this aim we examined the possible tumorigenic and angiotrophic contributions of other Nf1-/+ host cell types. The most conspicuous host cells infiltrating the tumors were endothelial cells and mast cells. Endothelial cells formed numerous blood vessels that increased with tumor size (Fig. 10A). Mast cell infiltration often appeared associated with blood vessel formation (Fig, 10B). It was difficult to assign a roll to mast cells in tumor growth or vascularity. These reactive cells accumulated around all xenograft tumors and infiltrate certain xenograft types much more than others. These findings and possible implications are published in Perrin et al., 2007a; 2007b. Otherwise, we were not able to find any consistent evidence that Nf1 haploinsufficiency in mast cells or others affected the growth of the tumor xenografts. Although we conclude that haploinsufficiency is not a factor in tumor establishment and growth, it is likely our methods are not sensitive to subtle cellular influences and tumor properties.
Technical Objective 3: EXAMINE THE EFFECTS OF ANGIogenic INHIBITORS ON THE GROWTH AND NEOVASCULARIZATION OF NF1 TUMOR XENOGRAFTS IN NF1+/- MICE.

Task 1: Transduce endostatin in NF1 tumor cultures:

Progress: This aim was completed. We completed the transfection of two NF1 tumor cell line with AAV-endostatin and examined numerous subclones for endostatin expression. Endostatin expression was shown by Western immunoblotting (results not shown). Several clones expressing endostatin in culture were characterized and preserved. Bioassays show the endostatin produced is active and suppresses VEGF-induced endothelial cell proliferation in vitro (Fig. 11).

Task 2: Determine the effect of endostatin in vitro transduction on NF1 tumor xenografts:

Progress: This aim was completed. First we determined that endostatin did not inhibit proliferation and migration of the tumor cells themselves. These tests were mostly confirmatory and showed endostatin does not effect tumorigenic properties of the cell lines. It would have been therapeutically useful if this anti-angiogenic factor inhibited growth by NF1 tumor cells in addition to vascular endothelial cells. On the other hand, if this was true it would have been difficult for us to assess the antiangiogenic effects of endostatin per se. The second approach to this question involved examining the growth of NF1 tumor cell transfected with endostatin as xenografts in vivo. We anticipated that endostatin will inhibit...
angiogenesis and therefore retard tumor expansion. We first confirmed that the tumor xenografts were producing endostatin in vivo. We developed an ELISA for testing human endostatin in blood samples taken from engrafted mice. Levels of endostatin in the blood were not elevated. This could have been due to a failure in tumors development as anticipated. Histology show that NF1 cell lines expressing endostatin fail to form tumors in vivo. However, the same NF1 cell lines transfected with control vector (AAV-GFP) also failed to form tumors. We conducted a series of time course studies to examine the progress of in vivo growth by the NF1-endostatin and NF1-GFP xenografts. Both cell types survive after implantation but neither proliferated significantly. First, early growth by these xenografts should not require angiogenesis. It is generally accepted that a new blood supply is required only to sustain the growth of sizable tumors. None of our xenografts formed sizable masses. Second, the GFP control xenografts should have progressed and initiated angiogenesis like the parent (untransfected) xenografts, but clearly did not. We compared the growth properties of the transfected cell lines with the parent cell line (untransfected) in vitro and in vivo. It is clear that AAV transfection per se, for an unknown reason, reduced the tumorigenic potential of the NF1 cell lines. The AAV transfected cells continue to expand in culture (although at a significantly reduced rate), but failed to expand sufficiently in vivo as xenografts. For these reasons, this approach has failed to provide a reliable test of the anti-tumorigenic properties of endostatin in our model. This approach, using endostatin expressing NF1 xenografts to initiate tumors, was originally recognized to be mainly a proof of concept study with little clinical relevance. Therefore, this Task was concluded and we moved onto a second testing paradigm in the next Tasks.

Task 3: Develop in vivo delivery of AAV-endostatin:

Progress: We tested several methods for in vivo delivery of endostatin (for treating established NF1 tumor xenografts). Based on recent reports, to achieve significant tumor control high doses of endostatin must be injected at least daily. This is a very expensive protocol. Furthermore, the same studies show that endostatin is most effective when blood levels are maintained. We anticipated this dosing regime and therefore we proposed intramuscular injection of AAV-endostatin for constant production. Thus far, we have made numerous attempts at intramuscular transduction but have failed to achieve significant endostatin levels in the mouse blood. It is essential that we test the effects of systemic endostatin on the growth of established tumors. Therefore we tested an alternative method. In our initial testing of the transfection efficiency of AAV-endostatin we infected 293 cells, commonly used for this purpose because of their known high transduction efficiency. We found that when injected subcutaneously in our host mouse strain these cells form tumors and secrete high levels of endostatin into the blood stream. This approach proved difficult because of the rapid growth by 293-endo cells. We then developed methods to encapsulate the 293-endo cells in alginate beads. The beads prevent cell expansion but provide an environment suitable for sustained endostatin production. Following excellent work published by others, we have tested these alginate-endostatin cell factories in vitro and in vivo. With the cell factories endostatin levels were elevated in the mouse blood as shown by ELISA. Although highly variable between mice, many animals showed blood levels of 50-100 ng/ml endostatin, which is reported to be a therapeutic concentration in several mouse tumor models.
Task 4: Assess the effect of endostatin delivery to established NF1 tumor xenografts:

Progress: As described above, we have characterized two NF1 tumor xenograft models. Methods are in place to monitor tumor growth and tumor vascular perfusion in vivo by MRI. Also, a method of constant endostatin delivery implantation of alginate-encapsulated endostatin transfected 293 cells was developed. And, assays are in place to monitor endostatin levels in the blood of mice with NF1 tumor xenografts. Although the project funding period has ended we are continuing work to complete this aim using this newly developed endostatin delivery method.

KEY RESEARCH ACCOMPLISHMENTS

1) Developed methods to culture brain microvessel endothelial cells from Nf1 and wild-type mice.
2) Found that Nf1+/- endothelial cells have an exaggerated proliferative response to pro-angiogenic factors in vitro and in vivo.
3) Found that endostatin is a potent inhibitor of certain angiogenic properties of Nf1+/- endothelial cells in vitro.
4) Established and documented valid xenograft models of NF1 plexiform neurofibroma and malignant peripheral nerve sheath tumors.
5) Quantified tumor growth and vascularity of NF1 tumor xenografts.
6) Imaged and quantified vascularity of xenografted tumors using MRI, gadolinium permeability and dynamic contrast enhancement.
7) Established and subcloned NF1 tumor line transfected with AAV-endostatin.
8) Established that AAV transfection decreases the tumorigenic properties of NF1 cell lines.
9) Developed experimental delivery system for endostatin by establishing subcutaneous “cell factory” using alginate-encapsulated 293/AAV-endostatin cell line.

REPORTABLE OUTCOMES

Manuscripts:

Abstracts:

Collaborative outcomes assisted by this funding:

Animal Resources: mouse strain crossbreed - scid/Nf1+/-

CONCLUSIONS

Work on this research project was conducted in a timely fashion with very good progress. Several unexpected outcomes were encountered and alternative approaches applied successfully. In vivo and in vitro models were used to firmly conclude that Nf1 haploinsufficiency in endothelial cells results in exaggerated proliferation and angiogenesis in response to key pro-angiogenic factors. These results implicate these growth factor pathways as potential targets for therapeutic agents. In addition, we found that endostatin is a potent inhibitor of Nf1+/- endothelial cell migration in vitro. This suggests that endostatin may be a particularly effective therapy for reducing tumor NF1 tumor growth by inhibiting the formation of new blood supply.

Two intraneural xenograft models of NF1 peripheral nerve sheath tumors were developed and characterized. Tumor growth and vascularity of NF1 tumor xenografts was quantified by advanced MRI, gadolinium permeability and dynamic contrast enhancement that match results obtained by conventional histological measurements. Several methods to deliver endostatin in vivo were tested and several difficulties were encountered. Finally, cell factories made by alginate-encapsulation of 293 cells transfected with AAV-endostatin were developed and are being refined to deliver consistent, high-dose systemic levels of endostatin. Ongoing efforts will examine the effects of systemic endostatin on NF1 xenograft tumor growth although this funded project has ended.

REFERENCES

APPENDICES

4 research article reprints
Tumorigenic Properties of Neurofibromin-Deficient Schwann Cells in Culture and as Syngrafts in Nf1 Knockout Mice

Min Wu, Margaret R. Wallace, and David Muir

1Department of Pediatrics, Division of Neurology, University of Florida College of Medicine, Gainesville, Florida
2Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida
3McKnight Brain Institute and Shands Cancer Center, University of Florida College of Medicine, Gainesville, Florida

Neurofibromatosis type 1 (NF1) is one of the most common dominantly inherited genetic diseases associated with the nervous system. Functional loss of the NF1 tumor suppressor is frequently associated with the generation of benign neurofibromas that can progress to malignancy. Recent evidence in genetic mouse models indicates that the development of neurofibromas requires a loss of NF1 in the cells destined to become neoplastic as well as heterozygosity in nonneoplastic cells.

We tested this hypothesis in a newly developed syngraft mouse model in which Nf1–/– Schwann cells isolated from knockout embryos were grafted into the sciatic nerves of Nf1+/– mice, corresponding to the genetic background of NF1 patients. Furthermore, we also characterized in vitro growth of these cells. We found that embryonic mouse Nf1–/– Schwann cells exhibit increased proliferation and less growth factor-dependence in vitro compared with heterozygous and wild-type counterparts. Moreover, Nf1–/– Schwann cells showed tumorigenic growth when implanted into nerve of adult Nf1 heterozygous mice. These findings support the conclusion that loss of NF1 in embryonic mouse Schwann cells is sufficient for tumor development in the heterozygous environment of adult mouse nerve. In addition, this syngraft model provides a practical means for the controlled induction of neurofibromas, greatly facilitating localized application of therapeutic agents and gene delivery.

Key words: neurofibromatosis type-1; neurofibroma; Nf1 knockout; Schwann cell; gene transfer; tumor model

Correspondence to: David Muir, Department of Pediatrics, Neurology Division, Box 100296, JHMHC, University of Florida College of Medicine, Gainesville, FL 32610. E-mail: muir@ubbi.ufl.edu

Received 21 March 2005; Revised 28 June 2005; Accepted 4 August 2005

Published online 22 September 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/jnr.20646

© 2005 Wiley-Liss, Inc.
also required for the complete NF1-mediated tumorigenicity (Zhu et al., 2002).

In NF1 knockout mouse strains, homozygous mutant mice die in utero by day 13 as a result of abnormal cardiac development (Brannan et al., 1994; Jacks et al., 1994). Heterozygous NF1 mice do not develop neurofibromas, indicating that loss of both NF1 alleles is essential for neurofibroma formation. Chimeric mice harboring both NF1'/' cells and NF1'/' cells develop plexiform neurofibromas derived exclusively from the NF1'/' cells (Cichowski et al., 1999). These studies were unable to identify the specific cell type(s) responsible for tumor initiation. By using a conditional (cre/lox) allele, Zhu and coworkers (2002) found that NF1-mediated tumorigenicity requires a loss of NF1 in Schwann cells as well as haploinsufficiency in nonneoplastic cells. In both models, tumors appear sporadically in unpredictable sites, which may limit their application for testing antitumor therapies using local treatment. In addition, genetically engineered mice that create fields of mutant NF1'/' cells might not recapitulate all the microenvironment alterations required for the clonal outgrowth of human NF1 tumors.

In the present study, a syngraft mouse model was developed to test the hypothesis that NF1'/' Schwann cells initiate neurofibroma formation under spatial and temporal control. NF1'/' Schwann cells were cultured from E12.5 NF1'/' mouse embryos and implanted into the sciatic nerves of adult mice with an NF1'/' background. We found that NF1'/' Schwann cells have a growth advantage both in vitro and in vivo, producing tumors resembling plexiform neurofibroma in the adult haploinsufficient mouse nerve.

MATERIALS AND METHODS

Mouse Breeding

Mouse embryos were derived from two related colonies of NF1 knockout mouse strains. Inbred embryos were obtained from our stock colony of NF1 knockout mutant mice with the C57BL/6 background (B6/Nf1; Brannan et al., 1994). Other embryos were obtained by crossing B6/Nf1 heterozygous females with NF1 heterozygous male mice on the 129/Sv background (129/Nf1; Brannan et al., 1994). Host mice with an NF1 mutation that were also immunodeficient were generated by cross-breeding B6/Nf1 and B6/scid mice (scid/Nf1). Mice with scid'/' NF1'/' genotype (designated scid/Nf1'') were selected as hosts by genotype screening. The original scid mice were obtained from the Jackson Laboratory (Bar Harbor, ME). This project was reviewed and approved by the institutional Animal Care and Use Committee.

Genotyping

The NF1 locus was genotyped by a 3-oligo system PCR, as described by Brannan et al. (1994). The scid mutation in the DNA-PKCS gene, a nonsense mutation, was described by Blunt et al. (1996). We developed a PCR-based genotype assay based on genomic DNA sequence (Genbank AB005213). PCR primers were designed flanking the mutation site in exon 85: scid 5' (GAGTATTGAGCCAGACAATGCTGA) and scid 3' (CTT-TTGAAACACACTGATTCTGC). The resulting 180-bp PCR product was digested with Alu I to distinguish wild-type allele (no cut) from mutant allele (cut) via agarose gel electrophoresis, to genotype animals at the scid locus.

Embryonic Schwann Cell Culture

Approximately 50 dorsal root ganglia (DRG) and attached nerve roots were removed from each embryo at E12.5. The tissue was dissociated for 1 hr at 37°C in Dulbecco’s modified Eagle’s medium (DMEM) containing collagenase (0.5 mg/ml, 1,200 U/mg) and dispase (5 U/ml). The digested tissue was dispersed by triturating 10–15 times with a flame-constricted, siliconized Pasteur pipette. One half of dispersed cells from each embryo were plated into one well of a six-well plastic culture plate, precoated with polyornithine (0.1 mg/ml) and then laminin (10 μg/ml; Muir, 1994). The cultures were grown in 0.5 ml of DMEM supplemented with 2% fetal bovine serum (FBS), antibiotics, β-nerve growth factor (NGF; 25 ng/ml; Becton Dickinson, Bedford, MA), human recombinant glial growth factor-2 (GGF2; 10 ng/ml; Cambridge Neuroscience, Cambridge, MA), and human recombinant fibroblast growth factor-2 (FGF2; 10 ng/ml; Becton Dickinson). After 10 hr of incubation at 37°C in 5% CO2/humidified air, the medium was topped off with 1.5 ml of the same medium, except that the serum was replaced with N2 supplements and 1% heat-treated bovine serum albumin. After 3 days, the culture medium was refreshed with the serum-free medium described above, with the exclusion of NGF. After 7–8 days, the culture was dissociated by brief trypsinization, and the Schwann cell-enriched cultures were pooled with others of the same genotype and seeded at a density of 2 × 10^6 cells/75 cm^2 in laminin-coated dishes in DMEM containing 2% FBS and GGF2 (10 ng/ml). These Schwann cell-enriched cultures (designated P0) were grown for at least 7 days and then used for in vitro and in vivo characterizations.

In Vitro Schwann Cell Proliferation Assay

Embryonic Schwann cell cultures were plated on laminin-coated, eight-chamber glass slides at 20,000 cells/well in DMEM containing 2% FBS. Two days after plating, the medium was changed to include treatments as indicated with the addition of bromodeoxyuridine (BrdU; 10 μg/ml). After 24 hr, the cultures were fixed with 2% paraformaldehyde. Percentages of cells with BrdU-positive DNA were scored by immunostaining as described previously (Muir et al., 1990).

In Vitro Schwann Cell Apoptosis Assay

Schwann cells were plated and grown as described for the proliferation assays. After 24 hr, cells were fixed in 2% paraformaldehyde, and apoptotic cells were identified by using the in situ Apoptosis Detection Kit (Serologicals Corp., Norcross, GA; a TUNEL assay), following the protocol provided.

Prelabeling Schwann Cell Cultures with GFP- rAAV Gene Transfer

We used an adeno-associated virus (AAV) subtype 2 vector carrying a green fluorescence protein (GFP) marker gene
under a cytomegalovirus (CMV) enhancer and chicken β-actin hybrid (CMB) promoter, obtained from the University of Florida Gene Therapy Center Vector Core Lab. This marker gene transfer was needed to distinguish host from syngraft cells. Mouse embryonic Schwann cell cultures at P0 and P1 were harvested, washed with medium, and incubated with this vector (rAAV-GFP) at various MOI for 1 hr at 37°C. The cells were then plated on laminin-coated 35-mm dishes and in 0.5 ml of DMEM containing 2% FBS and GGF2 (10 μg/ml). After 4 hr, 1.5 ml of the same medium was added to the dishes; the medium was changed every 3–4 days. To assess any side effects of rAAV-GFP transduction on cell proliferation, transduced Schwann cells were plated on eight-chamber slides and processed as described above for the bromodeoxyuridine (BrDU) incorporation assay. GFP expression was examined by immunofluorescence microscopy.

Intraneural Implantation of Nf1 Knockout Schwann Cells

Mouse embryonic Schwann cell cultures transduced with rAAV-GFP with greater than 90% GFP expression efficiency were implanted into the nerves of Nf1+/+ and scid/Nf1+/+ host mice. Dissociated cells were collected, rinsed thoroughly, and resuspended as dense slurry (10⁷/ml) in Hank's balance salt solution. Young adult mice (2–3 months old) were anesthetized, and the sciatic nerves of both legs were exposed at midthigh. The cell suspension (5 μl, 5 × 10⁵ cells) was incrementally injected within the nerve by using a fine needle (200 μm diameter) and syringe driven by a UMP-II micropump (World Precision Instruments, Sarasota, FL) mounted on a micromanipulator. The site was closed in layers with sutures and the revived mouse returned to specific pathogen-free housing. To assess in vivo proliferation, mice were given an IP injection of BrdU (150 μl, 10 mg/ml) 24 hr before harvesting the nerves. At various times after implantation, the animals were killed under anesthesia, and the nerves were removed and then fixed by immersion in 4% buffered paraformaldehyde. Nerve segments were embedded in paraffin and sectioned at 7 μm for immunohistochemical staining.

Immunohistochemistry

Schwann Cell Cultures. Monolayer cultures were immunophenotyped with antibodies to the Schwann cell antigens S-100 (Dako, Carpinteria, CA), the low-affinity nerve growth factor receptor (p75; hybridoma 200-3-G6-4; American Tissue Culture Collection, Rockville, MD), and growth-associated protein-43 (GAP-43; NB300-143; Novus Biological, Littleton, CO; Ferguson and Muir, 2000). Cultures grown on laminin-coated chamber slides were fixed with 2% paraformaldehyde in 0.1 M phosphate buffer (pH 7.2; PBS) for 20 min and then washed with PBS containing 0.5% Triton X-100. Nonspecific antibody binding was blocked with PBS containing 0.1% Triton and 10% normal serum (blocking buffer) for 1 hour. Primary antibodies were diluted in blocking buffer and applied to wells overnight at 4°C. Bound antibodies were detected with fluorescein isothiocyanate (FITC)-conjugated secondary antibodies or peroxidase-conjugated secondary antibodies for 1 hr at 37°C. Peroxidase chromogenic development was accomplished with 3,3′-diaminobenzidine–(HCl)₄ (0.05%) and hydrogen peroxide (0.03%) in PBS.

Nerve Grafts. Sciatic nerves grafted with mouse Schwann cells were fixed by immersion in 4% paraformaldehyde in PBS, sectioned longitudinally, and stained with hematoxylin and eosin (H&E) for routine light microscopic examination. To identify transplanted mouse Schwann cells, nerve sections were immunostained with polyclonal anti-GFP antibody (Molecular Probes, Eugene, OR). Deparaffinized sections were pretreated with methanol containing 1% hydrogen peroxide for 30 min to quench endogenous peroxidase activity. Nonspecific antibody binding was blocked with 10% normal serum in PBS containing 0.5% Triton X-100 for 30 min at room temperature. Primary antibodies were diluted in blocking buffer (1:500) and applied to sections overnight at 4°C. Bound antibodies were labeled with biotinylated secondary antibodies for 1 hr at 37°C, followed by the avidin–biotin–peroxidase reagent (Dako) for 2 hr. Chromogenic development was accomplished with 3,3′-diaminobenzidine–(HCl)₄ (0.05%) and hydrogen peroxide (0.03%) in PBS. A similar procedure was used for immunostaining with antibodies against von Willebrand's factor (1:500; Dako), anti-VEGF-R2/Flik-1 (1:100; Santa Cruz Biotechnology, Santa Cruz, CA), and anti-neurofilament (1:300; Sigma, St. Louis, MO). For all immunohistochemical stains, sections without addition of primary antibodies served as negative controls.

Cell proliferation within the engrafted nerves was assessed by systemic injection of BrdU. Engrafted nerves were sectioned on the longitudinal axis and immunostained for BrdU DNA as described previously (Muir et al., 1996). BrdU-positive nuclei were counted per high-power field under the microscope. Mast cells were identified by the Leder stain, a histochemical method for chloracetate esterase activity using Naphthol AS-D (3-hydroxy-2-naphoic acid-O-toluidine; Sigma).

RESULTS

Breeding Nf1 Knockout Mice for Schwann Cell Cultures

Heterozygous Nf1 mutant mice do not exhibit gross abnormalities, whereas homozygous mutant embryos die in utero by E13.5. By E12.5, the peripheral ganglia have formed sufficiently for the culture of Schwann cells from Nf1+/− embryos prior to death (Kim et al., 1995; Dong et al., 1999). From initial generations of breeding dams, live Nf1−/− embryos were readily obtained at day E12.5, averaging 15% of the offspring per litter (Brannan et al., 1994). However, protracted breeding of the original B6/Nf1+/− strain caused earlier mortality of Nf1−/− embryos in utero. At the beginning of this study, from 63 embryos derived from nine litters, we obtained only two live Nf1−/−/− embryos (a 3.2% surviving rate) at day E12.5. To overcome this shift toward earlier mortality, the B6/Nf1+/− mice were crossed with a 129/Nf1+/− strain. As a result, the surviving rate of Nf1−/− embryos at day E12.5 derived from B6/Nf1+/− females mated with 129/Nf1+/− males increased to 23.7% (approximating the expected Mendelian ratio). Thirty-one live Nf1−/− embryos were obtained from a total of 131 hybrid embryos in 16 litters. This
cross-strain breeding improved the yield of Nf1^{−/−} embryos obtainable at day E12.5 by more than sevenfold. The results described below involved the use of Schwann cells cultured from the B6/Nf1³129/Nf1 hybrid embryos.

Growth Characteristics and Phenotype of Cultured Nf1^{−/−} Schwann Cells

Cultured Schwann cells with Nf1^{−/−}, Nf1^{+/−}, and Nf1^{+/+} genotypes eventually developed unique phenotypes. At initial stages, Schwann cells of all three genotypes had a similar appearance, containing mostly bipolar, triangle, or polygonal flattened shapes, with limited elongation (Fig. 1A–C). After 1 week of culture, most Schwann cells from all three genotypes grew without close contact with axons and became more elongated, bipolar, and spindle-shaped Schwann cell (SSC; Fig. 1D–F), similar to the Nf1^{−/−} Schwann cell described by Kim et al. (1995). Also, before the first passage, small colonies of flattened Schwann cells (FSC), like the reported TXF2/2 Schwann cells (Kim et al., 1997), started to appear in cultures of all three genotypes (Fig. 1D–F). Increased numbers of these colonies were often found in areas with high cell density regardless of genotype, indicating that they were more closely correlated with cell density than with genotype. The expansion of the FSC markedly increased as cultures approached confluence, suggesting that their proliferation was stimulated by autocrine factors or cell–cell contact.

After passage, the Nf1^{−/−} cultures expanded more rapidly and had a higher ratio of FSC to SSC than the Nf1^{+/−} or Nf1^{+/+} cultures. In all cases, Schwann cell cultures rapidly stagnated and became senescent beyond passage 2 for Nf1^{+/+} Schwann cell cultures, passage 4 for Nf1^{−/−} cultures, and in between for Nf1^{+/−} cultures. Immunostaining of these cells before passage 2 showed that at least 95% of cells were immunopositive for the Schwann cell markers S-100, p75, and GAP-43 (data not shown). These results indicate that most cultured cells in all three genotypes are of Schwann cell lineage and that the transformed FSCs are Schwann cell derivatives as well. Less than 5% of cells showed only nuclear staining with S-100, confirming that fibroblast contamination was low.

Growth Advantage of Nf1^{−/−} Schwann Cells In Vitro

Although the growth properties of Schwann cell cultures varied in magnitude somewhat from litter to litter, differences observed among the three genotypes within littersmates remained consistent. Cell counting of four different batches of initial cultures (each batch prepared from embryonic littermate embryos with genotypes...
of \(Nf1^{+/–}\), \(Nf1^{+/-}\), and \(Nf1^{+/+}\) showed that the mean numbers of cells from these Schwann cell cultures were \(Nf1^{−/−}\) 2.5 million (±0.28), \(Nf1^{+/-}\) 1.6 million (±0.19), and \(Nf1^{+/+}\) 1.0 million (±0.18). Differences between genotypes were statistically significant (t-test, \(P < 0.05\)). These results suggest that \(Nf1^{−/−}\) Schwann cells and, to a lesser extent, \(Nf1^{−/−}\) Schwann cells, have a significant growth advantage in vitro. Although it was evident that \(Nf1^{−/−}\) Schwann cells cultures expanded more rapidly, it remains possible in this rudimentary analysis that cell numbers from the initial dissections differed significantly for each genotype. Therefore, we examined directly the effect of \(Nf1\) mutation on Schwann cell proliferation and apoptosis. Schwann cells of all three genotypes derived from littersmates were cultured under the same conditions and were seeded at the same time for proliferation and apoptosis assays. BrdU incorporation assays revealed that proliferation of \(Nf1^{−/−}\) Schwann cell cultures was markedly greater than that of heterozygous or wild-type cultures. This was true for various culture conditions tested (Fig. 2). When cells were grown in the presence of high serum or GGF-2, proliferation of \(Nf1^{−/−}\) Schwann cells was two- to threefold greater than that of wild-type or \(Nf1^{+/−}\) Schwann cells. In low-serum medium, proliferation by \(Nf1^{−/−}\) cultures was nearly fivefold greater than that by wild-type or \(Nf1^{+/−}\) Schwann cells, indicating that the \(Nf1^{−/−}\) cells were less growth factor dependent. Similar results showing that \(Nf1^{−/−}\) Schwann cells have a growth advantage in vitro were obtained from cultures at two different early passages as well (data not shown).

Because the majority of BrdU-positive Schwann cells were FSCs, poorly differentiated Schwann cells accounted heavily for the differences in proliferation observed between genotypes. However, proliferation by SSCs, assessed by scoring the percentage of BrdU-positive cells in the spindle-shaped cell population only, was at least twofold higher in the \(Nf1^{−/−}\) cultures than in wild-type cultures. These findings confirm that \(Nf1^{−/−}\) Schwann cells, both the SSC and the FSC morphological types, have a marked growth advantage in vitro. Thus, the growth advantage of \(Nf1^{−/−}\) Schwann cells in vitro is attributed mainly to \(Nf1\) deficiency rather than culture heterogeneity or cell transformation per se.

TUNEL assays for apoptosis showed no significant differences in cell death between mutant and wild-type Schwann cells (data not shown). Therefore, the growth advantage of \(Nf1^{−/−}\) Schwann cells compared with wild-type cells is due primarily to increased proliferation.

Prelabelling of Mouse \(Nf1\) Schwann Cell Cultures Using AAV Vector-Mediated Gene Transfer

Our next goal was to examine the growth of \(Nf1\) Schwann cell cultures as transplants in the nerves of mouse hosts. To prelabel the cells for implantation, Schwann cells of all three genotypes were transduced with rAAV-GFP vectors individually. With MOI > 1000, GFP expression was observed from most cells of all genotypes tested (Fig. 3A), up to 95% of cells in cultures of all three genotypes. Such GFP expression may remain strong for up to 30 days in vitro, although slight reduction was observed over time resulting from cell proliferation, because rAAV vectors generally persist as episomes in transduced cells and can be lost from dividing cells. Possible effects of vector transduction on Schwann cell characteristics (including morphology, marker gene expression, and cell proliferation) were examined after rAAV-GFP transduction. These studies showed that cell morphology and S-100 immunoreactivity (Fig. 3B), as well as 975 and GAP-43 immunostain (not shown), were not altered by rAAV-GFP transduction. Proliferation (BrdU incorporation) of Schwann cells of all three genotypes was slightly reduced by rAAV-GFP transduction (data not shown). These results allowed us to rule out the potential of an increase in cell proliferation resulting from rAAV-GFP transduction.

Tumorigenic Growth of \(Nf1^{−/−}\) Schwann Cell Grafts

In our initial studies, embryonic Schwann cells (expressing GFP) of \(Nf1^{−/−}\) and \(Nf1^{+/-}\) genotypes were syngrafted into the sciatic nerves of 10 adult wild-type mice (B6/\(Nf1^{+/−}\)). At time points ranging from 10 to 22 weeks postimplantation, no tumors were found in either \(Nf1^{−/−}\) or \(Nf1^{+/−}\) Schwann cell grafts when \(Nf1\) wild-type mice were used as hosts. All of these grafts...
95% cells in cultures showed green as examined under fluorescence microscopy with addition of a low level of regular light. B: S-100 immunostaining showed that rAAV transduced Nf1−/− cultures contained primarily Schwann cells that retained a normal spindle shape and phenotype. Identical results were obtained for cultures of all three genotypes. Original magnifications ×100 (A), ×200 (B).

Fig. 3. AAV-mediated marker gene transduction into embryonic Nf1 knockout Schwann cells. Mouse Nf1+/+, Nf1+/−, and Nf1−/− Schwann cells cultures were labeled with GFP by AAV-mediated gene transfection. A: Fluorescence microscopy of AAV-GFP transduced Nf1−/− Schwann cell cultures with MOI 1,000 at 9 days posttransduction. Greater than 95% cells in cultures showed green as examined under fluorescence microscopy with addition of a low level of regular light. B: S-100 immunostaining showed that rAAV transduced Nf1−/− cultures contained primarily Schwann cells that retained a normal spindle shape and phenotype. Identical results were obtained for cultures of all three genotypes. Original magnifications ×100 (A), ×200 (B).

exhibited limited GFP-positive cells and marginal hyperplastic lesions. Also, only sporadic mast cell accumulation was detected (data not shown). One explanation for this is that Nf1 haploinsufficiency in host cells might be required to promote the growth of Nf1−/− Schwann cell grafts, but this was not tested directly. Alternatively, there was a possibility that transfection of embryonic Schwann cells with AAV-GFP might evoke an immune response affecting long-term growth. At this point, we had initiated the use of Schwann cells cultured from early crosses of B6/Nf1 × 129/Nf1 hybrid embryos as described above. Therefore, to eliminate concerns of immunorejection, all subsequent engrafting experiments were performed with immunodeficient scid mice with an Nf1+/− background (scid/Nf1+/−) as hosts.

Twenty scid/Nf1+/− mice received bilateral nerve implants. Nf1+/− Schwann cells were implanted into one sciatic nerve, and Nf1+/− Schwann cells were implanted in the contralateral nerve. Engrafted nerves were examined for tumorigenic growth 2–12 weeks postimplantation. Within this time frame, nerve deformity and gross evidence of tumor growth were not observed. However, at the histological level, Nf1−/− Schwann cell grafts resulted in larger and more proliferative hyperplastic lesions compared with Nf1+/− grafts. Within 1 month postimplantation, marked hypercellularity was associated with the Nf1−/− implants, but much less so with Nf1+/− Schwann cells (Fig. 4A,B). Also, after systemic injection of BrdU, more BrdU-positive cells were observed in all Nf1−/− Schwann cell implants than in the Nf1+/− Schwann cell implants (Fig. 4C,D). Double immunolabeling for BrdU and GFP confirmed that increased cell proliferation was strictly associated with the implanted Nf1−/− (GFP-positive) Schwann cells. Quantitative analysis of 1-month tumor grafts showed that Nf1−/− Schwann cells implants (n = 8) had 39 ± 16 BrdU-positive nuclei per high-power field and that Nf1+/− implants (n = 8) had 4 ± 1 (t-test, P < 0.05). This tenfold increase in proliferation indicates the heightened tumorigenic potential of Nf1−/− Schwann cells in vivo. Similar findings were obtained for transplants of Nf1−/− and Nf1+/− Schwann cells that were not transfected with AAV-GFP, confirming our previous in vitro observation that AAV-GFP transduction did not enhance tumorigenic growth.

Because neurofibromas develop slowly, we extended the planned survival time of a few surviving mice and examined the growth of Nf1 knockout Schwann cells 6 months after engraftment to verify the tumorigenic growth of Nf1−/− Schwann cells. At this time point, tumor formation in nerves engrafted with Nf1−/− Schwann cells was immediately evident by gross enlargement near the injection site, whereas the contralateral nerves implanted with Nf1+/− Schwann cells (as control) appeared normal. In the three mice examined, the diameters of nerves engrafted with Nf1−/− Schwann cells were 1.5, 2.0, and 3.0 times greater than those of the same region of the control nerves. Histological examination revealed neurofibromas in nerves implanted with Nf1−/− Schwann cells (Fig. 5A), whereas only marginal hypercellularity was found in the control nerves (Fig. 5D). Also, GFP immunolabeling confirmed that the neurofibromas were associated with the Nf1−/− Schwann cells (Fig. 5B,E). Here the detection of GFP-labeled cells was unable to discern the extent of the hyperplastic lesion. This was likely attributable to the loss of GFP transgene after continued cell proliferation as described previously. Thus, GFP prelabeling...
may be used to track the development of implanted cell populations but might underestimate the full extent of cell proliferation and tumor progression. In addition, substantial numbers of BrdU-stained cells were present in the \(\text{Nf1}^{-/-} \) Schwann cell masses (Fig. 5C), whereas this number was significantly lower for the \(\text{Nf1}^{+/+} \) grafts (Fig. 5F). On average, the mitotic index of the 6-month \(\text{Nf1}^{-/-} \) Schwann masses (58 ± 18) was nearly 12-fold greater than that of the \(\text{Nf1}^{+/+} \) Schwann cell grafts (5 ± 1). Taken together, these findings indicate that \(\text{Nf1}^{-/-} \) Schwann cells have a heightened tumorigenic potential in vivo and, given time, produce sizable neurofibromas.

More detailed immunohistochemical analysis of the tumor sections revealed that \(\text{Nf1}^{-/-} \) Schwann cell tumors appeared as multiple, intrafascicular, GFP-positive colonies (arrows), indicating migration and clonal expansion. Marked hypercellularity was associated with high BrdU incorporation. \(\text{B,D: Nf1}^{-/-} \) Schwann cell implants showed only modest growth and proliferation. Original magnifications \(\times100 \) (A,B), \(\times200 \) (C,D).

Fig. 4. Tumorigenic growth of \(\text{Nf1}^{-/-} \) Schwann cells 2 weeks after implantation in the nerves of haploinsufficient mice. Embryonic \(\text{Nf1}^{-/-} \) and \(\text{Nf1}^{+/+} \) Schwann cells (5 × 10^5 cells) transduced with rAAV-GFP were bilaterally implanted into sciatic nerves of \(\text{sld}^{+}/\text{Nf1}^{+/+} \) mice. Twenty-four hours before termination, mice received an IP injection of BrdU. At 2 weeks postimplantation, the engrafted nerves were immunostained for GFP (A,B) and BrdU (C,D), followed by a light hematoxylin counterstain. A,C: Implanted \(\text{Nf1}^{-/-} \) Schwann cells appeared as multiple, intrafascicular, GFP-positive colonies (arrows), indicating migration and clonal expansion. Marked hypercellularity was associated with high BrdU incorporation. B,D: \(\text{Nf1}^{+/+} \) Schwann cell implants showed only modest growth and proliferation. Original magnifications \(\times100 \) (A,B), \(\times200 \) (C,D).
Fig. 5. Tumorigenic growth by \(Nf1^{-/-}\) Schwann cells. Embryonic \(Nf1\) knockout Schwann cells were implanted into sciatic nerves of \(scid/Nf1^{+/+}\) mice as described for Figure 4. At 6 months posttransplantation, sections of the engrafted nerves were stained with hematoxylin and eosin (A,D) and immunostained for GFP (B,E) and BrdU (C,F).

A–C: \(Nf1^{-/-}\) Schwann cell implants formed tumors resembling plexiform neurofibroma. The nerve (N) was severely disrupted and consumed by tumor. B: GFP-positive cells, despite waning transduction, circumscribed the expanding neoplasia. C: BrdU incorporation remained high, especially in the tumor margins. D–F: \(Nf1^{+/+}\) Schwann cells implants showed no significant long-term tumorigenic growth, although small colonies persisted, and occasional mitosis were found (arrows). Original magnifications \(\times 100\) (A,B,D,E), \(\times 200\) (C,F).

DISCUSSION

It was previously reported that \(Nf1^{-/-}\) Schwann cells isolated from \(Nf1\) mutant embryos prior to death (E12.5) have enhanced invasive and angiogenic properties but a disadvantage of growth compared with wild-type Schwann cells (Kim et al., 1995; 1997). Although the transformed \(Nf1^{-/-}\) Schwann cells (\(Nf1^{-/-}\) TXF) exhibited hyperplasia in vitro when exposed to forskolin or withdrawal of serum from the culture medium (Kim et al., 1997), they did not show tumor formation in mouse nerve (Rizvi et al., 2002), in contrast to our results. We found \(Nf1^{-/-}\) Schwann cells (both SSC and FSC) showed a growth advantage in medium not only with low levels of serum but also with high levels of serum and no forskolin. Thus the different observations between reported results (Kim et al., 1995, 1997) and our results is unlikely due to the culture medium used but, most likely, at least in part, is due to the variations between mice strain and litters. We found that culture of mouse embryonic Schwann cells is often associated with significant variation in cell proliferation between cultures from different litters. Thus the growth advantage of \(Nf1^{-/-}\) Schwann cells can be easily offset if the proliferation rate of \(Nf1^{-/-}\) Schwann cells from one litter is compared with that of \(Nf1^{+/+}\) or wild-type Schwann cells from a different litter.

Such variations had been problematic in the study of \(Nf1\) astrocyte cultures, and a solution was obtained when pooled \(Nf1^{+/+}\) and \(Nf1^{+/+}\) matched littermate astrocyte cultures were used (Gutmann et al., 1999; Bajenaru et al., 2001). Hence the growth advantage of \(Nf1^{-/-}\) Schwann cells is due to the cellular alterations resulting from the \(Nf1\) mutation, a cell-autonomous growth advantage. As with other \(Nf1^{-/-}\) cells, including mast cells (Ingram et al., 2000, 2001), astrocytes (Bajenaru et al., 2001), and hematopoietic cells (Zhang et al., 2001), loss of \(Nf1\) function in Schwann cells promotes proliferation via up-regulation of certain growth factors stimulated through the increased ras or other activity (Mashour et al., 1999; Kim et al., 2001). Although the increased proliferation of \(Nf1^{-/-}\) Schwann cells does not lead to immortalization in vitro, the cells are less dependent on ectopic sources of growth factor(s) and may lead to tumorigenic growth in vivo. Also, the fact that the \(Nf1^{-/-}\) Schwann cell cultures senesce at very low passage numbers might indicate that their in vivo tumorigenic behavior is dependent on paracrine influence. Similarly, \(Nf1^{-/-}\) Schwann cell cultures (derived from human neurofibromas) infrequently establish as stable cell lines but can show tumorigenic growth as xenografts (Muir et al., 2001). It should be noted that rapid culture senescence is not a behavior exclusive to Schwann cells or neurofibromin-deficient cells. This phenomenon is frequently observed in the culture of tissues from certain species (particularly mouse) and many tumors (even malignancies).
Fig. 6. Neurofibroma formation by \(Nf1^{-/-} \) Schwann cells 6 months after implantation into \(scid/Nf1^{+/-} \) mouse nerves. Sections of the engrafted nerves were immunostained for neurofilaments (A,B), S-100 (C), and endothelial cell antigens vWF and FLK (E,F). A: \(Nf1^{-/-} \) Schwann cell tumors were observed as cellular infiltrates within the nerve fascicles, resulting in axon displacement (arrows). B: In addition to intrafascicular growth, proliferative tumor masses were found extending beyond the perineurial margins (asterisks). C: Tumor masses contained Schwann cells embedded in extracellular matrix. D: Mast cell infiltration (arrowheads) was associated with neurofibroma formation (Leder stain, hematoxylin). E,F: Tumor masses and infiltrative colonies were highly vascularized. Original magnification \(\times200 \).
Recently developed genetic mouse models that develop plexiform neurofibromas when the \textit{Nf1} gene is knocked out in all Schwann cells (Zhu et al., 2002) or in a group of mixed cell types (Cichowski et al., 1999) have yielded important insights into neurofibroma formation. However, genetically engineered mouse cancer models that create fields of mutant cells do not recapitulate the human circumstances in which clonal outgrowth occurs from a single mutant precursor. For example, plexiform neurofibromas derive only from sensory ganglia and cranial nerves in mice, unlike the human situation. These models also take up to 1 year for tumors to develop, and the tumor sites are unpredictable. Our examination of \textit{Nf1–/–} Schwann cells engrafted into \textit{Nf1+/+} nerves up to 12 weeks postimplantation showed limited growth and no significant tumor masses, which is similar to the observations by Rizvi et al. (2002). However, more detailed histological and immunohistochemical analysis showed that \textit{Nf1–/–} Schwann cells syngrafts have significantly increased cellularity and mitotic index compared with control grafts, indicating a potential tumorigenic growth. Such tumorigenic potential was further confirmed by the long-term grafts (at 6 months) where tumorigenic growth was unmistakable. The increased mitotic index from \textit{Nf1–/–} Schwann cell syngrafts appeared to be comparable between long-term and short-term implantation, confirming a persistent tumorigenic growth. Moreover, the histopathology of these syngraft tumors, as with that found in recent genetic (Cichowski et al., 1999; Vogel et al., 1999; Zhu et al., 2002) and xenograft (Muir et al., 2001) mouse models exhibits many characteristics of human plexiform neurofibromas (Kleihues and Cavenee, 2000). In contrast, syngrafted \textit{Nf1+/+} Schwann cells are not expansive and actually decrease over time, indicating that they are not tumorigenic. Although injury-induced tumor growth has been found occasionally in \textit{Nf1+/–} mice following nerve transection (Rizvi et al., 2002), the absence of tumor formation in our \textit{Nf1–/–} Schwann cell grafts makes it very unlikely that the cell injection per se or any allogenic response initiated tumorigenic growth by the engrafted \textit{Nf1–/–} Schwann cells.

Human neurofibroma Schwann cells, in contrast to Schwann cells from normal nerve, can invade extracellular matrices and grow without associating with axons (Kamata 1978; Muir, 1995; Kim et al., 1997). Similarly, syngrafted \textit{Nf1–/–} Schwann cells proliferated and grew without axonal contact. The increased mast cell infiltration is a well-known pathological characteristic of human neurofibromas. Accordingly, abundant mast cell infiltration was also found in the \textit{Nf1–/–} host but not in wild-type host after \textit{Nf1–/–} Schwann cell implantation. With \textit{Nf1+/–} mouse hosts receiving bilateral implants, we found no distinct difference in mast cell infiltration between nerves engrafted with \textit{Nf1–/–} vs. \textit{Nf1+/+} Schwann cells. However, with this grafting model, we cannot rule out the possibility that the mast cell infiltration observed in response to the engrafted cells resulted from an allogenic response that indirectly drives the tumorigenicity of the \textit{Nf1–/–} cells. On the other hand, such an allogenic response is not likely to be a primary effect, and \textit{Nf1} haploinsufficient mast cells are known attraction to factors secreted by \textit{Nf1–/–} Schwann cells (Ingram et al., 2000, 2001; Zhu et al., 2002; Yang et al., 2003). In addition, human neurofibromas express abundant angiogenic factors and show high vascularity (Arbiser et al., 1998; Kawachi et al., 2003). Similarly, \textit{Nf1–/–} tumors formed in \textit{Nf1+/+} mice were also highly vascularized, suggesting that interactions between \textit{Nf1–/–} Schwann cells and \textit{Nf1+/–} endothelial cells might also play an important role in tumorigenesis. It remains to be determined whether such tumorigenic behavior is dependent on specific paracines or whether \textit{Nf1+/–} endothelial cells are particularly responsive to the angiogenic signals produced by \textit{Nf1–/–} Schwann cells. Overall, for each aspect examined, we found that these syngraft neurofibromas recapitulate the growth of human plexiform neurofibromas.

Our work is the first to achieve tumorigenic growth in vivo by intraneural implantation of mouse embryonic \textit{Nf1–/–} Schwann cells. There is no noticeable functional impairment, mortality, or symptoms of graft-vs.-host disease (e.g., hair loss, diarrhea) associated with the implantation for 6 months, providing a reliable and sustained growth of \textit{Nf1–/–} Schwann cell in syngraft nerves.

This model more precisely recapitulates the initiating lesion in \textit{Nf1} patients, and tumor occurs at a known location. Therefore, this system can be used to characterize early events in tumorigenesis and to test new therapies. In addition, this syngraft model suggests that embryonic development is not essential for tumorigenic growth of embryonic \textit{Nf1–/–} Schwann cells. Furthermore, toward potential application of gene therapy, we also have shown a high efficiency of GFP transduction into Schwann cells with AAV vector-mediated gene transfer. This approach may facilitate the development of antiangiogenic gene therapy to negate the sustained growth of neurofibroma.

ACKNOWLEDGMENTS

We thank Dr. Anthony Yachnis for sharing his expertise in histopathology. Xuelian Zhang, Debbie Neubauer, Elizabeth Baldwin, Marisa Scott, and James Graham provided technical assistance. This study was supported by grants DAMD 170010549 (to M.R.W.) and DAMD 170110707 (to M.R.W.) funded by the U.S. Army Neurofibromatosis Research Program.

REFERENCES

Mutations in the NFI tumor-suppressor gene underlie neurofibromatosis type 1 (NF1), in which patients are predisposed to certain tumors such as neurofibromas and may associate with vascular disorder. Plexiform neurofibromas are slow growing benign tumors that are highly vascular and can progress to malignancy. The development of neurofibromas requires loss of both NFI alleles in Schwann cells destined to become neoplastic and may be exacerbated by NFI heterozygosity in other non-neoplastic cells. This study tested the hypothesis that NFI heterozygosity exaggerates angiogenesis. We found that NFI heterozygous mice showed increased neovascularization in both the retina and cornea in response to hypoxia and bFGF, respectively, compared to their wild-type littermates. The increase in corneal neovascularization was associated with heightened endothelial cell proliferation and migration, and increased infiltration of inflammatory cells. In addition, NFI heterozygous endothelial cell cultures showed an exaggerated proliferative response to angiogenic factors, particularly to bFGF. These findings support the conclusion that NFI heterozygosity in endothelial cells and perhaps inflammatory cells augments angiogenesis, which may promote neurofibroma formation in NF1.

Oncogene (2006) 25, 2297–2303. doi:10.1038/sj.onc.1209264; published online 14 November 2005

Keywords: neurofibromatosis; vasculature; NFI haploinsufficiency; endothelial cell; inflammatory cells

Introduction

Mutations in the NFI gene cause neurofibromatosis type 1 (NF1), a common dominantly inherited disease that occurs in one out of 3500 individuals worldwide. The NFI gene encodes the tumor-suppressor protein neurofibromin that harbors a functional Ras guanosine triphosphatase-activating protein (GAP) domain (Ballester et al., 1990; Xu et al., 1990). Individuals with NF1 are predisposed to certain tumors, including benign neurofibromas, malignant peripheral nerve sheath tumor (MPNST), pheochromocytoma, astrocytoma, and juvenile myelomonocytic leukemia (Side and Shannon, 1998), that occur in the context of NFI heterozygous (NFI+/–) tissues. The hallmark feature is neurofibromas, and plexiform neurofibromas and MPNST (often arising from plexiform tumors) can be life threatening. To date, there are no reliable medical treatments to prevent or attenuate their growth. In the peripheral and central nervous system, biallelic NFI inactivation in Schwann cells or astrocytes can initiate tumor formation in the presence of NFI+/– cells, suggesting an important role of NFI+/– stromal cells in promoting tumor formation (Zhu et al., 2002; Bajenaru et al., 2003; Wu et al., 2005).

Because solid tumor foci cannot expand without angiogenesis to create new blood vessel supply, antiangiogenic therapies have been pursued as potential strategies for cancer treatment. Targeting endothelial cells rather than actual tumor cells is widely applicable to various tumors, especially slow growing neoplasms like neurofibromas that do not respond to conventional cancer treatments. Also, antiangiogenic therapy may be particularly relevant to neurofibromas because they are highly vascularized (Arbiser et al., 1998; Morello et al., 2001; Wolkenstein et al., 2001). Neurofibromin-deficient Schwann cells have increased Ras activity and a heightened angiogenic potential which most likely promotes vascularization and growth of NF1 tumors (Sheela et al., 1990). Angiogenic properties have been described for NFI null Schwann cells derived from NF1 tumors and NFI knockout mice (Sheela et al., 1990; Kim et al., 1997; Mashour et al., 1999, 2001), and from their xenografts and syngrafts in mice models (Duprez et al., 1991; Wu et al., 2005). Although NFI heterozygosity has been implicated in the growth of NF1 tumors, its contribution to vascularization and associated cellular responses remains speculative.

We report here that NFI heterozygous endothelial cell cultures have an exaggerated proliferative response to several angiogenic factors. Moreover, NFI heterozygous mice show greater angiogenesis in response to various angiogenic stimuli in both the retinal neovascularization (NV) and corneal NV models. We also found that increased corneal NV was associated with heightened endothelial cell proliferation and migration, and elevated infiltration of inflammatory cells including macrophages and mast cells.
Results

Nf1+/− mice exhibit an exaggerated ischemia-induced retinal neovascular response

To determine whether *Nf1* heterozygosity affects angiogenic responses, we used a mouse retinal NV model, which has been routinely used for retinopathy studies (Raisler et al., 2002). In response to hypoxia condition, retinas from heterozygous mice had more neoavascular endothelial cells associated with aberrant microvessels penetrating the internal limiting membrane (Figure 1a) than wild-type mice. Quantitative scoring indicated that *Nf1*+/− retinas (*n* = 25) had significantly increased (52%) neovascularity compared to *Nf1*−/− retinas (*n* = 6, *P* = 0.008) (Figure 1b). However, in the control condition (normoxia), the age-matched mice showed no significant difference in their baseline retinal NV between the two genotypes examined (*n* = 8 each) (data not shown), indicating that *Nf1*+/− mice are free of intrinsic aberrant retinal NV. With baseline correction (subtracting the score of control mice from those of treated mice), *Nf1*+/− mice showed a 66% increase in retinal NV compared to wild-type mice. These data indicate that *Nf1* heterozygosity may, in general, exaggerate the angiogenic response.

Nf1+/− mice exhibit an exaggerated corneal neovascular response

Next, we examined the angiogenic response of *Nf1*+/− mice in the mouse corneal NV model. We first examined the specificity of the corneal NV response to micro-pellets implanted with bFGF. Pellets containing 0, 31 and 90 ng of bFGF were implanted into the corneas of *Nf1*+/− mice. After 6 days, corneas implanted with pure bFGF pellets showed a 230% increase in new blood vessel formation (not shown). Corneas implanted with bFGF-impregnated pellets induced abundant new blood vessel growth extending from limbal vessels and advancing toward the implantation site (Figure 2a). Confocal fluorescence microscopy of CD31 immunostained corneas showed markedly greater NV (both maximum new vessel length and outgrowth circumference) in response to 96 ng bFGF (Figure 2b) compared to 31 ng pellets (Figure 2c). These data confirmed that the corneal NV induced in *Nf1*+/− mice is bFGF specific and dose dependent, and thus may provide a sensitive and reliable means to assess the effect of *Nf1* haploinsufficiency on angiogenesis. The higher dose pellets were used in all subsequent testing.

Corneal NV induced by bFGF was compared between *Nf1*+/− and *Nf1*+/+ mice. At 6 days after implantation the corneal NV in *Nf1* heterozygous mice was conspicuously greater than that found in wild-type littermates (Figure 2b and d). The maximum new blood vessel length in corneas of *Nf1* heterozygous mice was 67% greater than that of wild-type controls (*P* = 0.00002, *n* = 13) (Figure 2e). There was no significant difference in the circumferences of NV (Figure 2f) or in the NV response 4 days after bFGF implantation (data not shown) between *Nf1* heterozygous and wild-type littermates. These findings indicate that the effect of *Nf1* heterozygosity on angiogenesis is cumulative and complex (not a simple dose response). Taken together, the results obtained using two in vivo assays provide convincing evidence that *Nf1* haploinsufficiency significantly increased the angiogenic response to hypoxia or bFGF, without nonspecific baseline effects.

Corneal NV is associated with greater endothelial cell proliferation in *Nf1*+/− mice

We tested the hypothesis that heightened endothelial cell proliferation is associated with the corneal NV response in *Nf1* haploinsufficient mice. At 6 days after bFGF implantation, endothelial cell proliferation was assessed in cross-sections of corneas from *Nf1* heterozygous and wild-type littermates by double labeling for Ki67 and CD31. In the entire region from the limbus to the pupil site, more than twice the number of proliferating endothelial (double labeled) cells was observed in the corneas of *Nf1* heterozygous mice compared to wild-type mice (*P* = 0.001, *n* = 8) (Figure 3a). The greatest difference was found in more distal zones from the limbus, where the number of proliferating CD31-positive cells was more than fivefold greater in *Nf1*+/− corneas than in wild-type controls. These results indicate that endothelial cell proliferation and migration in response to bFGF is exaggerated by *Nf1* haploinsufficiency.

We then examined the response of *Nf1*+/− endothelial cells to mitogens in vitro. Endothelial cell cultures were established from microvessels isolated from *Nf1*+/− and wild-type littermates. Endothelial cell phenotype was confirmed by immunoexpression of Von Willebrand’s Factor and abundant tube formation in Matrigel three-dimensional culture (results not shown). In a base medium (containing serum but no endothelial cell mitogen supplements) approximately 5% of the wild-type endothelial cells had BrdU-positive nuclei.
compared to 7% of their Nf1⁻/⁻ counterparts (Figure 3b). Treatment with endothelial cell growth supplement (a pituitary extract rich in mitogens) increased the BrdU-DNA to 13% for wild-type and 27% for Nf1⁺/⁻ endothelial cultures. VEGF treatment caused a similar but less pronounced differential response. bFGF was a potent mitogen and more than doubled the proliferation of wild-type endothelial cells over that seen in the base medium alone. The response to bFGF by Nf1⁺/⁻ endothelial cells was 3.6-fold greater than in base medium and nearly equaled that with the pituitary growth supplement. Overall, the response of Nf1⁺/⁻ endothelial cells to mitogens was approximately double that exhibited by wild-type cells. These findings indicate that Nf1 heterozygous endothelial cells had an exaggerated mitogenic response that most likely contributes to the increased angiogenic potential observed in the corneal and retinal assays.

Corneal NV is associated with increased infiltration of inflammatory cells in Nf1⁻/⁻ mice

Next, to test the hypothesis that Nf1⁻/⁻ inflammatory cells might be involved in the increased angiogenic response in Nf1⁺/⁻ mice, we examined the infiltration by macrophages and mast cells in corneal cross-sections adjacent to those used for endothelial cell proliferation assays described above. Mac-1 immunostaining of wild-type corneas showed substantial baseline macrophage infiltration of the corneal and a high macrophage density around the pellet, consistent with observations reported previously (Kenyon et al., 1996). Counts of Mac-1 immunopositive cells revealed macrophage infiltration was significantly elevated locally in Nf1⁻/⁻ corneas after bFGF implantation. Nf1⁻/⁻ corneas exhibited a pattern of macrophage infiltration similar to that in wild-type corneas in avascular area. However, in the NV zone, the number of macrophage was 4.6-fold greater in Nf1⁻/⁻ corneas than wild-type corneas (Figure 4a). The increase in macrophage cell density was most pronounced near the limbal vessels and in general lagged well behind the leading front of the...
growth of blood vessels. Similarly, c-Kit immunostaining revealed a 63% increase in mast cell infiltration in the neovascularized area of \(Nf1^{+/+} \) corneas compared to wild-type corneas \((P = 0.005, n = 8)\) (Figure 4A). In general, the number of inflammatory cells was directly correlated with the amount of NV.

We also examined the effect of \(scid \) background (T- and B-cell deficiency) on the angiogenic response of \(Nf1^{+/+} \) mice by comparing bFGF-induced corneal NV between mice with different genetic backgrounds, including \(Nf1^{+/+}/scid \), \(Nf1^{+/+}/B6 \), \(Nf1^{+/+}/scid \) and \(Nf1^{+/-}/B6 \) (Figure 4B). At 6 days after bFGF implantation, the corneal NV in both \(scid \) and B6 mice were augmented due to \(Nf1^{+/+} \) haploinsufficiency (which advanced an average of 0.25 mm for \(scid \) mice and 0.28 mm for B6 mice). Although the \(scid \) mice had relatively lower level of corneal NV than B6 mice of the same genotype, the reduction is only statistically significant under the condition of \(Nf1 \) haploinsufficiency \((Nf1^{+/-}/B6 \) was 24\% greater than in \(Nf1^{+/-}/scid \), \(n = 4 \) and 13, respectively, \(P = 0.02 \)). On the other hand, \(Nf1^{+/-}/scid \) and \(Nf1^{+/-}/B6 \) mice showed no significant difference in their corneal NV \((n = 10 \) and 13, respectively, \(P = 0.06 \)), confirming results reported previously by Kenyon et al. (1996). Thus, the reduced corneal NV in \(Nf1^{+/-}/scid \) mice compared to \(Nf1^{+/-}/B6 \) mice may be due to the lack of haploinsufficient phenotypes of B lymphocytes, which is known to contribute to angiogenic responses in the tumor microenvironment (de Visser et al., 2005). Overall the reduced level of corneal NV due to the \(scid \) background is limited compared to the effect of \(Nf1 \) haploinsufficiency, suggesting that \(Nf1^{+/-} \) B lymphocytes can contribute a minor additive effect to angiogenesis.

Discussion

Transgenic and syngraft studies show that \(Nf1 \) null Schwann cells give rise to neurofibromas in \(Nf1 \) haploinsufficient mice (Zhu et al., 2002; Wu et al., 2005). Although the \(Nf1 \) heterozygous background is also implicated in neurofibroma formation, the underlying mechanisms remain unknown. Given the essential role of angiogenesis in solid tumor growth, we hypothesized that \(Nf1 \) heterozygosity can result in different angiogenic responses to various stimuli, particularly those associated with neurofibroma development. Initially we found that \(Nf1^{+/-} \) mice showed a marked increase in hypoxia-induced retinal NV compared to that of wild-type mice. This finding is consistent with a recent report by Ozerdem (2004) using the same neonatal hypoxia model. Additionally, our study showed that there was no significant difference in normal (developmental) retinal NV between \(Nf1^{+/-} \) and wild-type mice. Neither study ruled out the possibility that an exaggerated retinal NV in response to ischemia in \(Nf1^{+/-} \) mice is mainly a developmental disposition. To that end and to corroborate these findings in a more valid model of NV, we found that adult \(Nf1^{+/-} \) mice showed an elevated neovascular response to a single angiogenic factor (bFGF) applied to the cornea. Based on these results we conclude that \(Nf1 \) heterozygosity augments angiogenesis.

Although \(Nf1 \) is characterized by hyperproliferation and neoplasia of neural crest derivatives, affected individuals often have disorders that seem less related to the neural crest, including hypertension, renal artery stenosis, increased incidence of congenital heart disease, and vascular disorders (Hamilton et al., 2001; Rasmussen et al., 2001; Friedman et al., 2002). As neurofibromin is expressed in blood vessel endothelial and smooth muscle cells, Hamilton and Friedman (2000) suggested that \(Nf1 \) vasculopathy might result from an alteration of neurofibromin function in these cells. Indeed, transgenic mice with endothelial-specific inactivation of \(Nf1 \) recapitulate key aspects of the complete null phenotype, including multiple cardiovascular abnormalities involving the endocardial cushions and myocardium (Gitler et al., 2003). This phenotype is associated with elevated Ras signaling in \(Nf1^{+/-} \) endothelial cells and greater nuclear localization of the transcription factor NFATC1. Similarly, we find that mouse \(Nf1^{+/-} \) endothelial cells have an exaggerated response to mitogens in vitro and increased migration and proliferation in response to bFGF in vivo. This disposition of \(Nf1 \) haploinsufficient endothelial cells surely contributes to the heightened angiogenesis induced by hypoxia and angiogenic factor stimulation we observed, and may also contribute to the \(Nf1 \) features described above, possibly in association with increased Ras activation.

Macrophage and mast cells, in addition to their role in inflammation, are now recognized as potential epigenetic contributors to cancer and angiogenesis (Coussens and Werb, 2001; Mueller and Fusenig, 2004). In the corneal angiogenesis model, macrophage and mast cell infiltration might occur as part of an inflammatory response caused by the implantation of the bFGF pellet or as part of the angiogenic response to bFGF per se. In developing the corneal angiogenesis model, Kenyon et al. (1996) sought to exclude
inflammation as an angiogenic stimulus. They documented that the inflammatory cellular activity caused by pellet implantation was minimal and resolved within the first 2 days and prior to any observable NV. This indicates that angiogenesis did not occur as a secondary effect to inflammation and that macrophage and mast cell infiltration was not sustained by bFGF itself. Our studies were in agreement with their observation, indicating that infiltrating macrophages and mast cells appeared not to instigate angiogenesis. This was particularly evident in the exaggerated angiogenic response in Nf1 haplosufficient mice, whereby inflammatory cell density was increased but in areas well behind the leading edge of growing blood vessels. We conclude that the infiltration of inflammatory cells is elevated in Nf1+/+ corneas and this response is positively correlated with, and likely secondary to, the overall exaggerated angiogenic response.

In tumor development inflammatory cells express a range of proteases and proangiogenic factors including bFGF and VEGF that can promote and sustain tumor progression and angiogenesis. Although the role of macrophages in neurofibroma formation is not characterized, they are more abundant in neurofibromas and MPNSTs than schwannomas (Johnson et al., 1989). Also, mast cells show marked infiltration in neurofibromas and have been considered as a major player in neurofibroma formation (Riccardi, 1981; Johnson et al., 1989; Ingram et al., 2000, 2001). Recent studies showed that Nf1+/− mast cells have increased survival and proliferation, and are hypermotile compared to wild-type cells in response to stem cell factor expressed by Nf1+/− Schwann cells, specifically on zβ1 integrins in response to Kit ligand (KitL) and linked with Ras-class 1α-P13K-Rac2 pathway. Reintroduction of the GAP-related domain into Nf1+/− mast cell reduces their migration to wild-type levels in response to KitL, providing direct evidence that an Nf1+/− motile phenotype is secondary to hyperactivation of Ras pathway (Ingram et al., 2000, 2001; Yang et al., 2003).

Loss of Nf1 expression results in impaired neurofibromin-mediated Ras inactivation and leads to increased Ras pathway activation and tumorigenesis. Activation of Ras in Schwann cells derived from Nf1+/− mice and human NF1 tumor has been shown to have increased secretion of soluble factors such as bFGF and KitL (Hirota et al., 1993; Mashour et al., 2001; Yang et al., 2003), which can stimulate proliferation and migration of endothelial and inflammatory cells. Recent studies show that one of the contributions of the stroma to tumor progression is the expression of angiogenic growth factors including VEGF, bFGF, PDGF and others by macrophages, mast cells and other leukocytes. Increased expression of these growth factors is often associated with Ras activation (see review Mueller and Fusenig, 2004). Thus, we can expect that activation of Nf1+/− endothelial cells, mast cells, macrophages and other cell types (e.g. fibroblasts and bone marrow-derived hematopoietic stem cells) that contribute to angiogenesis may have exaggerated expression and response to proangiogenic factors, most likely in association with hyperactivation of Ras. Our studies demonstrate clearly the association of Nf1 haplosufficiency in multiple cell types (including inflammatory and endothelial cells) with an exaggerated angiogenic response. These findings may also improve our understanding of the role of haplosufficiency in angiogenesis and the growth of neurofibroma, leading to possible interventions using antiangiogenic therapies.

Materials and methods

Animals

Our stock colony of Nf1 knockout mutant mice (B6/Nf1) (Brannan et al., 1994) was produced by in-breeding of mice onto the C57BL/6 background. Mice (Nf1/scid) with an Nf1 heterozygous background that were also immunodeficient were generated by cross-breeding B6/Nf1 and B6/scid mice (Wu et al., 2005) and are heretofore referred to as Nf1 mice. The original scid mice were obtained from the Jackson Laboratory (Bar Harbor, ME, USA). All methods and animal uses were performed in accordance to the Animal Care and Use Guidelines of the University of Florida College of Medicine.

Genotyping

The Nf1 locus was genotyped by a 3-oligo system PCR, as described by Brannan et al. (1994). The scid mutation in the DNA-PKCS gene (a nonsense mutation) was described by Blunt et al. (1996). Based on genomic DNA sequence (Genbank AB005213), we developed a PCR-based genotyping assay. PCR primers were designed flanking the mutation site in exon 85: scid 5′ (GAGTTTTGAGCAGACAATGCTGA) and scid 3′ (CTTITGAACACACTGATTCTGC). The resulting 180 bp PCR product was digested with Alu I to distinguish wild-type allele (no cut) from mutant allele (cut) via agarose gel electrophoresis, to genotype animals at the scid locus.

Endothelial cell culture

 Cultures of murine brain microvascular endothelial cells were obtained by modifications of the methods described by Song and Pachter (2003). Briefly, cortical gray matter free of nerves, meninges and choroid plexus was isolated from six 3–5-week-old mice. The cortices were maintained in ice-cold medium and minced into 1 mm pieces. The tissue was homogenized first in a Dounce homogenizer with 30 strokes of a larger clearance pestle (‘A’ pestle) followed by 25 strokes using the smaller clearance pestle (‘B’ pestle). The homogenate was centrifuged at 200 g for 5 min at 1°C and the supernatant was discarded. The tissue pellet was resuspended in 15 ml of isotonic 18% (wt/vol) dextran solution and centrifuged at 10 000 g for 10 min. The tissue pellet was resuspended in 5 ml of Hank’s balanced solution (Ca2+ and Mg2+ free) and then passed through a 70-μm nylon mesh screen mounted on a syringe barrel. The microvessel fraction retained by the screen was harvested in medium and collected by centrifugation at 200 g for 5 min. The microvessels were gently resuspended in 5 ml of Digestion medium containing Hank’s, 0.1 U/ml collagenase (type XI, Sigma), 0.8 U/ml Dispase (Collaborative Research), 20 U/ml DNase-1 (Type II-Sterele, Sigma), 0.4 μM tosyl-lysine chloromethyl ketone (Sigma). The mixture was placed in a 60-mm Petri dish and incubated at 37°C in a 5% CO2/air incubator for 90 min with occasional agitation. By the end of the digestion, endothelial cells start popping out from the vessel fragments, appearing as beads on a string. The digestion should not
proceed to the single-cell level. The partially digested microvessel fragments were collected and resuspended in Growth Medium containing 80% DMEM/F12 (14.3 mM sodium bicarbonate, 20 mM HEPEs, pH 7.4), 10% horse plasma-derived serum (Atlanta Biologicals), 10% fetal bovine serum, 100 μg/ml heparin, 100 μg/ml endothelial cell growth supplement (BD Biosciences) and antibiotics. The suspension was seeded onto tissue culture dishes coated with murine collagen IV (50 μg/ml in 0.05N HCl) (BD Biosciences). The cultures were passaged when confluent by incubating in Hank’s solution containing 10 mM EDTA until the cells appeared rounded. The trypsin (0.05%)/EDTA (0.5mM) was added for 30s and the cells detached by tapping the dish. The trypsin was neutralized by the addition of medium containing serum and the remaining cells were dislodged by squiring the medium. The suspension was diluted with Growth Medium and passaged 1:5 into collagen IV-coated dishes.

In vitro proliferation assay
First passage endothelial cell cultures (5000 cell/well) were seeded into 96-well plates coated with collagen IV and fed a base medium (80% DMEM/F12, 10% horse plasma-derived serum, 10% fetal bovine serum, and 100 μg/ml heparin). After 4 h the cultures were treated with the base medium alone or the base medium containing either endothelial cell growth supplement (100 μg/ml), vascular endothelial cell growth factor (50 ng/ml VEGFα, R&D Systems), or basic fibroblast growth factor bFGF (50 ng/ml, R&D Systems). At 24 h after treatments, the medium was brought to 10 μg/ml with bromodeoxyuridine (BrDU) and cultured for an additional 24 h. Fixed cultures were immunolabeled for BrDU-positive DNA and the percentage of cells with BrDU-DNA were scored as described previously (Muir et al., 1990).

Induction of angiogenesis by hyperoxia
Mouse pups derived from Nf1+/−/scid females bred with Nf1+/−/−/scid males, with their nursing dam, were placed in a chamber containing 75% oxygen at postnatal day 7 (P7). At 5 days after oxygen treatment, the P12 pups and nursing dam were returned to normal room air and maintained for another 5 days. These pups were terminated at P17 under anesthesia by an overdose of ketamine/xylazine, and their eyes were enucleated and fixed for retinal NV assessment.

Quantification of retinal NV
Retinal NV was scored by methods described by Smith et al. (1994). Briefly the enucleated eyes were immersed in 4% paraformaldehyde in PBS for at least 24h, and embedded in paraffin. Serial sections (5 μm) of whole eyes were cut through the full eyeball parallel to the optic nerve. Representative sections (every 30th section) were stained with hematoxylin and eosin and vascular endothelial cell nuclei outside the internal limiting membrane were counted by trained investigators masked to the identity of each section. Such vascular cell nuclei, on the vitreous side of the internal limiting membrane identified in this protocol, were considered to be associated with NV and provide a reliable evidence for quantitatively assessing the total level of retinal NV in each eye.

Induction of corneal angiogenesis by bFGF micropellets
Young adult mice (8–14 weeks), litters of both Nf1+/−/−/scid and Nf1+/−/−/scid mice, were anesthetized by intraperitoneal (i.p.) injection of 0.1 ml per 20 g body weight of anesthetic cocktail containing ketamine (12.5 mg/ml) and xylazine (2.5 mg/ml). Both eyes were topically anesthetized with 0.5% proparacaine (Ophthetic, Alcon, TX, USA), and a corneal micropocket (approximately 0.7 mm length) was dissected with a surgical blade and needle (30G1/2) (Sun Surgical). A micropellet (0.5 × 0.5 × 0.2 mm3) of sucralfate and hydron polymer containing bFGF (80 μg or as indicated) was placed into the pocket and advanced to end of the pocket, which extended to within 0.8–1.0 mm of temporal limbus. Antibiotic ointment (erythromycin) (Sun Surgical) was applied post-surgically to the eyes.

Quantification of corneal NV
At 4–6 days after implantation, mice were anesthetized by i.p. injection of ketamine/xylazine mixture. Corneal NV extending from the base of the limbal vascular plexus toward the pellet was measured under standard microscopy (Kenyon et al., 1996). Eyes were then enucleated and immersed in 4% paraformaldehyde in PBS for 20 min. Eyes showing any abnormal phenotype such as opacity were excluded from further analysis.

Immunohistochemical staining for vascular endothelial cells was performed on corneal flat mounts. Conneas with part of limbal vascular attached were dissected from enucleated eyes and rinsed with PBS and fixed in 100% acetone for 20 min. After washing in PBS, nonspecific binding was blocked with 0.1 M PBS, 2% albumin for 2 h at room temperature. Corneas were incubated at 4°C for 24h in primary antibody, fluorescein isothiocyanate-conjugated rat anti-mouse CD31 (FITC-CD31) (BD Pharmingen) diluted 1:500 in blocking buffer. After several washes in PBS at room temperature corneas were mounted on slides and coverslipped with Vectashield (Vector Laboratories Inc., Burlingame, CA, USA). Images of CD31-stained corneal vasculature were captured by confocal fluorescence microscopy. Corneal NV was quantified by measuring the maximum vessel length extending from the base of the limbal vascular plexus toward the pellet and the maximum contiguous circumference along the base of the limbal of NV zone using Image-Pro Plus software.

Immunolabeling corneal vasculature
After flat-mount examination of corneal NV, corneas were cryo-sectioned (10 μm) parallel to the center of neovascular zone and implanted pellet. Every 10th was stained with Hoechst solution (1:100) (Sigma) to localize nuclei. Sections which showed increased cellularity and pellet material were selected for more detailed immunohistochemical staining. Sections were rinsed, blocked and permeabilized, and incubated with one of the following primary antibodies: FITC-CD31, mouse anti-human Ki-67 (BD Pharmingen), c-kit (Santa Cruz, sc-168), or mac-1 (BD Pharmingen). Bound antibodies were labeled with goat anti-mouse-Alexa Fluor 568 (Molecular Probes) or peroxidase-conjugated secondary antibodies followed by chromogenic development. For all immunohistochemical stains, sections without addition of primary antibodies served as negative controls. Endothelial cell proliferation was assessed in corneal cross-sections double-labeled for CD31 (endothelial cells) and Ki-67 (a proliferation marker). Double-labeled profiles were scored using Image-Pro Plus software. Single factor analysis of variance was used for statistical analysis of the data obtained from eyes of Nf1 heterozygous and wild-type mice.

Acknowledgements
We thank Drs William Hauswirth and Maria Grant for guidance in developing the retinal NV model. Elizabeth Baldwin, Hua Li, Fredrick Kweh and Debbie Neubauer,
provided excellent technical assistance. This work was supported by US Army Neurofibromatosis Research Program Grants DAMD170310224 (DM) and DAMD170110707 (MRW).

References

Plexiform-Like Neurofibromas Develop in the Mouse by Intraneural Xenograft of an NF1 Tumor-Derived Schwann Cell Line

George Q. Perrin, 1,2* Lauren Fishbein, 3 Susanne A. Thomson, 3 Stacey L. Thomas, 7,8 Karen Stephens, 9 James Y. Garbern, 10 George H. DeVries, 8,11 Anthony T. Yachnis, 4 Margaret R. Wallace, 3,5 and David Muir 1,2,6

1Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida
2Shands Cancer Center, College of Medicine, University of Florida, Gainesville, Florida
3Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida
4Department of Pathology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
5Department of Pediatrics, Genetics Division, College of Medicine, University of Florida, Gainesville, Florida
6Department of Pathology, Neurology Division, College of Medicine, University of Florida, Gainesville, Florida
7Neuroscience Program, Loyola University Medical Center, Maywood, Illinois
8Hines VA Hospital, Hines, Illinois
9Department of Medicine, University of Washington, Seattle, Washington
10Department of Neurology; Wayne State University, Detroit, Michigan
11Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois

Plexiform neurofibromas are peripheral nerve sheath tumors that arise frequently in neurofibromatosis type 1 (NF1) and have a risk of malignant progression. Past efforts to establish xenograft models for neurofibroma involved the implantation of tumor fragments or heterogeneous primary cultures, which rarely achieved significant tumor growth. We report a practical and reproducible animal model of plexiform-like neurofibroma by xenograft of an immortal human NF1 tumor-derived Schwann cell line into the peripheral nerve of scid mice. The S100 and p75 positive sNF94.3 cell line was shown to possess a normal karyotype and have apparent full-length neurofibromin by Western blot. These cells were shown to have a constitutional NF1 microdeletion and elevated Ras-GTP activity, however, suggesting loss of normal neurofibromin function. Localized intraneural injection of the cell line sNF94.3 produced consistent and slow growing tumors that infiltrated and disrupted the host nerve. The xenograft tumors resembled plexiform neurofibromas with a low rate of proliferation, abundant extracellular matrix (hypocellularity), basal laminae, high vascularity, and mast cell infiltration. The histologic features of the developed tumors were particularly consistent with those of human plexiform neurofibroma as well. Intraneural xenograft of sNF94.3 cells enables the precise initiation of intraneural, plexiform-like tumors and provides a highly reproducible model for the study of plexiform neurofibroma tumorigenesis. This model facilitates testing of potential therapeutic interventions, including angiogenesis inhibitors, in a relevant cellular environment. © 2007 Wiley-Liss, Inc.

Key words: neurofibromatosis; neurofibroma; angiogenesis; plexiform; xenograft

Neurofibromatosis type 1 (NF1) is a common autosomal dominant condition caused by disruptive mutations in the NF1 gene, which encodes the GAP-related protein neurofibromin. These mutations result in absent or abnormal neurofibromin, which is associated with a high frequency of peripheral nerve sheath tumors called neurofibromas (Gutmann et al., 1991). Plexiform neurofibromas are often congenital, typically involve large nerves, can become very large, and when large, may cause serious functional impairment. Because they often occur on critical nerves and are not discrete masses, surgical removal is rarely complete. Recurrence is associated with increased morbidity and fatality, with progression to malignancy occurring in about 6% of NF1 patients. Although neurofibromas show marked cellular heterogeneity, Schwann cells (SCs) are the major contract grant sponsor: National Institutes of Health Training; Contract grant number: T32-CA09126-27; Contract grant sponsor: U.S. Department of Defense; Contract grant number: DAMD 17-01-10707, DAMD 17-03-1-0224.

*Correspondence to: George Q. Perrin, PhD, Dept. of Neuroscience, Box 100244, University of Florida College of Medicine, Gainesville, FL 32610-0244. E-mail: gperrin@ufl.edu

Received 13 July 2006; Revised 17 October 2006; Accepted 5 December 2006

Published online 4 March 2007 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/jnr.21226
cell type amplified and typically comprise 40–80% of the tumor cells (Hirose et al., 1986; Krone et al., 1986). Moreover, cumulative evidence indicates that neurofibromas contain a clonal population of Schwann cells that have disruptive mutations on the remaining NF1 allele (Colman et al., 1995). Human plexiform neurofibromas have distinct characteristics (Scheithauer et al., 1997). They are hypocellular and composed of widely spaced, spindle-shaped cells with ovoid nuclei that variably stain positive for S-100. Most exhibit a lower proliferative index (1–13% Ki67 positive cells), as compared to the high proliferative index (5–38% Ki67 positive cells) exhibited by malignant peripheral nerve sheath tumors (MPNST). They feature a prominent endoneurial mucopolysaccharide deposition, a variously collagenous matrix and basal laminae. Plexiform neurofibromas diffusely infiltrate the affected nerve and spread longitudinally as a fusiform enlargement rather than a globular mass. As with many other types of tumors, they can promote angiogenesis, are highly vascular and are infiltrated by numerous mast cells.

Several mouse models of NF1 engineered genetically have been developed to study tumorigenesis by neurofibromin-deficient mouse Schwann cells (Stemmer-Rachamimov et al., 2004). Past efforts to establish xenograft models of neurofibroma, however, have achieved limited success. Despite tumorigenic properties shown in vitro, neurofibroma cultures fail to form subcutaneous tumors in immunodeficient mice (Sheela et al., 1990; Muir et al., 2001). Inceptive studies showed limited growth by implanted human neurofibroma tissue or mixed cell preparations into the sciatic nerves of immunodeficient mice and advanced the potential of xenograft models for studying the tumorigenesis in NF1 (Appenzeller et al., 1986; Lee et al., 1992). Early xenografts of human neurofibromas relied on tissue explants and primary cultures of limited cell number with marked cellular heterogeneity and never were established as effective working models of NF1 tumors. Previously, we established highly enriched SC cultures from numerous benign and malignant NF1 peripheral nerve sheath tumors (Muir et al., 2001; Li et al., 2004). These cell lines were enriched for the somatically mutated SCs and most show no full-length neurofibromin. Schwann cell lines derived from benign NF1 tumors had low tumorigenic potential in classical in vitro assays yet several unique preneoplastic properties were observed frequently. In addition, several neurofibroma SC cultures when engrafted into the peripheral nerves of sid mice produced infiltrative and very slow-growing neurofibroma-like tumors. Although these xenografts provide an informative and useful model of neurofibroma, considerable time is required to achieve tumor growth representative of that seen in a clinical setting. Therefore, we developed more practical xenograft models of NF1 tumorigenesis by implantation of rapidly growing NF1 MPNST cell lines into the mouse nerve.

MATERIALS AND METHODS

Originative Tumor and NF1 Cell Line

The NF1 tumor cell line, sNF94.3, was derived from tumor tissue resected from a 43-year-old, female patient who met NF1 diagnostic criteria (Gutmann et al., 1997). Although there was no positive family history, the patient had definitive features of NF1 including a mild learning disability, scoliosis, café-au-lait spots, Lisch nodules, hundreds of dermal neurofibromas, a congenital plexiform in the ankle and foot, and a MPNST in the thigh. The originative tumor tissue for the sNF94.3 cell line was obtained from a lung metastasis diagnosed by histopathology as an MPNST. The portion of the tumor specimen used for tissue culture was characterized independently by immunohistopathology as an MPNST. The tissue was acquired with patient consent and used according to IRB approved protocols.

DNA was extracted from blood leukocytes and tumor specimens as described previously by Colman et al. (1995). The sNF94.3 tumor cell line was established by methods described previously (Wallace et al., 2000; Muir et al., 2001). Briefly, tumor pieces were minced and dissociated for 3–5 hr with dispase (1.25 U/ml; Collaborative Research, Bedford, MA) and collagenase (300 U/ml; Type XI; Sigma, St. Louis, MO) in L15 medium containing 10% calf serum and antibiotics. The digested tissue was dispersed by trituration and strained through a 30-mesh nylon screen. Collected cells were seeded on laminin-coated dishes and grown in DMEM containing 10% fetal bovine serum, 5% calf serum, glial growth factor-2 (25 ng/ml), and antibiotics. Cultures were subsequently grown and expanded rapidly without laminin and glial growth factor-2. The sNF94.3 cell line showed a homogenous Schwann cell-like population and a clonal morphology, which was retained through protracted passages (19 thus far). The apparently immortal cell line has spindle-shape morphology and is immunopositive for S-100 and faintly for p75 (low-affinity neurotrophin receptor), indicating Schwann cell lineage. Nuclear S100 staining might indicate a dedifferentiated tumor cell line (Mirskey and Jessen, 1999). The sNF94.3 cell line was deposited in the American Type Culture Collection.

Clonality Analysis

Tumor clonality was analyzed by an X-chromosome inactivation assay. This PCR polymorphism-based assay allows for differential detection of the maternal and paternal chromosomes by methylation-sensitive enzymes (Singer-Sam et al., 1994). Both the androgen receptor gene locus (Allen et al., 1992) and the phosphoglycerate kinase gene (PGK) (Lee et al., 1994) were analyzed. On digestion of genomic DNA with HpaII followed by PCR amplification using primers flanking the HpaII sites, a clonal sample only shows amplification of one allele whereas a polyclonal sample shows amplification of both alleles (that can be distinguished in heterozygotes). For this study, 10 ng of genomic DNA was digested with 20 U of HpaII and 10 U of RsaI (New England Biolabs, Ipswich, MA) in a 20-µl reaction. Two microliters of the digest was used for PCR amplification. The following primers were used for the androgen receptor repeat polymorphism; A-Receptor 5': 5'-GCT GTG AAG GTT GCT GTT CCT
NF1 Mutation Analysis

NF1 exons from tumor DNAs were analyzed by heteroduplex and SSCP analysis, as well as by direct sequencing (Abernathy et al., 1997). Samples were analyzed for loss of heterozygosity (LOH) using standard methods for genotyping NF1 polymorphisms as described previously by Colman et al. (1995) and Rasmussen et al. (1998). Blood and tumor DNA results were compared when constitutional heterozygosity was seen at a given marker. In addition, standard cytogenetic analysis was carried out on the tumor derived Schwann cell cultures. Analysis for NF1 region microdeletion used specific PCR assays.

Western Blot Analysis

Cell cultures were scraped from dishes and cell pellets were homogenized in ice-cold extraction buffer consisting of 50 mM Tris-HCl (pH 7.4), 250 mM NaCl, 1% Nonidet P-40, 0.25% sodium deoxycholate, and Complete protease inhibitor cocktail (Boehringer-Mannheim, Indianapolis, IN). The soluble fraction was collected by centrifugation (10,000 × g, 20 min) and reconstituted to be 2 M in urea. The extract was concentrated and fractionated by ultrafiltration using a 100-kDa cut-off membrane. Total protein content of the high molecular mass retentate was determined using Bradford Reagent (Bio-Rad, Hercules, CA). Samples were mixed with sodium dodecyl sulfate electrophoresis sample buffer containing 2 M urea and 5% 2-mercaptoethanol, normalized for total protein content and then heated at 80°C for 2 hr. Samples (50 μg of total protein) were electrophoresed into 4–15% polyacrylamide gradient gels and electroblotted to nitrocellulose sheets in transfer buffer containing 0.1% sodium dodecyl sulfate. Blots were rinsed in water and fixed in 25% isopropanol/10% acetic acid. Nitrocellulose sheets were washed with 50 mM Tris-HCl (pH 7.4) containing 1.5% NaCl and 0.1% Triton X-100 and then blocked in the same buffer with the addition of 5% dry milk (blocking buffer). The blots were incubated for 2 hr with anti-NF1GRP(N) antibody (1 μg/ml) (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) in blocking buffer. Bound antibody was detected by peroxidase-conjugated swine anti-rabbit IgG (affinity purified; DAKO, Carpinteria, CA) diluted 1/2,000 in blocking buffer. Immunoreactive bands were developed with chemiluminescent methods (Pierce Chemical, Rockford, IL) according to the manufacturer’s instructions. Relative molecular mass was determined using prestained markers including myosin (233 kDa) (Bio-Rad). Control samples were similarly processed from cell pellets obtained from normal human nerve Schwann cell cultures and Schwann cell cultures derived from embryonic homozygous NF1 knockout mice. In these studies, neurofibromin was detected using a number of antibodies. We used the antibody available from Santa Cruz Biotechnology raised against a peptide corresponding to residues 509–528 of the predicted NF1 gene product. To further investigate the possible effects of truncated NF1 gene products, we have developed monoclonal antibodies (McNFN27a, McNFN27b) raised against a peptide corresponding to the N-terminal residues 27–41 of the predicted NF1 gene product. Similar results were obtained with all antibodies. Next, the blot was stripped with Restore Western Blot Stripping Buffer (Pierce Chemical), per manufacturers instructions, and blocked as described above. The blot was then re-immunoblotted with polyclonal anti-huGST (DAKO) (1/200) (that binds only human glutathiones-transferase) to check sample loading. This immunoblot was developed as described above.

Ras Activation Assay

Ras activation assay kit (Upstate Biotech, Lake Placid, NY) was used according to the manufacturer’s protocol. The assay uses affinity precipitation to isolate Ras-GTP from cell lysate. Cells were lysed using RIPA buffer (1% Igepal, 0.5% NaDOC, 0.1% SDS in PBS) and the DC protein assay (Bio-Rad) was used to determine the protein concentration of the cell lysates. Cell lysate (500 μg) was incubated with an agarose-bound Raf-1 RBD fusion protein. Agarose beads were collected by pulsing with a microcentrifuge (5 sec at 14,000 × g), washed with lysis buffer, and resuspended in Laemmli sample buffer. The samples were then boiled for 5 min after which the supernatants were loaded onto a 4–20% gradient Novex Tris-Glycine gel (Invitrogen, Carlsbad, CA) along with SeeBlue Plus2 molecular weight standards (5 ul) (Invitrogen). The samples were electrophoresed (20 mA/gel) and then transferred (100 V) to a PVDF membrane (NEF, Boston, MA). The membrane was blocked with 5% nonfat dry milk and then incubated with primary antibody overnight at 4°C as follows: 1 μg/ml Anti-Ras clone RAS10 (Upstate Biotechnology, Lake Placid, NY); 1/250 Anti-N-Ras (F155), and Anti-K-Ras (F234) (Santa Cruz Biotechnology). This was followed by incubation with HRP-conjugated secondary antibody at room temperature for 1 hr. The blot was developed using Western Lightning Chemiluminescence Reagent (LEN).

Mouse Strains

Immunodeficient B6 scid mice were used as hosts to minimize immunologic rejection of the xenografted human cell line. The scid nonsense mutation in the DNA-PKCS gene, was described by Blunt et al. (1996). Based on genomic DNA sequence (GenBank AB005213) PCR primers were
designed flanking the mutation site in exon 85: scid 5 (GAGTTTTGAGCAGACAATGCTGA), and scid 3 (CTTTGAAACACACACTGATTCTGC). The resulting 180 bp PCR product was digested with Alu I to distinguish wild-type allele from mutant allele extra cut site via agarose gel electrophoresis, to genotype animals at the scid locus.

Intraneural Tumor Xenografting

Intraneural xenografts were initiated by injecting human NF1 tumor-derived, sNF94.3 cells (passage 5–8) into the sciatic nerves of adult scid mice. sNF94.3 cultures from cryopreserved stocks were grown in DMEM containing 10% FBS and antibiotics. Dissociated cells were collected, rinsed thoroughly, and resuspended at 1 × 10⁶ cells/ml in calcium- and magnesium-free Hank’s Balanced Salt Solution (HBSS). Young adult mouse hosts were anesthetized with isoflurane and the sciatic nerves exposed bilaterally at mid-thigh. A cell suspension (5 × 10⁶ cells in 5 μl) was injected gradually into the sciatic nerve through a FlexiFil (0.2-mm OD) titanium needle syringe (World Precision Instruments, Sarasota, FL) driven by a UMI microinjector mounted on a motorized micromanipulator (World Precision Instruments). These techniques are for optimized tumor cell injection but successful xenografts can be accomplished by hand and with simple equipment, as they were in our initial studies. The surgical site was closed in layers. Muscles were sutured with 4-0 nylon monofilament. The skin opening was stapled with 9-mm stainless steel wound clips that were removed 7–10 days after surgery. The revived mouse was returned to specific pathogen-free housing. At 2–8 weeks after implantation, the animals were sacrificed under anesthesia and the nerves were removed and fixed by immersion in 4% paraformaldehyde in 0.1 mM phosphate buffer (pH 7.2) overnight at 4°C. Nerve segments were embedded in paraffin, sectioned on the longitudinal nerve axis, and immunostained for the Schwann cell marker S-100 (DAKO) (1/300) and the low-affinity neurotrophin receptor (p75) (Fig. 1B), indicating a Schwann cell-like phenotype. The spindle-shaped monolayer cultures of sNF94.3 were immunolabeled with monoclonal anti-laminin (3G8 g/ml) (2E8) and polyclonal anti-huGST (DAKO) (1/100). sNF94.3 xenografts were immunostained with polyclonal anti-huGST (DAKO) (1/100), and the low-affinity neurotrophin receptor (p75) (5 μg/ml, Promega, Madison, WI). Cellular proliferation in vivo was assessed by immunostaining with a monoclonal antibody to Ki67 (DAKO) (1/100) (a nuclear antigen present in proliferating human cells). Blood vessels were immunolabeled with polyclonal anti-von Willebrand Factor (DAKO) (1/500) (that binds endothelial cells). Basal laminae produced by the xenografted sNF94.3 cells was immunolabeled with monoclonal anti-laminin (3 μg/ml) (2E8) with pepsin antigen retrieval (Engvall et al., 1986; Graham et al., 2007). This antibody recognizes only human laminin and not laminin of mouse origin. Negative controls used no primary antibody. Mast cells were visualized using acidic toluidine blue as described by Enerback et al. (1986) on sections immunostained for huGST previously. Mucopolysaccharide was stained with 1% Alcian blue (Scott and Mowry, 1970) in combination with H&E staining.

RESULTS

Phenotypic and Genetic Characterization of the sNF94.3 Cell Line

Samples of the sNF94.3 tumor showed ultrastructural features and focal S100 immunopositivity indicative of a neurofibrosarcoma (data not shown). The Schwann cell cultures derived from the originative sNF94.3 sample immunostained for the Schwann cell marker S-100 (Fig. 1A) and the low-affinity nerve growth factor receptor p75 (Fig. 1B), indicating a Schwann cell-like phenotype.

The spindle-shaped monolayer cultures of sNF94.3 cells showed apparent full-length neurofibromin (Mr
Full-length neurofibromin was not detected in extracts of fibroblast cultures derived from embryonic Nf1−/− knockout mice. As a positive control, normal human Schwann cell cultures showed a substantial band-pair corresponding to full-length neurofibromin. A secondary immunolabeling of the blot for huGST showed consistent loading for all of the human samples. Next, sNF94.3 cells and normal human Schwann cells were serum-starved and Ras activation was determined by Western immunoblotting. Total activated Ras-GTP was elevated in sNF94.3 cells when compared to normal human Schwann cell cultures (Fig. 2B). In addition, both of the specific N-Ras and K-Ras isoforms were activated in sNF94.3 cells (Fig. 2C). Similar results have been reported for other NF1-derived Schwann cells (Thomas, et al., 2006). Consistent with Ras activation, sNF94.3 cells proliferate rapidly and display vigorous growth in culture, on par with other human NF1 MPNST cell lines established in our lab.

sNF94.3 leukocyte DNA (from a polyclonal population of cells) was analyzed first for heterozygosity at the androgen receptor and PGK gene polymorphisms. This sample was heterozygous at the androgen receptor locus, which is consistent with that of a clonally derived tumor sample (P = 0.008, data not shown).

The cytogenetic analysis showed a normal 46, xx karyotype, which is unusual for MPNSTs (Mertens et al., 2000). Sample sNF94.3 cells do not have p53 loss of heterozygosity but showed a constitutional NF1 mutation, which is a microdeletion of the common 1.4 Mb type with breakpoints in the NFREPs and was detected using PCR (Dorschner et al., 2000; Lopez-
Correa et al., 2001). The somatic mutation is not a large deletion and remains unknown despite analysis of numerous exons. This is consistent with the patient’s heavy dermal tumor burden and occurrence of the MPNST (De Raedt et al., 2003). The NF1 mRNA is of the Type II isoform, which is due to inclusion of exon 23a (encoding 21 amino acids). This isoform is known to have reduced GAP activity, and is the predominant type expressed in normal peripheral nerve, brain tumors, and neurofibromas (Suzuki et al., 1991; Teinturier et al., 1992; Andersen et al., 1993). All exon and immediate flanking intron bases have been sequenced and are normal. There is no evidence for aberrant splicing at the RNA level, via reverse transcriptase (RT)-PCR polyacrylamide gel analysis, and sequencing. It is possible, however, that a mutation lies in an untranslated region or promoter region, affecting RNA transcription level or stability, or hemizygosity for the Type II isoform results in Ras-GAP activity reduced sufficiently to allow tumor progression.

Fig. 3. sNF94.3 xenografts form hypocellular plexiform-like tumors. A: The normal mouse sciatric nerve (upper) is slender and symmetric whereas 8 weeks after implantation with sNF94.3 the nerve appears swollen and mildly deformed (lower) (scale bar = 2 mm). B: HuGST immunostaining readily identifies and traces the infiltration of human sNF94.3 cells throughout the xenografted host sciatric nerve. C: H&E stain shows tumor hypocellularity and nerve remodelling. Developing tumor (t), axons (a) displaced by infiltrating tumor and a small region with relatively normal nerve structure (n) are visible. D: A serial section stained with Alcian blue highlights the abundant deposition of extracellular mucopolysaccharide matrix associated with the hypocellular tumor. Immunostaining for human laminin (E) showed the presence of basal laminae. Original magnification: 100× (B); 200× (C–F).
Intraneural sNF94.3 Xenograft Tumors Resemble Plexiform Neurofibroma

Like cultures from neurofibromas, sNF94.3 failed to form subcutaneous tumors in scid mice. Nevertheless, sNF94.3 xenografts consistently formed slow growing, infiltrative tumors in the mouse nerve. Figure 3A shows the gross morphology of a normal mouse sciatic nerve and a representative sNF94.3 nerve xenograft 8 weeks after intraneural implantation. Thirty-nine sNF94.3 engraftments were carried out and examined at time points from 8 days to 1 year after initiation. Overall, 94.9% of the sNF94.3 xenografts were successful and resulted in established foci of huGST-immunopositive cells. Most sNF94.3 tumors caused a moderate enlargement of the host nerve. Eight weeks after implantation with sNF94.3, nerve diameters were on average 55% larger (0.472 mm ± 0.1469, n = 6) than normal, age-matched mouse sciatic nerves (0.304 mm ± 0.0392, n = 4). Vehicle injected mouse sciatic nerves were not increased in size compared to normal nerves (0.293 mm ± 0.0645, n = 2 vs. 0.304 mm ± 0.0392, n = 4, respectively), indicating the increase in nerve diameter did not result from surgically induced inflammation. In addition, xenograft of normal human Schwann cells resulted in only a slight, 9.7% increase in nerve diameter (0.334 mm ± 0.0643, n = 6 vs. 0.304 mm ± 0.0392, n = 4) after 8 weeks. This occurred despite only transient occupancy and limited survival as the normal Schwann cells were most often undetectable after 8 weeks in vivo. Xenografts of sNF94.3 grew slowly and were histopathologically similar to human NF1 plexiform neurofibromas. Immunostaining for the marker protein huGST identified the xenografted human tumor cells and their propensity to diffusely involve the nerve, mimicking the hypocellular growth pattern often found in plexiform neurofibromas (Fig. 3B). The engrafted tumor cells increased in number over time and eventually infiltrated the nerve far from the site of initial implantation.
Regardless of the extent of tumor growth, no overt signs indicating loss of nerve function were observed in any of the xenografted mice, also commonly the case with human NF1 plexiform neurofibromas. Growth of the sNF94.3 cell line in sciatic nerves of adult scid mice caused intraneural disruption and nerve remodeling (Fig. 3C). The hypocellular tumors were composed of diffusely distributed, spindle-shaped cells and were associated with deposition of a mucopolysaccharide-rich, collagenous extracellular matrix (Fig. 3D) and basal laminae (Fig. 3E), hallmarks of NF1 plexiform neurofibroma (Scheithauer et al., 1997). The basal laminae found in sNF94.3 xenografts was produced by the sNF94.3 cells themselves, not the host mouse cells, because the monoclonal antibody used for laminin immunolabeling is specific for human laminin only and does not immunostain mouse laminin (Engvall et al., 1986; Graham et al., 2007). This specificity for human laminin is further indicated with the lack of laminin immunostaining in the unaffected portion of the mouse nerve (Fig. 3E). Mucopolysaccharide deposition, shown by Alcian blue staining, was observed as early as 2 weeks after sNF94.3 xenograft and increased over time, as did hypocellularity observed with H&E staining. Neither Alcian blue staining nor H&E hypocellularity was observed in xenografts of normal human Schwann cells after 8 weeks (n = 6) nor nerves injected with vehicle alone (n = 4). Furthermore, xenografts of another human NF1 cell line using the exact same procedures results in large hypercellular tumors with little mucopolysaccharide and laminin deposition (data not shown).

sNF94.3 xenografts were immunostained for Ki67 (a nuclear antigen found in proliferating cells) and von Willebrand Factor (vWF), an endothelial cell marker. Ki67-positive nuclei were found only within the tumor xenografts (huGST-immunopositive cells) and not in adjacent normal host nerve tissue. A low percentage of tumor cells labeled for Ki67 (Fig. 4A). Similar observations were made in xenografts after 8 days and 1 year, indicating slow but sustained proliferation by the sNF94.3 tumor cells, mimicking that of plexiform neurofibromas. Immunostaining for vWF showed scant blood vessels in normal mouse nerves arranged almost exclusively along the longitudinal nerve axis (Fig. 4B). Increased vascularity was evident in sNF94.3 xenografts as early as 2 weeks (Fig. 4C) and 8-week tumors showed a high degree of vascularity. A more centripetal pattern of blood vessels was observed indicating an angiogenic response to the developing neoplasm. Nearly identical results were obtained by labeling xenograft tumor tissue with antibodies to Flk-1, a high affinity receptor for vascular endothelial growth factor (VEGF) also found on blood vessels (not shown). These results indicate the induction of new blood vessels by the tumor xenograft and provide the opportunity to examine angiogenesis in this NF1 tumor model. Sections of sNF94.3 xenografts immunostained for huGST were counterstained with acidic toluidine blue to visualize mast cells. Although a few mast cells were found in normal mouse sciatic nerves, there was a conspicuous increase in mast cell number in the xenografted nerves (Fig. 4D). Given the fact that mast cells are known to release factors that influence tumor formation, these results may indicate a potential mast cell influence on intraneural sNF94.3 xenograft tumorigenicity. S-100 and p75 immunostaining of sNF94.3 xenograft tumors was faint and variable (Fig. 4E,F, respectively), similar to that of the originative tumor specimen.

Table I summarizes the histologic observations and indicates similarities and differences between the sNF94.3 xenograft tumors and human NF1 plexiform neurofibroma. Based on these criteria and the findings presented we conclude that intraneural sNF94.3 xenografts show tumorigenic growth in the nerves of scid mice highly consistent with that of naturally-occurring human plexiform neurofibroma. Classifications for peripheral nerve sheath tumors arising in genetically engineered mouse (GEM) models have been devised because of some important differences between human and murine lesions (Stemmer-Rachamimov et al., 2004). In the same way it is difficult to apply the GEM classifications to tumors arising in xenografting models. Clearly, sNF94.3 xenograft tumors result from the proliferation of NF1-deficient Schwann cells and the admixture of various cell types from the mouse nerve including endothelial and mast cells. For the most part, sNF94.3 xenografts fit the Grade I GEM tumor classification because of low cellularity and no necrosis. They exceed that classification, however, due to their low to moderate proliferation (Ki67 positivity) and infiltration.

DISCUSSION

A variety of genetic strategies have been tested to determine the role of NF1-deficiency in tumorigenesis and to induce peripheral nerve sheath tumors in animal
models. Genetic manipulations to generate \(Nf1^{−/−} \) chimaera and conditional knockout mice have provided valuable insights into the role of the \(Nf1 \) gene in tumor pathogenesis (Cichowski et al., 1999; Zhu et al., 2002; Stemmer-Rachamimov et al., 2004). On the other hand, tumor xenografting is a time-tested approach with numerous advantages for testing anti-cancer therapies. Despite tumorigenic properties shown in vitro, neurofibroma cultures fail to form subcutaneous tumors in immunodeficient mice (Sheela et al., 1990; Muir et al., 2001). Early studies achieved limited growth by transplantation of human neurofibroma tissue or mixed cell preparations into mice (Appenzeller et al., 1986; Lee et al., 1992), yet reliable working xenograft models for NF1 tumors have been difficult to establish. In previous work we found that a subset of neurofibromin-negative Schwann cell cultures derived from neurofibromas did form slow growing tumors as intraneural xenografts (Muir et al., 2001). Although these xenografts provide a useful model of neurofibroma, several months are required to develop histologically detectable tumors for experimental therapeutics. In addition, cell lines derived from benign neurofibromas are not immortal and thus are a limited resource. Therefore, we investigated more advantageous xenograft models of NF1 tumorigenesis by implantation of rapidly growing NF1 MPNST cell lines into the mouse nerve.

We report a practical and reproducible NF1 tumor xenograft model by transplantation of an immortal human NF1 tumor-derived Schwann cell line, sNF94.3, into the peripheral nerve of \(scid \) mice. sNF94.3 is a stable and homogeneous cell line that provides a permanent and consistent cell source for xenograft initiation. sNF94.3 are Schwann-like cells that express S-100 and p75, as do the clonal element of most human NF1 plexiform neurofibromas. sNF94.3 cells have an apparently normal karyotype. The manifestation and severity of the originative patient’s NF1 symptoms (including abundant dermal and plexiform neurofibromas and MPNST) are consistent with a germline mutation(s) consistent with the phenotype of sNF94.3 cells in vitro and in vivo.

Although no animal model system can recapitulate every aspect of a complex human disease such as NF1, we conclude the sNF94.3 xenograft is a valid model of plexiform-like neurofibroma and provides a valuable tool in the study of NF1 tumorigenesis. Like human NF1 plexiform neurofibroma, intraneural sNF94.3 xenografts displayed hypocellularity with widely-spaced spindle-shaped cells, a low proliferative index, an extracellular matrix-rich stroma and basal laminae. Neurofibromas and MPNST have been shown previously to produce laminin (Chanoki et al., 1991). Schwann cells require the presence of other cell types, such as axons and fibroblasts, to produce basal laminae (Obremski et al., 1993). The fact that basal laminae are formed by sNF94.3 tumors suggests that these tumor cells interact with the surrounding host cells to form highly differentiated Schwann cell neoplasms (Leivo et al. 1989). Additionally, the tumors spread longitudinally in the nerve fascicles, intermingling with host axons while causing little or no impairment of nerve function, similar to human plexiform neurofibromas.

The increase of blood vessels observed in benign sNF94.3 xenograft tumors recapitulates another important feature of NF1 plexiform neurofibroma, which are angiogenic and highly vascularized (Arbiser et al., 1998). Angiogenesis has been suggested as a potentially important target for therapeutic treatment of many types of cancers (Folkman, 2003). As in human NF1 plexiform neurofibromas, the induction of angiogenesis points to the possible effectiveness of anti-angiogenic therapies to limit and control tumor growth. Therefore, the sNF94.3 xenograft model facilitates testing anti-angiogenic therapies for NF1 tumors. In addition, we have established \(scid \) mice with a heterozygous \(Nf1 \) genotype, providing the opportunity to examine the interactions of Xenografts with haplo-insufficient host cells. This may be particular interesting for further studies of angiogenesis given our recent observations of exaggerated neovascular responses in NF1 haplo-insufficient mice (Wu et al., 2006).

Xenografting requires the use of immunodeficient mice that can complicate the interpretation of host-implant cell interactions. \(Scid \) mice lack a functional adaptive immune system, yet they do possess a completely intact innate immune system, including mast cells (Dorshkind et al., 1984). Additionally, NF1 tumorigenic Schwann cells are known to produce stem cell factor, a potent mast cell mitogen (Ryan et al., 1994). It has been shown that murine innate immune cells can contribute to the inhibition of human tumor-cell engraftment in some human tumor-\(scid \) mouse models (Lozupone et al., 2000). Alternatively, this innate immune response may also contribute to tumor engraftment and growth. Previous studies have suggested that mast cells may induce or contribute to tumor formation in NF1 mutant mouse models (Zhu et al., 2002; Yang et al., 2003). It is interesting to speculate whether this mast cell infiltration and activation may be a relevant feature of slow-growing plexiform tumors, as suggested by our xenograft model and by others (Viskokchil, 2003).

Although a number of NF1 mouse models have been developed in recent years (Gutmann and Giovaninni, 2002; Stemmer-Rachamimov et al., 2004), ours is the first xenograft model allowing the properties of human NF1 tumor-derived cells to be examined in a relevant cellular environment. The sNF94.3 xenograft model closely recapitulates the natural history, pathobiol-
ogy, and biochemistry of human NF1 plexiform neurofibroma (Table I). This model is reproducible and consistent with a xenograft success rate of nearly 95%. Because the tumor cell injection is fully controlled by the investigator, a low tumor burden can be established precluding premature death from tumor overload. Also, tumors develop with a relatively short latency.

In summary, the plexiform-like sNF94.3 xenograft model offers several advantages. First, the sNF94.3 xenografts can be compared to the originate tumor specimens as well as other xenografts and cognate tumor specimens. Second, before implantation, sNF94.3 cultures can be examined for in vitro neoplastic properties, karyotype, and genetic abnormalities. Third, the investigator can precisely define the initiation of tumor xenografts by cell number, time, and location in a relevant cellular environment. Fourth, xenografts can be initiated in hosts with various genetic and phenotypic alterations and at various developmental stages. In addition, for future studies, we have also developed a strain of scid mice with an NF1+/− background (Brannan et al., 1994; Jacks et al., 1994) to enhance the validity and relevance of tumor-host cell interactions. The plexiform-like sNF94.3 xenograft model recapitulates the main aspects of plexiform neurofibroma. These features, combined with high reproducibility and technical simplicity, will greatly facilitate preclinical testing of new therapeutic approaches for NF1 tumors.

ACKNOWLEDGMENTS

The authors thank D. Neubauer, E. Baldwin, and T. Lewis for their assistance in performing experiments. Dr. L. Zhang, Dr. H. Li, and F. Kweh for mouse breeding and colony maintenance and the University of Florida Cytogenetics Lab for cytogenetic analysis. This study was supported by the National Institutes of Health Training Grant T32-CA09126-27 (G.Q.P.), the U.S. Department of Defense grants DAMD 17-01-10707 (M.R.W.), and DAMD 17-03-1-0224 (D.M.).

REFERENCES

An orthotopic xenograft model of intraneural NF1 MPNST suggests a potential association between steroid hormones and tumor cell proliferation

George Q Perrin1,2, Hua Li3, Lauren Fishbein3, Susanne A Thomson3, Min S Hwang4, Mark T Scarborough5, Anthony T Yachnis6, Margaret R Wallace3,7, Thomas H Mareci8 and David Muir1,2,9

Malignant peripheral nerve sheath tumors (MPNST) are the most aggressive cancers associated with neurofibromatosis type 1 (NF1). Here we report a practical and reproducible model of intraneural NF1 MPNST, by orthotopic xenograft of an immortal human NF1 tumor-derived Schwann cell line into the sciatic nerves of female scid mice. Intraneural injection of the cell line sNF96.2 consistently produced MPNST-like tumors that were highly cellular and showed extensive intraneural growth. These xenografts had a high proliferative index, were angiogenic, had significant mast cell infiltration and rapidly dominated the host nerve. The histopathology of engrafted intraneural tumors was consistent with that of human NF1 MPNST. Xenograft tumors were readily examined by magnetic resonance imaging, which also was used to assess tumor vascularity. In addition, the intraneural proliferation of sNF96.2 cell tumors was decreased in ovariectomized mice, while replacement of estrogen or progesterone restored tumor cell proliferation. This suggests a potential role for steroid hormones in supporting tumor cell growth of this MPNST cell line in vivo. The controlled orthotopic implantation of sNF96.2 cells provides for the precise initiation of intraneural MPNST-like tumors in a model system suitable for therapeutic interventions, including inhibitors of angiogenesis and further study of steroid hormone effects on tumor cell growth.

Laboratory Investigation advance online publication, 17 September 2007; doi:10.1038/labinvest.3700675

KEYWORDS: neurofibromatosis; malignant peripheral nerve sheath tumor; angiogenesis; xenografts; orthotopic; steroid hormone

Malignant peripheral nerve sheath tumors (MPNST) are often associated with neurofibromatosis type 1 (NF1), and are thought to arise from plexiform neurofibromas.1,2 In fact, neurofibromas coexisting with MPNSTs were found in 81% of patients with NF1 but only in 41% of non-NF1 patients.3 Progression to malignancy from plexiform neurofibroma occurs in about 6% of NF1 patients, although the lifetime risk of MPNST in NF1 has been estimated as high as 8–13%,4 and is associated with high mortality.5

NF1 MPNSTs have distinctive characteristics.6 They are densely hypercellular and composed of spindle-shaped cells. The clonal elements with Schwann cell (SC) characteristics have a high proliferative index (5–38% Ki67-positive cells) and exhibit nuclear hyperchromasia and nuclear enlargement. Their growth is characterized by abrupt variation in cellularity and tissue pattern. They are firm, gray-tan and opaque, may grow very large and can be surrounded by a pseudocapsule. They may have areas of localized necrosis and tend to extend intraneurally.

A great deal of progress has been made developing cell lines and mouse models of NF1 tumors for experimental study and clinical testing. These cell lines and models have proven invaluable in furthering our understanding of the biology of NF1. Mice generated with a null mutation in the
NF1 gene die in utero by day 13. Targeted mutations in one NF1 allele produce heterozygous mice (NF1+/−) that genetically resemble the constitutional background of human NF1 patients, but fail to develop neurofibromas.7,8 Chimeric mice carrying NF1−/− cell populations and NF1 +/−; p53 +/− crossed mice develop clonal neoplasms in peripheral nerves and have proven useful in studying genetic contributions to tumorigenesis. Conditional NF1 knockout mice have been produced that develop neurofibromas when the knockout is in SCs.11 This model has significantly advanced the contention that SCs are the tumorigenic cells in NF1 neurofibromas. Xenografts of human tumors cell lines have been a mainstay of cancer research, as a way to recapitulate human tumor cell growth in vivo. Although not perfect models, xenografts have been and continue to be used extensively to study human tumor cell growth and to test potential therapeutics. Although a number of useful xenograft models have been used to test therapeutic treatments,12–14 none has shown true intraneural tumor growth closely resembling human NF1 MPNSTs. However, xenografts of human NF1 tumor cells have been shown to persist when injected into scid mouse sciatic nerves,15 and have recently been shown to recapitulate NF1 plexiform neurofibromas.16

An association between steroid hormones and neurofibromas has been previously hypothesized, based on reports of increased numbers and size of neurofibromas during puberty and pregnancy.17,18 Dermal neurofibromas usually begin appearing in puberty, with general progression in numbers and size throughout much of adult life. Both plexiform and dermal neurofibromas can become larger during pregnancy, although some of these recede after pregnancy.19 This suggests that steroid hormones, which are elevated during puberty and pregnancy, may play a role in this ‘aggravation’ of neurofibroma growth. Since MPNSTs arise from existing plexiform neurofibromas in NF1, it is conceivable that the growth of some MPNSTs may also be influenced by steroid hormones, as are a number of other tumor types. Finally, to facilitate assessment of potential therapeutic testing in mouse models, in vivo imaging of experimental tumor growth and angiogenesis is of great interest.20–23

Here we report that orthotopic xenografts of a human NF1 tumor-derived SC line into female scid sciatric nerves form large, intraneural, MPNST-like tumors rapidly, consistently and reproducibly in a site-specific manner. The growth and angiogenesis of these intraneural tumors can be monitored in vivo by magnetic resonance imaging (MRI) several weeks after initiation. We then apply this model to characterize the effects of steroid hormones on the in vivo intraneuronal growth of this cell line. The use of a permanent, commercially available cell line and standard methodology provide for high reproducibility by different laboratories and a valid working model for comparable study and testing of therapeutic approaches for NF1 MPNSTs.

MATERIALS AND METHODS

Originative Specimen and NF1 Cell Line

The NF1 tumor cell line, sNF96.2, was derived from tumor tissue resected from the leg of a 27-year-old male patient, who met the NF1 diagnostic criteria.24 This NF1 patient had a positive family history of NF1 and presented with multiple dermal neurofibromas, two spatially distinct plexiform neurofibromas, multiple café-au-lait spots, mild scoliosis and developmental delay. The portion of the tumor specimen used for tissue culture was independently characterized by immunohistopathology as an MPNST. The tissue was acquired with patient consent and used according to IRB-approved protocols.

DNA was extracted from blood leukocytes and tumor tissue as previously described by Colman et al.25 The sNF96.2 tumor cell line was established by methods described previously.15,26 Briefly, tumor pieces were minced and dissociated for 3–5 h with dispase (1.25 U/ml; Collaborative Research) and collagenase (300 U/ml; type XI, Sigma) in L15 medium containing 10% calf serum and antibiotics. The digested tissue was dispersed by trituration and strained through a 30-mesh nylon screen. Collected cells were seeded on laminin-coated dishes and grown in DMEM containing 10% fetal bovine serum (FBS), 5% calf serum, glial growth factor-2 (25 ng/ml) and antibiotics. Cultures were subsequently grown and rapidly expanded without laminin and glial growth factor-2. Initial culture showed a homogenous SC-like population and a clonal morphology, which was retained through protracted passages. The apparently immortal cell line has spindle-shaped morphology and is immunopositive for S-100 and faintly positive for p75 (low-affinity neurotrophin receptor), indicating SC lineage. The cell line was deposited in the American Type Culture Collection.

NF1 Mutation Analysis

NF1 exons from tumor DNAs were analyzed by heteroduplex and SSCP analysis,27 as well as by direct sequencing.27 Samples were analyzed for loss of heterozygosity (LOH) using standard methods for genotyping NF1 polymorphisms as described previously by Colman et al.25 and Rasmussen et al.28 Blood and tumor DNA results were compared when constitutional heterozygosity was seen at a given marker. In addition, standard cytogenetic analysis was performed on the tumor-derived SC cultures.

Mouse Strains

Immunodeficient B6 scid mice were used as hosts to minimize immunologic rejection of the xenografted human cell line. The scid, nonsense mutation in the DNA-PKCS gene, was described in by Blunt et al.29 Based on genomic DNA sequence (GenBank AB005213) PCR primers were designed flanking the mutation site in exon 85: scid 5, GAGTTTTGACGACACATGCTGA and scid 3, CTTTTGAACACACGTATTCTGC. The resulting 180-bp PCR product was...
digested with AluI to distinguish wild-type allele from mutant allele extra cut site via agarose gel electrophoresis, to genotype animals at the scid locus.

Tumor Xenografting

Xenografts in these studies were made by injecting human NF1 tumor-derived sNF96.2 cells into the sciatic nerves of adult female scid mice. sNF96.2 cultures from cryopreserved stocks were grown in DMEM containing 10% FBS and antibiotics. Dissociated cells were collected, rinsed thoroughly and resuspended at 1 x 10^8 cells/ml in calcium- and magnesium-free Hank’s buffered salt solution. Young adult mouse hosts were anesthetized with isoflurane and the sciatic nerves exposed bilaterally at mid-thigh. A cell suspension (5 x 10^5 cells in 5 μl) was injected gradually into the sciatic nerve through a FlexiFil (0.2 mm OD) titanium-needle syringe (World Precision Instruments, Sarasota, FL, USA) driven by a UMIII microinjector mounted on a motorized micro-maneipulator (World Precision Instruments). These techniques are for optimized tumor cell injection, but successful xenografts can be accomplished by hand and with simple equipment, as they were in our initial studies. The surgical site was then closed in layers with sutures and the revived mouse returned to specific pathogen-free housing. At 2–8 weeks after implantation, the animals were terminated under anesthesia and the nerves were removed and fixed by immersion in 4% paraformaldehyde. Xenograft success rate in female mice, based on the appearance of human glutathione S-transferase (huGST)-immunopositive tumors after 8 weeks, was approximately 93% (13 out of 14 xenografts, including initial studies).

To study the in vivo effects of steroid hormones on sNF96.2 tumor cell growth, a subset of ovariecotomized female mice were given steroid hormones before xenografting, as described. Under anesthesia, the ovaries of female mice were removed. Next, these mice (n = 3) were implanted subcutaneously with 60-day release pellets containing either 17 α-estradiol (0.72 mg/pellet), progesterone (25 mg/pellet) or placebo (Innovative Research of America, Sarasota, FL, USA), as per the manufacturer’s instructions. Xenografts of sNF96.2 cells were carried out bilaterally, as described above. After 8 weeks, nerves were removed, embedded in paraffin and sectioned for staining. All animal use was performed in accordance to the guidelines of the University of Florida Animal Care and Use Committee.

Western Blot Analysis

Western Blots were performed as described by Muir et al.15 In these studies, neurofibromin was detected using a number of antibodies. We used the antibody available from Santa Cruz Biotechnology, raised against a peptide corresponding to residues 509–528 of the predicted NF1 gene product. To further investigate the possible effects of truncated NF1 gene products, we have developed monoclonal antibodies (McNF27a, McNF27b) raised against a peptide corresponding to the N-terminal residues 27–41 of the predicted NF1 gene product. Similar results were obtained with all antibodies.

Immunohistochemistry

Cell cultures

sNF96.2 monolayer cultures were examined for immunoreactivity to the SC antigens S-100 and the low-affinity neurotrophin receptor (p75), as described by Muir et al,15 with the following modifications: bound primary antibodies were labeled with swine anti-rabbit IgGs (DAKO) (1/200) conjugated with fluorescein for 1h at 37°C diluted in blocking buffer in darkness, and post-fixed with 2% paraformaldehyde in PBS for 10 min. After washing with PBS, slides were coverslipped and kept in the dark at 4°C until imaging. Imaging was performed using an excitation wavelength of 450–490 nm and an emission wavelength of 515–565 nm.

Xenografts

Processing and immunohistochemistry of sNF96.2 xenografts was carried out as described by Perrin et al.16

Magnetic Resonance Imaging

In vivo H-1 MRI was performed on mouse sciatic nerves, at the time points indicated, on a 4.7-T, 33-cm bore Avance magnet system (Bruker Instruments Inc., Billerica, MA, USA) imaging spectrometer at 200 MHz. Mice were anesthetized with isoflurane, positioned in the RF coil and placed in the MRI system. Fat-suppressed T1-weighted (repetition time (TR) 1000 ms, echo time (TE) 10.5 ms, number of averages (NA) 4) and fat-suppressed T2-weighted (TR 3000 ms, TE 60 ms, NA 6) spin-echo images were collected with a field-of-view (FOV) of 40 x 20 mm in a matrix of 192 x 96 as 0.5-mm slices transverse to the spine. The legs were positioned so that the femurs lie in the image plane (see Figure 6). Increased vascular permeability, indicating angiogenesis was visualized by dynamic contrast-enhanced (DCE)-MRI. For DCE-MRI, fat-suppressed T1-weighted images (same parameters as above, except TR 400 ms, TE 7.3 ms, NA 8, matrix 128 x 64) were obtained using a high-molecular-weight contrast agent gadolinium diethylenetriaminepenta-acetate (Gd-DTPA). At the time points indicated, three DCE MR images were collected before intraperitoneal injection of 0.3 mmol/kg Gd-DTPA, and 10 images were collected after injection. The contrast agent was seen first as a hyperintensity in tissues with the highest level of vascular permeability. The experiment shown was performed on a mouse that was only xenografted on one sciatic nerve, the other being left untouched, and was representative of other similar experiments. Regions of interest were chosen to represent the xenografted tumor, normal nerve and muscle. All MR images were processed using software routines written in IDL (Research Systems Inc., Boulder, CO, USA).
RESULTS

Genetic and Phenotypic Characterization of the sNF96.2 Cell Line

Sample sNF96.2 had an abnormal karyotype, which is typical for MPNSTs. There were clonal findings of 48, X, –X or Y, +7, add(7)(p22)x2, +8, add(9)(p24), +mar[10] in 10/10 metaphase cells. There were also a few non-clonal rearrangements; however, both chromosome 17 homologs and the genotyping showed complete LOH (no detection of the remaining allele). Thus, this culture would not be expected to produce any full-length neurofibromin protein. Further, the SC cultures derived from the sNF96.2 sample had LOH for a marker in the p53 gene with the entire chromosome 17 homologs missing and the one carrying the NF1 mutation reduplicated (data not shown). Immunostaining of the primary sNF96.2 tumor showed weak but unremarkable p53 staining (data not shown). sNF96.2-cultured cells also showed no abnormalities on SSCP analysis of exons 5–8, which are most often involved in tumorigenesis.

As predicted by genotyping, the SC cultures derived from the sNF96.2 sample showed no full-length neurofibromin (M, ~250 kDa) when extracts were analyzed by Western immunoblotting using several anti-neurofibromin antibodies (Figure 1). Similarly, full-length neurofibromin was not detected in the extracts of fibroblast cultures derived from embryonic Nf1−/− knockout mice. As a positive control, normal human SC cultures showed a substantial band-pair corresponding to full-length neurofibromin. A secondary immunolabeling of the blot for huGST showed consistent protein loading.

An equal amount of total protein was loaded for each sample. Neurofibromin appeared as a 250-kDa band in the normal human SC sample, but was absent in the sNF96.2 and Nf1−/− knockout fibroblasts. An equal amount of total protein was loaded for each sample. Immunoblotting for huGST was performed to demonstrate consistent protein loading.

sNF96.2 Xenografts Form Massive MPNST-Like Tumors

We previously found that a subset of neurofibromin-negative NF1 tumor cultures form slow-growing tumors as intraneural xenografts. In addition, normal human SC intraneural xenografts showed only transient occupancy, limited survival and were often undetectable after 8 weeks in vivo. Using the same methods, intraneural xenografts of the sNF96.2 SC line grew extraordinarily well and rapidly progressed to MPNST-like tumors in over 88% of female mice tested over various time points (n = 17). The resulting masses were firm, gray-tan in color, grew rapidly and were histopathologically similar to human NF1 MPNSTs. Xenografts also grew in male scid mice, but did not progress as dramatically or as quickly as they did in female hosts. The results presented in this report exclusively represent orthotopic sNF96.2 xenografts in adult female scid mice after 8 weeks (n = 5). Figure 3a shows the gross morphology of a normal mouse sciatic nerve and a representative large sNF96.2 xenograft 8 weeks after engraftment. Orthotopic xenografts of sNF96.2 cells resulted in an average increase in nerve diameter of over three-fold (0.99 mm ± 0.33, n = 5) when compared with normal, age-matched mouse sciatic nerves (0.304 mm ± 0.0392, n = 5). Control injections of vehicle alone indicated the increase in nerve diameter did not result from the needle injection per se. Vehicle injected mouse sciatic nerves were not increased in size compared to normal nerves (0.293 mm ± 0.0645, n = 2 vs 0.304 mm ± 0.0392,
n = 5, respectively). As a further control, normal human SCs were injected using the same procedures. These control xenografts resulted in only a slight, 9.7% increase in nerve diameter (0.334 mm ± 0.0643, n = 6 vs 0.304 mm ± 0.0392, n = 5) after 8 weeks. Therefore, the increase in nerve diameter observed consistently in sNF96.2 xenografts resulted from the characteristic intraneural growth of these cells, and was not caused by the needle injection or injury response.

These mice developed large, rapidly growing, bulky tumors that caused intraneural disruption and host nerve remodeling. Histological staining (Figure 4a) showed these tumors consistently displayed a dense hypercellularity and were composed of elongated spindle-shaped cells, typical of human MPNST. Other characteristics of human MPNST observed in xenograft tumors include nuclear hyperchromasia, mitoses and a fascicular growth pattern. To prove the tumors resulted from the expansion of the xenografted human tumor cells, engrafted nerves were immunostained with an antibody that labels exclusively huGST (Figure 4b and e). HuGST-positive cells were found throughout and were by far the major component of the tumor masses. Immunopositive sNF96.2 cells increased in number over time and expanded intraneurally, often dominating the nerve completely. In contrast to sNF96.2 SCs, normal human SC xenografts showed only transient occupancy, severely limited survival and were undetectable in four out of six (67%) xenografts.
after 8 weeks. In the two mice that did display positive huGST staining, survival of xenografted normal human SCs was severely limited and there was only meagre, transient occupancy. Immunostaining with an antibody specific to human Ki67 (a nuclear antigen found in proliferating cells), but that does not cross react with mouse tissue (data not
sNF96.2 xenografts had a very high rate of proliferation. Almost half of the cells stained positive for Ki67 (42.25 ± 4.85% Ki67-positive cells per high-power field, n = 5) (Figure 4c). Ki67-positive nuclei were seen only in the areas of the nerve occupied by human xenografted cells and not in adjacent host nerve tissue, confirming the specificity of this analysis. These results indicate that the female scid mouse nerve provides a favorable environment for the development of MPNST-like tumors by xenografts of the sNF96.2 SC line. The vascularity of sNF96.2 tumors was examined by immunostaining for von Willebrand’s factor (vWF), a marker of mature endothelial cells. Immunostaining for vWF revealed scant blood vessels in normal mouse nerves arranged almost exclusively along the longitudinal nerve axis (data not shown). Xenografted tumors were highly vascularized compared with normal mouse sciatic nerves (Figure 4d). Nearly identical results were obtained by labeling xenograft tumor tissue with antibodies to Flk-1, a high-affinity receptor for vascular endothelial growth factor (VEGF) also found on blood vessels (data not shown). Aberrant vessel development was observed as early as 2 weeks after orthotopic xenograft, and was closely associated with tumor hypercellularity. The vascular pattern in the tumors was irregular compared with the longitudinal alignment found in tumor-free areas of the host nerve and normal nerve, indicating extensive tissue remodeling. These results show the induction of new blood vessel formation in response to the growth of xenograft tumors and provide the opportunity to examine angiogenesis in this model of NF1 MPNST.

Sections of sNF96.2 xenografts immunostained for huGST were counterstained with acidic toluidine blue to visualize mast cells and their spatial relationship to tumor development. While occasional mast cells were seen in normal scid mouse sciatic nerves, there was an overall increase in mast cell number in the xenografted nerves. A few of these infiltrating mast cells colocalized within the main tumor mass (ie, with intense huGST staining) (Figure 4e, inset). However, there were more mast cells in the tissues surrounding the huGST-positive areas (Figure 4e). The boundary with the non-staining mouse tissue and huGST-staining tumor is also evident (Figure 4e).

The data presented above represent xenografts developed in female mice. Interestingly, rapid and massive tumor growth by the sNF96.2 cell line occurred only in female hosts, while sNF96.2 tumors in male hosts grew much less vigorously. In fact, when examined after 4 weeks, only 33% (n = 6) of the sNF96.2 xenografts in male hosts resulted in a discernible huGST-positive mass compared with over 88% (n = 17) in female mice. Given time, tumors did sometimes develop in male nerves, but never to the degree or size that they did in female nerves. These results suggest a potential hormonal influence on the in vivo growth of this cell line. To determine whether female steroid hormones affect tumor cell growth in vivo, female mice were ovariectomized to attenuate the level of female steroid hormones. Blank pellets (placebo) or pellets containing estrogen or progesterone were then implanted subcutaneously to provide physiological levels of the respective hormones. Xenografts of sNF96.2 cells were carried out as described above and tumors were allowed to develop for 8 weeks. Assessment of tumor cell proliferation via Ki67 immunohistochemistry revealed that tumor cell proliferation dropped significantly in ovariectomized mice, compared with intact female mice. Replacement of estrogen or progesterone caused a significant increase in tumor cell proliferation, almost to levels measured in intact females (Figure 5). These results suggest a potentially supportive role for steroid hormones in NF1 tumor development.

![Figure 5](image-url) Steroid hormones affect xenografted sNF96.2 tumor cell proliferation. Proliferation of xenografted sNF96.2 tumors was assessed by counting Ki67-positive cells in × 400 high-power fields (HPF) of tumor sections from normal mice, ovariectomized mice and ovariectomized mice receiving steroid hormone replacement. Reduction of steroid hormones via ovariectomy with no steroid hormone replacement (placebo) greatly reduced xenografted sNF96.2 tumor cell proliferation when compared with xenografts in mice with intact ovaries (*P < 0.0001). Replacement of physiological levels of estrogen (**P = 0.004) or progesterone (***P = 0.003) increased xenografted sNF96.2 tumor cell proliferation in ovariectomized mice to almost normal levels. Statistical significance was calculated using the Student’s t-test.

![Figure 4](image-url) sNF96.2 xenografts are highly proliferative, angiogenic and infiltrated by mast cells. (a) Hematoxylin and eosin staining shows the xenograft tumors are dense, hypercellular masses. (b) HuGST immunostaining indicates the tumors have thoroughly occupied and displace the host nerve elements. (c) Ki67 immunostaining shows a very high proliferative rate. (d) Immunostaining for vWF labels the increased vascularity associated with the xenografts. (e) Xenografted nerves were immunostained for huGST (brown) and counterstained for mast cells using acidic toluidine blue. Compared with normal nerve, there was an overall increase in mast cell infiltration in the xenografted nerves. A few mast cells were found within the tumor mass (inset), however, the major accumulation occurred in the host nerve tissue surrounding the tumor (arrows). Original magnification, × 200.
In Vivo MRI of Tumor Xenografts

An important feature of this NF1 xenograft model is the ability to precisely initiate tumors within the mouse sciatic nerve. This feature simplifies later detection and monitoring of tumor growth. To that end, we tested various MRI methods to examine tumor development *in vivo*. Normal mouse nerve showed little contrast in T1-weighted MRI, both in our experience and in published results. On the other hand, xenografted tumors appeared as highly contrasted, hyperintense regions *in vivo* T2-weighted MRI (Figure 6a). A slight hyperintensity was discernible at the site of tumor cell implantation 2 weeks after xenograft of sNF96.2 cells. By 4 weeks, a tumor mass was easily distinguished in nearly all xenografted nerves and tumor expansion was readily monitored thereafter. The hyperintense tumor images were subsequently verified as xenografted sNF96.2 cells by post-mortem huGST immunostaining (see Figure 4). Thus, T2-weighted, *in vivo* MRI is a powerful tool for monitoring tumor growth over time and can subsequently be used to test the effectiveness of therapeutic agents *in vivo*. To demonstrate increased vascular permeability, an assessment of angiogenesis, DCE-MRI was also performed 8 weeks after xenograft of sNF96.2 cells. DCE-MRI, where the uptake and washout of a contrast agent in tissues is monitored over time, distinguished a highly contrasted, hyperintense region in the xenografted area of the nerve (Figure 6b). This region corresponded to the xenograft tumor mass shown in Figure 6a. Approximately 20 min after systemic injection of the contrast agent, when the level of contrast enhancement peaked (Figure 6c), the xenografted tumor displayed an average contrast enhancement eight-fold higher than the surrounding muscle, while the contralateral, normal nerve showed only an average two-fold increase over the surrounding muscle. This indicates some leakiness to gadolinium-contrast-agent across the blood–nerve barrier in the mouse normal nerve, but much more leakage occurred in the hypervascular xenografted tumors. Similar results were obtained in replicate mice xenografted with sNF96.2 cells. These results suggest an increased vascular permeability in the xenografted tumor, which correlates with the histological findings of tumor-induced angiogenesis.

Interestingly, metastases were not observed in the xenografted host organs, and this was also true for the originative patient tumor. Although this might be somewhat unusual for an MPNST, the sNF96.2 xenografts were otherwise remarkably consistent with MPNST histopathology. Classifications for peripheral nerve sheath tumors arising in genetically engineered mouse (GEM) models have been devised because of some important differences between human and murine lesions. In the same way, it is difficult to apply the GEM classifications to tumors arising in xenografting models. Clearly, sNF96.2 xenograft tumors result from the intraneural proliferation of NF1-deficient SCs and the admixture of various cell types from the mouse nerve, including endothelial and mast cells. For the most part, sNF96.2 xenografts fit the Grade III PNST GEM tumor classification because of high cellularity, anaplasia and frequent mitotic figures.

Figure 6 sNF96.2 tumor growth and angiogenesis monitored by *in vivo* MRI. Xenografted mouse sciatic nerves were imaged *in vivo* on a 4.7T magnet at various times after tumor cell injection. (a) T2-weighted MRI reveals a large tumor mass (arrow) 8 weeks after orthotopic implantation of sNF96.2 cells. (b) T1-weighted DCE-MRI from the same mouse shown in (a) after systemic injection of the contrast agent gadolinium. The left image shows the contralateral sciatic nerve, which was not injected with tumor cells, located 2.5 mm proximal to the image on the right. DCE-MRI shows increased tumor blood vessel permeability. (c) The graph shows the percent enhancement in the specified regions of interest (indicated by the circles; n, normal nerve; t, xenograft tumor; m, muscle) over time after injection of the contrast agent (indicated by arrow). The percent enhancement of the tumor increased dramatically, while the regions in both the surrounding muscle and the contralateral, normal nerve rise only slightly. This increase in percent enhancement corresponds to increased vascular perfusion in xenografted tumor area associated with angiogenesis and increased tumor vascularity.
DISCUSSION

It is estimated that about 6–13% of NF1 patients will develop MPNST and all patients with neurofibromas are at risk for malignant degeneration.38 Because surgical debulking is currently the main treatment option for NF1 tumors, there is a pressing need for consistent, clinically relevant models of NF1 MPNST. In fact, xenograft models have already been used to study therapeutic effects in intraperitoneal and subcutaneous model systems.12–14 Although useful for studying therapeutic effects on in vivo tumor growth, these models do not recapitulate the complex neural microenvironment found in human NF1 MPNSTs. Using a simple and reproducible xenografting technique, we have established a mouse model for intraneural NF1 MPNST applicable for practical therapeutic testing in a relevant cellular environment. When xenografted into the nerves of female immunodeficient mice, the NF1 MPNST cell line, sNF96.2, rapidly forms tumors bearing the characteristics of human NF1 MPNST. The sNF96.2 cell line is immortal, commercially available and apparently stable after protracted passage in vitro. Similar to Nf1-null cells cultured from embryonic knockout mice,39,40 the sNF96.2 culture proliferates in a growth factor-independent manner. This cell line has a fra-meshift germline mutation, a complete LOH for Nf1, LOH for a marker in the p53 gene and fails to express neurofibromin. Unlike SCs only deficient in neurofibromin, sNF96.2 cells are highly tumorigenic and have multiple genetic defects. These features are associated with highly autonomous growth properties. In that regard, a complex abnormal genotype is more characteristic of progressive NF1 tumors.

Intraneural sNF96.2 tumors exhibit histopathological characteristics of human NF1 MPNSTs. They are hypercellular with hyperchromatic nuclei, have a high proliferative index, increased numbers of blood vessels and show mast cell infiltration. The orthotopic nature of these xenografts produces a tumor representative of human NF1 MPNSTs. Uncharacteristic of many MPNSTs in NF1 patients, there were no obvious signs of necrosis or metastases in the 8-week time frame of these studies. Interestingly, this was also true for the originate tumor. Since these xenografts were only allowed to grow for 8 weeks, it is conceivable that tumors growing for longer times may develop areas of necrosis and metastases.

Angiogenesis is a common feature of many tumors and neurofibroma SCs have been previously shown to be angiogenic.41 Necrosis results from rapid tumor growth and a lack of adequate blood supply. Therefore, the sNF96.2 tumors, despite their rapid growth, appear to induce adequate angiogenesis that precludes necrosis. This provides an attractive therapeutic target, since inhibiting the growth of NF1 tumor blood vessels with antiangiogenic agents may slow, halt or even reverse tumor progression. Angiogenic factors have been shown to increase the permeability of tumor blood vessels (reviewed by Bates et al42), and thus allow monitoring of tumor angiogenesis with MRI using contrast agents.43 We established methods to monitor xenograft tumor growth and tumor-induced angiogenesis in vivo, using T2-weighted MRI and DCE-MRI, respectively. These techniques will be valuable in monitoring tumor progression in testing the effectiveness of potential therapeutic treatments. Further, MRI has been suggested as a potentially useful tool in detecting progression to malignancy in NF1 neurofibromas.44 We are currently exploring the use of MRI in studying the malignant progression of neurofibromas, using NF1 xenograft models of both MPNST and plexiform-like neurofibroma.

The scid mice used in these studies are immuno-compromised (to prevent rejection of the implanted human tumor cells) yet do possess an intact innate immune system that includes mast cells.45 Mast cells have been implicated as important factors in tumor development and angiogenesis (reviewed by Folkman46 and Ribatti et al47), and are potent producers of matrix metalloproteinases and pro-angiogenic factors such as VEGF, basic fibroblast growth factor and transforming growth factor-β.48,49 Also, the Nf1 status of mast cells may be important for tumor formation and progression in some Nf1 tumor models, and these studies have suggested that mast cells may induce or contribute to tumor formation in Nf1 mutant mouse models.11,50 In addition, Nf1 +/− mast cells were found to hyperproliferate in response to mast cell mitogens, and Nf1 tumorigenic SCs produce a potent mast cell mitogen, stem cell factor.51 Previous studies have suggested that mast cells may induce or contribute to tumor formation in Nf1 mutant mouse models.11,52 We found that mast cells infiltrate sNF96.2 xenografted tumors in scid mice, and do so in a manner similar to mast cell infiltrates seen in human NF1 MPNSTs.53 Mast cells may be important contributors to NF1 tumor angiogenesis and progression in the tumor environment.

An unexpected result of these studies was that, whereas tumors developed in both male and female mice sciatic nerves, sNF96.2 tumors developed significantly better in female than in male hosts. These results suggest a possible in vivo hormonal influence in tumor cell growth of sNF96.2 cell xenografts. This is consistent with an anecdotal consensus that tumors in NF1 patients often become evident and more symptomatic during times of pronounced hormonal changes, such as puberty and pregnancy. Some patients have reported an increase in size and number of both dermal and plexiform neurofibromas during pregnancy18 or while taking birth control pills (MR Wallace, unpublished data). A recent survey of 59 NF1 patients found that oral contraceptive pills did not stimulate subjective growth of neurofibromas in the majority of patients, in contrast to two patients receiving high-dose depot contraceptive with progesterone, who did report significant tumor growth.54 There have even been reports of increased malignant potential of plexiform tumors during pregnancy.55,56 This information suggests that steroid hormones may play a role in neurofibroma development, growth and/or survival. MPNST growth is not normally thought to be hormone-driven, but in this model, tumor cell
proliferation appears to be supported by steroid hormones. Males are known to have circulating hormones, including estrogen and progesterone, which may have supported tumor growth in the original male patient. Unfortunately, no patient samples are available to test for the presence of these hormones. Also, sNF96.2 cells did grow and produce small tumors in male mice, although their size and rates of proliferation were comparatively much smaller than identical xenografts in female hosts (data not shown). While no detectable estrogen nor progesterone receptors were found on the sNF96.2 cell line, these receptors were found in the original patient tumor;12 and although no increase in sNF96.2 cell proliferation was observed in vitro in the presence of estrogen or progesterone,12 our results indicate that estrogen and progesterone each may support tumor cell proliferation in NF1 MPNST intraneural sNF96.2 xenografts. As suggested by Fishbein et al.,12 tumor growth response to steroid hormones may be variable, probably being patient- or tumor-specific, and may be due to hormonal effects on cells surrounding the tumors. Given the differences in steroid hormone effects on sNF96.2 cells between the in vitro results shown by Fishbein et al12 and the in vivo results presented here, future studies may do well to examine the hormonal influences on cells of the tissue stroma rather than on the tumor cells themselves. Whether studying NF1 MPNSTs or another type of cancer, these results support the importance of the tumor microenvironment when considering animal models. We believe true orthotopic models of human tumors, such as the intraneural model presented here and elsewhere,16 have a great advantage in recapitulating the tumor growth characteristics of human tumors, especially for therapeutic testing. Clearly, the tumor environment in most types of cancers, whether cellular or systemic, can have a pronounced influence on tumor growth, including NF1 tumors. The orthotopic xenograft model presented here is a practical, highly reproducible and representative model of intraneural NF1 MPNST, with a great potential for therapeutic testing. Estrogen and progesterone treatments were shown to reinstate the higher rates of proliferation in ovariec-tomized NF1 MPNST-like sNF96.2 xenografts, suggesting a possible supportive role for these steroid hormones in some NF1 MPNST tumorigenesis, suggesting this model could be useful for other steroid hormone studies. Interestingly, notable differences were observed when comparing our xenograft models of NF1 MPNST and NF1 plexiform-like neurofibroma.16 These differences were most evident in the rates of tumor development and interactions with the cellular and systemic environments. Current and future work will use these tumor models in scid mice also harboring Nf1 heterozygous mutations. These experiments will help ascertain the importance of the role of Nf1 heterozygosity in the tumor microenvironment, and it’s role in tumorigenicity. Xenograft tumor models underscore the individualistic nature of NF1 tumors and reproduce the heterogeneity recognized in human NF1 neoplasia.

ACKNOWLEDGEMENT
Supported by the National Institutes of Health Training Grant T32-CA09126-27 (GQP), and Grants R01 NS42075 and P41 RR16105 (THM), the US Department of Defense Grants DAMD 17-01-10707 and the Hayward Foundation (MRW) and DAMD 17-03-1-0224 (DM). We thank Debbie Neubauer, Elizabeth Baldwin and Trevor Lewis for their assistance in performing the experiments, Dr Lian Zhang and Frederick Kweh for mouse breeding and colony maintenance, and the University of Florida Cytogenetics Lab for cytogenetic analysis. All MRI data were obtained at the Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) facility in the McKnight Brain Institute and National High Magnetic Field Laboratory at the University of Florida.

et al.

40. Kim HA, Ling B, Ratner N. NF1-deficient mouse Schwann cells are angiogenic and invasive and can be induced to hyperproliferate: reversion of some phenotypes by an inhibitor of farnesyl protein transferase. Mol Cell Biol 1997;17:862–872.

