Sea Clutter Generation and Target Detection

Stefano M. Canta, Danilo Erricolo
University of Illinois at Chicago
URSI 2007, North American Radio Science Meeting
URSI – CNC/USNC July 22-26 2007, Ottawa, ON
Sea Clutter Generation and Target Detection

University of Illinois at Chicago, Department of Electrical and Computer Engineering, Chicago, IL, 60607
Purpose

- Propagation model for the electromagnetic field that accounts for the clutter and metallic objects in the sea
- Computationally fast
Purpose

- The complete work will include EM propagation models and vector antennas
- Support from U.S. DoD/AFOSR MURI and NRL/DARPA
Theoretical Background

- Stochastic models:
 - K-compound distribution
 - They take into account various aspects of the scattering process by sea waves

\[p(x) = \frac{2b}{\Gamma(n)} \left(\frac{bx}{2} \right)^{n-1} K_{n-1}(bx) \]

- Difficult to control the single physical quantities for wave generation
Theoretical Background

- Fractal deterministic models of the sea surface contain better physical modeling
 - Sea surface as a summation of an arbitrarily large number of wave contributions
 - Based on hydrodynamic models
 - Based on observation of quantities:
 - Wave velocity and direction
 - Wind velocity and direction
 - Multi-scalar description
 - Movement of target and observer
Contributions

- Geometry: 2D fractal model
- Electromagnetics: ray-launching
- Large scale problem (> 5000λ)

- Ray-tracing: good compromise between accuracy of the solution and computation time
Contributions

- Better low-grazing incidence description
 - Cylindrical wave-front for radiated power
 - Multiple reflection
 - Scattering factors
 - Shadowing
Model

- Better control over the generation of the environment geometry
 - Wind speed and direction
 - Sea wave direction and height
 - Phase shift among different contributions
 - Evolution in time
 - Position and possible movement of an observer
- Based on hydrodynamics models
Assumptions

- Sea modeled as a lossy dielectric
- Multiple reflections over the sea surface
Assumptions

- Periscope: rectangular thin perfect conductor
- Reflections over the periscope walls and diffraction at the periscope edges
Assumptions

- We do not consider:
 - Transmission in the sea
 - Double diffractions on the periscope edges
 - Curved-element diffraction:
 - Sea water modeled as a dielectric
 - No whispering-gallery modes
 - High Losses
Validation in a Simple Case

- Very hard to acquire measured data
- IPIX: sampling rate too coarse for our model
- Military data not accessible
- Simple validation with FDTD method
 - Reduced surface
 - $30\lambda \times 30\lambda$
Validation in a Simple Case

• Differences:
 • Absence of curved-element diffraction
 • Double-diffraction
 • Instantaneous ray propagation vs. FDTD propagation

• FDTD Fourier Transform in test points is max ±1.5 dB compared to ray tracing
Validation in a Simple Case
Simulations

- TM and TE polarizations
- 2 different sea states, calm and high
- Different periscope heights that match the significant height of the waves
- Roughly 1750 different time instants
- 11 realizations of the sea evolving in time for each case
- Constant radar height when referred to the sea
- Fixed and floating periscope
Simulations

- The periscope is a tough object to detect
 - Thin object, easier to detect when tall
- The radar is usually located on a much higher location than the top of the periscope
 - No direct reflections are seen from the periscope
- Diffraction from the edges gives a small increment to the total measured field
State

- Standard deviation of wave height: 0.3m
- Height of the periscope: 3m
- Thickness of the periscope: 5cm
- Radar height: 20m
- The sea is at a relatively low state and the periscope oscillates on the sea surface
- The periscope is visible at short distances when the presence of the periscope is undisturbed by the sea
- At larger distances, the periscope is mostly invisible to the radar
State

TE (H) pol. TM (V) pol.
State

- Standard deviation of wave height: 3m
- Height of the periscope: 10m
- Thickness of the periscope: 5cm
- Radar height: 20m
- The sea state is very high and the periscope oscillates on the sea surface
- Counter-intuitively, oscillations in field ratios are very high
 - The periscope has a direct effect on the return signal
State

TE (H) Pol.

TM (V) Pol.
State

- Standard deviation of wave height: 3m
- Height of the periscope: ~10m
- Thickness of the periscope: 5cm
- Radar height: 20m
- The sea level is very high and the periscope DOES NOT oscillate on the sea surface
State

TE (H) Pol.

TM (V) Pol.
Challenges in our Results

- Low sea state: the periscope is visible only at short distance
 - Only a few rays bounce back to the radar source
 - The sea is seen as a plate by the radar
- High sea state: the periscope is high
 - A significant amount of rays is bounced back
 - Large deviations in the measured fields
Future Development

- 3D fractal and ray-tracing model
- Run more simulations at higher distances and different sea states to determine the effect of the sea clutter
- Try to include diffraction by the sea
- Obtain measurement data (?)
Thank you!

Questions?