Air Force
Power Requirements

January 24, 2006

Capt David Pfahler
Power Division
Propulsion Directorate
Air Force Research Laboratory

Cleared for Public Release AFRL 05-0051
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 JAN 2006</td>
<td></td>
<td>00-00-2006 to 00-00-2006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Force Power Requirements</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Force Research Laboratory, Power Division, Propulsion Directorate, Wright Patterson AFB, OH, 45433</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

| 10. SPONSOR/MONITOR’S ACRONYM(S) |
| |

| 11. SPONSOR/MONITOR’S REPORT NUMBER(S) |
| |

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
</tr>
<tr>
<td>unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
</tr>
<tr>
<td>unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE</td>
</tr>
<tr>
<td>unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same as Report (SAR)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Purchased by ANSI Std Z39-18
Outline

• Our Recent Heritage – MEA

• Our Plan – HiPAC

• HiPAC Technologies

• Summary

Powering the United States Air Force
All-electric aircraft eliminates complex, inefficient, maintenance intensive...

- Hydraulics
- Bleed Air Pneumatics
- Mechanical (gearbox) Subsystems

Savings in $B’s with improved warfighting

Enables mission available power for lethal airborne directed energy weapon
MEA Generation I Concept
Transition to Lockheed F-35

Affordable, High-Performance Baseline for F-35

AFTI/F-16 Demonstration Validates
More-Electric Aircraft Technologies

Common Components

- Inverter/Converter/Controller (2) – Provides Conditioned 270-VDC Power to Flight Critical Actuation System
- 270-VDC Emergency Generator – Provides Independent Source of Electrical Power
- 270-VDC Battery – Provides Uninterruptible, Flight-Critical Power
- Starter/Generator – Source for Redundant, Flight-Critical Power
- Power Drive Electronics – Provide Modulated 270-VDC Power to Flight Control Actuators
- Electro-hydrostatic Actuators – Provide Redundant Control Power at Each Control Surface

F-35 Subsystems Suite
Identical to J/IST
From Vision to Reality

F-35 IS THE FIRST TRULY “MORE ELECTRIC” AIRPLANE

- Electric Engine Start
- Electric Power & Thermal Mgt System
- Electric Flight Control Actuation
- Electric Flight Control Power Systems

Electric Engine Start Ground Demo

Starter/Generator / Electric Flight Control Actuation Flight Demo

MEA Thrust Initiated In 1987
Exponential Growth for Power and Thermal Technology

Baseline
- F-22 130 KWe
- ~100 Elec Loads
- No 270 VDC Flt Critical Loads

State of the Art
- F-35 160KWe
- 270 VDC Flt Critical Loads
- Int. Subsystems
- External S/G

Far Term
- Multi-Megawatt
- Enabling Weapons

Technology Push
- Exponential Growth for Power and Thermal Technology
Exponential Growth for Power and Thermal Technology

- **Technology Push**
- **Requirements Pull**

STATE OF THE ART
- **F-35 160KWe**
- **270 VDC Flt Critical Loads**
- **Int. Subsystems**
- **External S/G**

BASELINE
- **F-22 130 KWe**
- **~100 Elec Loads**
- **No 270 VDC Flt Critical Loads**

FAR TERM
- **Multi-Megawatt**
- **Enabling Weapons**

TACTICAL DIRECTED ENERGY WEAPONS

- **UCAV**
- **JSF**
- **AADT**
- **LRS**

MORE ELECTRIC AIRCRAFT

INCREASED ON-BOARD POWER

- **1995**
- **2005**
- **2015 +**
DE Weapons Need Unprecedented Power & Thermal Management

Projected Capability Needs an Order-of-Magnitude Over the Next 10+yrs.

20+ yrs 60% Growth

Required Technology Availability

Power Level (KW)

- F-35
- Continuous
- Solid State Tactical Laser
- Airborne Active Denial
- Airborne Electronic Attack
- F-15
- F-16
- F-22
- Low Duty Cycle
- 1975
- 1980
- 1985
- 1990
- 1995
- 2000
- 2005
- 2010
- 2015
HiPAC Technical Program Areas

- High Temperature Power System Components
- High Temperature Thermal Control Systems
- EMI Immunity
- Integrated Engine / Power Extraction
- Smart Power: Prognostics & Health Management
- MW Power Generation
- MMW Power Generation
- Active High Flux Thermal Control System
- Lightweight Compact Power Conditioning
- Energy Storage
- Electrochemical Power Generation
- MEMS Power Generation
- MEMS Thermal Management
- Pulse Power Components
- Subsystem Integration
Micro-Mini Platforms

Small Platforms with sub kW Power Requirements

Technologies:
• MEMS Power Generation
• MEMS Thermal Management
• Batteries
• Fuel Cells
Munitions / Small UAVs with 1-100 kW Power Requirements

Technologies:
- EMI Immunity
- Integrated Engine / Power Extraction
- Smart Power – Prognostics and Health Management
- Electrochemical Power Generation
- Light Compact Power Conditioning
- Energy Storage
Low Spool Generator for Global Hawk

Enables Advanced Sensor Upgrades for Global Hawk

POWER TECHNOLOGIES BENEFITS:
• 15% Thrust Improvement at Altitude
• 7.5X Increase in Power Generated

GLOBAL HAWK CAPABILITIES

NOW:
- 2000 lb Payload
- 24 Hour on Station
- 1200 NM range/ 60K ft altitude
- 10 KVA Payload Power

FUTURE:
- 3000 lb Payload
- 20 Hour on Station
- 1200 NM range/ 60K ft altitude hold
- 25 KVA (Near-term); 75 KVA (Far-term)

AE3007 ENGINE - GLOBAL HAWK PROPULSION

Rolls-Royce
Tactical Aircraft

Tactical Aircraft with 100-500 kW Power Requirements

Technologies:
- High Temperature Power System Components
- High Temperature Thermal Control Systems
- Energy Storage
- Integrated Engine / Power Extraction
- EMI Immunity
- Smart Power: Prognostics & Health Management
- Lightweight Compact Power Conditioning
- Electrochemical Power Generation
Li Ion Battery

• Lithium Ion Technology Developed Under Joint AFRL/NASA/JPL Program Transitioned to B-2, F-35, and Mars Rovers

• B-2 Batteries >350 Flight Test Hours Logged

• Mars Rover Batteries Fully Operational After 7 Month Cruise Through Space
Revolutionary Capacitor Development

- Low cost DLC thin film in-house process scale-up (Mar 01); Commercialization by FY04 (energy density)

- Enables DEW - - 2X increase in energy density
- Reduces size, weight & volume

<table>
<thead>
<tr>
<th>DIELECTRIC</th>
<th>DIELECTRIC CONSTANT</th>
<th>FILM THICKNESS</th>
<th>BREAKDOWN STRENGTH</th>
<th>UPPER-LIMIT TEMPERATURE</th>
<th>ENERGY DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLYCARBONATE</td>
<td>3.2</td>
<td>3 m</td>
<td>5 KV/mil</td>
<td>125°C</td>
<td>> 1.0 J/g</td>
</tr>
<tr>
<td>FLUORENE POLYESTER (FPE)</td>
<td>3.4</td>
<td>3 m</td>
<td>10 KV/mil</td>
<td>250°C</td>
<td>> 2.0 J/g</td>
</tr>
<tr>
<td>DIAMOND-LIKE CARBON (DLC)</td>
<td>3.5</td>
<td>0.5 m</td>
<td>25 KV/mil</td>
<td>250°C</td>
<td>> 4.0 J/g</td>
</tr>
</tbody>
</table>
Large Platforms

Large Platforms with 250 kW - 2+ MW Power Requirements

Technologies:
- MW-MMW Power Generation
- Integrated Engine / Power Extraction
- High Temperature Power System Components
- High Temperature Thermal Control Systems
- EMI Immunity
- Smart Power: Prognostics & Health Management
- Lightweight Compact Power Conditioning
- Energy Storage
- Electrochemical Power Generation
Optically Triggered SiC Switch

TECHNICAL CHALLENGES:
Device design is foundational.
Carrier transport and optical generation not quantified.

APPROACH:
• Develop key fabrication components
 - SiC photo-transistors (600V, 60-150A)
 - SiC “PGBT”-based switches
 - 2-D modeling in parallel with fab.
• Demo devices in electric actuator drive controllers or I-H motor drive

OBJECTIVE & PAYOFF:
Reduce actuator weight while providing photonic switching device to satisfy the robust actuator switching requirements for an EMI invulnerable FBL/PBW airframe concept.
Directed Energy Concepts with 250 kW - MMW Power Requirements

Technologies:
- Integrated Engine / Power Extraction
- MW-MMW Power Generation
- Active High Flux Thermal Control System
- Lightweight Compact Power Conditioning
- Energy Storage
- Pulse Power Components
- EMI Immunity
- High Temp. Power System Comp.
- High Temperature Thermal Control Systems
- Smart Power: Prognostics & Health Management
Multimegawatt Electric Power System

1-5 MW Capability Needed for Multiple Applications

Directed Energy Weapons

Army Future Combat Systems Electric Weapons

Navy Distributed Power

E-10A
The overall efficiency of solid state lasers varies from 10% to 30%, thus large amounts of waste heat must be managed.

- As an example, for a 10% efficient laser:

Output:
- Engine: 1.177 MW
- Generator: 1 MW
- Diodes: 500 kW
- Slab: 100 kW

Laser:
- 1076 kW

Waste Heat:
- Diode output, lifetime strongly impacted by operating temperature

Laser Beam

Diode Waste Heat

Slab Waste Heat

176 kW 20 W/cm²
500 kW 400 W/cm²
400 kW 200 W/cm²
High Power for Aircraft Initiative

Five Power Regimes from Watts to Multi-Megawatts

Meet Today’s and Tomorrow’s Need for Unprecedented Power and Thermal Management

System Approach to Integrated and Optimized Weapons Power and Thermal Management

Powering the United States Air Force!