PHOTOVOLTAIC INDUCED GRATING INSTABILITIES (Preprint)
D.R. Evans, G. Cook, J. L. Carns, and M. A. Saleh,

Agile Filters Project, Exploratory Development
Hardened Materials Branch

FEBRUARY 2006
NOTICE

Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Wright Site (AFRL/WS) Public Affairs Office (PAO) and is releasable to the National Technical Information Service (NTIS). It will be available to the general public, including foreign nationals.

THIS TECHNICAL REPORT IS APPROVED FOR PUBLICATION.

*//signature// //signature//
DEAN EVANS, Ph.D. MARK S. FORTE, Acting Chief
Agile Filters Project Hardened Materials Branch
Exploratory Development Survivability and Sensor Materials Division
Hardened Materials Branch

//signature//
TIM J. SCHUMACHER, Chief
Survivability and Sensor Materials Division
Materials and Manufacturing Directorate

This report is published in the interest of scientific and technical information exchange and its publication does not constitute the Government’s approval or disapproval of its ideas or findings.

Disseminated copies will show “//signature//” stamped or typed above the signature blocks.
4. TITLE AND SUBTITLE
PHOTOVOLTAIC INDUCED GRATING INSTABILITIES (Preprint)

6. AUTHOR(S)
D.R. Evans, (Agile Filters Project, Exploratory Development)
G. Cook, J. L. Carns, and M. A. Saleh (Anteon Corp.)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Agile Filters Project, Exploratory Development
Hardened Materials Branch, Survivability and Sensor Materials Division
Materials and Manufacturing Directorate, Air Force Research Laboratory
Wright-Patterson Air Force Base, OH 45433-7750
Air Force Materiel Command, United States Air Force

Anteon Corp.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory
Materials and Manufacturing Directorate
Wright-Patterson Air Force Base, OH 45433-7750
Air Force Materiel Command
United States Air Force

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES
The U.S. Government is joint author of this work and has the right to use, modify, reproduce, release, perform, display, or disclose the work. PAO case number AFRL/WS 06-0312, 07 February 2006. Submitted to the proceedings of the Third International Photorefractive Workshop, sponsored by AFRL/MLPJ. This is the best quality available.

14. ABSTRACT
- The PV field is responsible for undesirable grating recording noise, or spikes in transmitted power.
- Corresponding spikes in the transmission of light incident at the Bragg angle indicate the grating is partially destroyed rather than momentarily dephased.
- The noise is most likely due to a sudden strong current and/or avalanche current flow through the bulk crystal, such that the E_{∞} is randomized and the grating is partially destroyed.

15. SUBJECT TERMS
Photovoltaic Induced Grating, Two-Beam Coupling, Contra-Directional Coupling
Photovoltaic Induced Grating Instabilities

J. L. Cams, M. A. Saleh
G. Cook, D. R. Evans
Air Force Research Laboratory,
Materials and Manufacturing Directorate
Wright-Patterson Air Force Base, Ohio

Acknowledgement: S. A. Basun
A. F. Ioffe Physico-Technical Institute, St. Petersburg, Russia

Outline

• Motivation

• Experimental Setup

• Experimental Results in Congruent LiNbO₃:Fe

• Conclusions
Motivation

Evans et al., "Understanding and eliminating photovoltaic induced instabilities in contra-directional two-beam coupling in photorefractive LiNbO$_3$:Fe," Optical Materials, in press.

Two-beam coupling in LiNbO$_3$:Fe

Contra-Directional Coupling:
- Good spatial overlap of focused beams
- Decreased recording time
- Minimizes the grating spacing
- Maximizes the diffusion field
- Needs high trap density

\[m \Lambda = 2 \delta \sin \theta \]

\[E_{D} = \frac{2 \pi k_{B} T}{\epsilon \Lambda} \quad \Lambda_{opt} = 2 \pi \frac{k_{B} T}{\epsilon^{2} N_{\Lambda}} \]

The space charge field is increased because \(\Lambda \) approaches \(\Lambda_{opt} \) in LiNbO$_3$.

\[E_{0} = -\left(E_{0} + i E_{d} + E_{p} \right) m(z) \]

\[1 + \frac{E_{0}}{E_{q}} - i \frac{E_{0}}{E_{q}} N_{d} E_{pf} \]

Time (s)

Power (arb. units)
Effect of two-beam coupling in Region B

Two-beam coupling noise

The sudden burst of light through the crystal indicates almost complete "loss" of the grating

This could be due to:

1) a sudden strong current and/or avalanche current flow through the bulk crystal, such that the E_{ac} is randomized and the grating is partially destroyed

OR 2) the build-up of E_o causes the grating to become dephased

OR 3) momentary partial domain reversal - No change in gain direction
Experimental Setup

- Measuring the light transmitted through the crystal for both lines.
- Low power at Bragg angle to prevent an additional grating.
- A filter on Detector B blocks any scattered light from the 532 nm line.

Results
Experimental Setup
(Cylindrical Lens)

If the grating is dephased, the Bragg angle will change and there will be a shift in the reflected light.

Results
(Cylindrical Lens)

![Graph showing power vs. time for Detector A and Detector B]
Conclusion

- The PV field is responsible for undesirable grating recording noise, or spikes in transmitted power.

- Corresponding spikes in the transmission of light incident at the Bragg angle indicate the grating is partially destroyed rather than momentarily dephased.

- The noise is most likely due to a sudden strong current and/or avalanche current flow through the bulk crystal, such that the E_{sc} is randomized and the grating is partially destroyed.

Evans et al., "Understanding and eliminating photovoltaic induced instabilities in contra-directional two-beam coupling in photorefractive LiNbO$_3$:Fe," Optical Materials, in press.