Award Number: W81XWH-05-1-0505

TITLE: Chemosensitization of Breast Cancer Cells to Chemotherapeutic Agents by 3,3'-Diindolylmethane (DIM)

PRINCIPAL INVESTIGATOR: KM Wahidur Rahman, Ph.D.

CONTRACTING ORGANIZATION: Wayne State University
Detroit, MI 48201-1928

REPORT DATE: August 2007

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Title: Chemosensitization of Breast Cancer Cells to Chemotherapeutic Agents by 3,3'-Diindolylmethane (DIM)

Author: KM Wahidur Rahman, Ph.D.

E-Mail: kmrahman@med.wayne.edu

Performing Organization: Wayne State University

DISTRIBUTION / AVAILABILITY STATEMENT: Approved for Public Release; Distribution Unlimited

ABSTRACT:
Abstract on next page.
Constitutive activation of Akt or NF-κB has been reported to play a role in de novo resistance of cancer cells to chemotherapeutic agents, which is a major cause of treatment failure in cancer chemotherapy. Previous studies have shown that 3, 3’-diindolylmethane (DIM), a major in vivo acid-catalyzed condensation product of indole-3-carbinol (I3C), is a potent inducer of apoptosis, inhibitor of tumor angiogenesis and inactivator of Akt/NF-κB signaling in breast cancer cells. However, little is known regarding the inactivation of Akt/NF-κB that leads to chemosensitization of breast cancer cells to chemotherapeutic agents such as Taxotere. Therefore, we examined whether the inactivation Akt/NF-κB signaling caused by B-DIM could sensitize breast cancer cells to chemotherapeutic agents both in vitro as well as in vivo. MDA-MB-231 cells were simultaneously treated with 15 to 45 µM B-DIM and 0.5 to 1.0 nM Taxotere for 24 to 72 hours. Cell growth inhibition assay, apoptosis assay, EMSA, and Western blotting were performed. The combination treatment of 30 µM B-DIM with 1.0 nM Taxotere elicited significantly greater inhibition of cell growth compared with either agent alone. The combination treatment induced greater apoptosis in MDA-MB-231 cells compared with single agents. Moreover, we found that NF-κB activity was significantly decreased in cells treated with B-DIM and Taxotere. We also have tested our hypothesis using transfection studies followed by combination treatment with B-DIM/Taxotere and found that combination treatment significantly inhibited cell growth and induced apoptosis in MDA-MB-231 breast cancer cells mediated by the inactivation of NF-κB, a specific target in vitro and in vivo. These results were also supported by animal experiments which clearly showed that B-DIM sensitized the breast tumors to Taxotere which resulted in greater anti-tumor activity mediated by the inhibition of Akt and NF-κB. Collectively, our results clearly suggest that inhibition of Akt/NF-κB signaling by B-DIM leads to chemosensitization of breast cancer cells to Taxotere, which may contribute to increased growth inhibition and apoptosis in breast cancer cells. The data obtained from our studies could be a novel breakthrough in cancer therapeutics that use a non-toxic agents such as B-DIM in combination with other conventional therapeutic agents such as Taxotere.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>5</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>13</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>13</td>
</tr>
<tr>
<td>Conclusions</td>
<td>14</td>
</tr>
<tr>
<td>References</td>
<td>14</td>
</tr>
<tr>
<td>Appendices</td>
<td>17</td>
</tr>
</tbody>
</table>
Introduction

Carcinoma of the breast is the most common cancer in American women and remains the second leading cause of cancer related female deaths in the USA (1). Currently, breast cancer is treated with surgery, chemotherapy, radiation therapy or combined modalities with remarkable success. In addition, patients with breast cancer or pre-neoplastic lesions are also treated with hormonal therapy either for treatment or prevention purposes. Although these treatment modalities are successful, a significant number of patients either do not respond to commonly used chemotherapeutic agents or have tumor recurrence during therapy and develop metastasis for which there is no curative therapy. The failure in the treatment is largely contributed to de novo (intrinsic) chemo-resistance and/or acquired chemo-resistance by tumor cells (2, 3). Therefore, this study was designed to eliminate chemo-resistant pathways of tumor cells prior to therapy with a conventional therapeutic agent in order to achieve optimal results.

Nuclear factor kappa B (NF-κB) is a key regulator and transcription factor of genes which mediate apoptotic signaling pathways; it also plays critical roles in cell proliferation, cell adhesion, inflammation, differentiation, angiogenesis, and tumor cell invasion (3-8). It has been reported that activated NF-κB blocks cellular apoptosis in several different cell types (6-10) and that the inactivation of NF-κB makes cells more sensitive to apoptosis-inducing agents (11). Studies have shown that the activation of Akt and NF-κB is responsible for the resistance of cancer cells to chemotherapeutic agents and contributes to treatment failure in cancer chemotherapy (2, 3, 12-18). Since NF-κB plays important roles in many cellular processes, research on the interaction between NF-κB activation and other cell signal transduction pathways, including the PI3K/Akt pathway, has received increased attention in recent years. Recently, constitutive activation of NF-κB was found in human breast cancer cells, possibly due to the activation of different signaling pathways, such as PI3K/Akt and MAP kinase, which are also known to increase the expression of Bcl-2/Bcl-XL and other NF-κB targeted genes (2, 3, 12-21). It has also been shown that expression of anti-apoptotic protein Bcl-2/Bcl-XL is associated with cancer cell viability and drug resistance (19); unfortunately, the clinical importance of NF-κB expression remains unclear in patients with breast cancer. We, therefore, hypothesize that the down-regulation of Akt/NF-κB signaling in breast cancer cells could be a novel therapeutic approach for achieving optimal results in patients with chemo-resistant breast cancer. However, very little is known regarding the inactivation of Akt/NF-κB that leads to sensitization of breast cancers to conventional therapeutic agent such as Taxotere.

Several studies have shown that inhibition of Akt activation by PI3-K inhibitor (LY294002 or Wortmannin) sensitizes cancer cells, particularly breast cancer cells, to undergo apoptotic cell death induced by Adriamycin and Taxotere (2, 22, 23). These results strongly suggest that the inactivation of the Akt pathway, which in turn will inactivate the NF-κB pathway, will also sensitize breast cancer cells to Adriamycin as well as Taxotere. Recent studies from our laboratory have indicated that inactivation of NF-κB by pre-treatment with genistein leads to chemo-sensitization of pancreatic cancer cells to apoptosis induced by docetaxel and cisplatin (24). Another study also indicated that inactivation of NF-κB can directly chemo-sensitize pancreatic cancer cells to gemcitabine (25). A recent study has indicated that DIM and Paclitaxel can promote apoptosis in MDA-MB-435eb1 (Her2/Neu positive, ER-ve) human breast cancer cells (26). Studies from our laboratory and others have shown that B-DIM is a potent inhibitor of cell growth, inducer of apoptotic cell death and inhibitor of tumor angiogenesis, which is believed to be partly due to inactivation of Akt and NF-κB signaling pathways in several cancer cells (6, 7, 27-33). More recently, we found that B-DIM can inhibit Akt and NF-κB in breast cancer cells, suggesting that DIM could also sensitize the breast cancer cells to Taxotere (7). Our recent results also show that the inactivation of NF-κB down-
regulates its transcriptional downstream signaling molecules such as Bcl-2, Bcl-XL and survivin (6-8, 34, 35) leading us to believe that B-DIM not only inactivates NF-κB but also down regulates its important regulators. This effect of B-DIM could, in turn, sensitize chemo-resistance breast cancer cells to Taxotere-induced killing. In this study, we tested our hypothesis using MDA-MB-231 breast cancer cell line (ER-ve) in vitro and in animal tumors in vivo (MDA-MB-231 induced tumors in SCID mouse) exposed to B-DIM alone, Taxotere alone or their combinations. Because we strongly believe that the inactivation of NF-κB pathways may be successfully exploited for the development of novel therapeutic strategies for estrogen independent breast cancer using B-DIM and in combination with Taxotere. In this study we specifically investigated how B-DIM could sensitize breast cancer cells to conventional therapeutic agents such as Taxotere. We found that B-DIM could sensitize breast tumor cells to Taxotere, resulting in greater anti-tumor activity by inactivating Akt, NF-κB and other targeted genes. Our results suggest that B-DIM is an effective agent in sensitizing breast cancer cells to Taxotere, which is likely, be a novel breakthrough for devising optimal therapies for breast cancer.

Body Report

The original statement of work in the proposal is listed below:

Task 1: To study the effect of 3, 3'-Diindolylmethane (DIM) on the inactivation of Akt/NF-κB signaling that may lead to the induction of apoptosis in breast cancer cells.

a. We will investigate the NF-κB DNA-binding activity, cellular localization (by confocal microscopy), protein levels and the phosphorylation/de-phosphorylation of IκB in breast cancer cells by Western blot and phosphorylation studies (Months 1-3).

b. We will also conduct apoptosis assays (ELISA, PARP, Caspase activation) and measure Akt (Western blot) and NF-κB (EMSA) under all conditions in order to correlate the degree of chemosensitization with inactivation of Akt/NF-κB (Months 1-3).

Task 2: To determine whether and how inactivation of Akt and NF-κB by DIM leads to chemosensitization of breast cancer cells to Adriamycin and Taxotere.

a. We will conduct experiments by EMSA in cells transiently transfected with dominant negative IκB cDNA, NF-κB p65 cDNA, NF-κB-LUC, NF-κB mutant-LUC, cultured in the presence and absence of DIM, +/- Adriamycin and Taxotere to fully dissect the molecular pathways by which DIM elicits its effects on breast cancer cells (Months 3-6).

b. We will investigate the molecular regulation of NF-κB through MEKK, IKK and NIK pathways by Western blot analysis and transfection studies in breast cancer cells transfected with or without constitutively activated Akt or dominant negative Akt in the presence and absence of DIM, +/- Adriamycin and Taxotere (Months 4-6).

c. We will incubate breast cancer cells with DIM and subsequently treat with Adriamycin or Taxotere and the cells will be harvested for measuring cell growth inhibition by MTT assay and for measurement of apoptotic cell death by ELISA and CPP32 assays (Months 4-7).
Task 3: To investigate whether MDA-MB-231 breast cancer cells grown in SCID model require both expression of Akt and NF-κB, and to test whether DIM could sensitize the breast tumor to Adriamycin and Taxotere resulting in greater anti-tumor activity.

a. We will test whether or not DIM could sensitize the breast tumor to chemotherapeutic agents induced by MDA-MB-231 breast cancer cells grown in SCID model (Months 5-10).

b. We will also conduct apoptosis assays (ELISA, PARP, Caspase activation) and measure Akt (Western blot) and NF-κB (EMSA) under these conditions in order to correlate the degree of chemosensitization with inactivation of Akt/NF-κB (Months 5-11).

c. Frozen and paraffin sections of the s.c. grown tumors collected from the experiments will be used for molecular, histological and immunohistochemistry analysis for Akt, NF-κB and its upstream genes such as MEKK1, MEK, NIK and IKK as well as NF-κB downstream genes (Months 5-12).

d. We will summarize all the data, complete writing of all manuscripts, and submit the final report to DOD (Months 12).

We are now reporting the research accomplishments associated with task 1, 2 and 3 outlined in the statement of work.

MATERIAL AND METHODS:

Cell culture and reagents

MDA-MB-231 human breast cancer cells (invasive and ER – ve) (ATCC, Manassas, VA) were cultured in DMEM/F12 medium (Invitrogen, Carlsbad, CA) supplemented with 10% FBS and 1% penicillin/streptomycin in a 5% CO₂ atmosphere at 37°C. DIM (Bio Response, Boulder, CO; commonly known as BR-DIM and hereafter termed as B-DIM) was dissolved in DMSO to make 20 mM stock solution and was added directly to the media at different concentration. Taxotere (Aventis Pharmaceuticals, Bridgewater, NJ) was dissolved in DMSO to make a 4 µM stock solution.

Cell growth inhibition by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay

MDA-MB-231 cells were seeded in 96-well culture dishes. After 24 hours of incubation MDA-MB-231 were treated with 15, 30 or 45 µM B-DIM and then exposed to chemotherapeutic agents (0.5, 0.75 or 1.0 nM Taxotere) for 24, 48 or 72 hours. For single-agent treatment, MDA-MB-231 cells were treated with B-DIM (15, 30, or 45 µM) and/or Taxotere (0.5, 0.75 or 1.0 nM) alone for 24 to 72 hours. After treatment, cancer cells were incubated with 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT; 0.5 mg/mL, Sigma, St. Louis, MO) at 37°C for 2 hours and then with isopropyl alcohol at room temperature for 1 hour. The spectrophotometric absorbance of the samples was determined by ULTRA Multifunctional Microplate Reader (TECAN, Durham, NC) at 595 nm.

Histone/DNA ELISA for detecting apoptosis

Cell Apoptosis ELISA Detection Kit (Roche, Palo Alto, CA) was used to detect apoptosis according to the manufacturer’s protocol. Briefly, MDA-MB-231 cells were treated with B-DIM and/or chemotherapeutic agents (Taxotere) as described above. After treatment, the cytoplasmic
histone/DNA fragments from cancer cells with different treatments were extracted and bound to immobilized anti-histone antibody. Subsequently, the peroxidase-conjugated anti-DNA antibody was used for the detection of immobilized histone/DNA fragments. After addition of substrate for peroxidase, the spectrophotometric absorbance of the samples was determined by ULTRA Multifunctional Microplate Reader (TECAN) at 405 nm.

NF-κB DNA-binding activity measurement

MDA-MB-231 cells were plated at a density of 1x10^5 cells in 100 mm dishes and incubated. After 24 hours, the cells were treated with a combination of B-DIM and chemotherapeutic agents as described above. For single-agent treatment, cancer cells were treated with B-DIM (30 or 45 µM) and 1 nM Taxotere alone for 72 hours. Following treatment, nuclear protein in the cells was extracted as described previously (6, 7). Using randomly selected frozen tumor tissue, nuclear proteins were also extracted as described previously (8). For electrophoretic mobility shift assay (EMSA), 10 µg of nuclear protein was assembled with 5x Gel Shift Binding buffer (20% glycerol, 5 mmol/L MgCl₂, 2.5 mmol/L EDTA, 2.5 mmol/L DTT, 250 mmol/L NaCl, 50 mmol/L Tris-HCl), 0.25 mg/mL poly(dI)-poly(dC), and IRDye 700-labeled NF-κB oligonucleotide (LI-COR, Lincoln, NE). After incubation at room temperature for 30 minutes, the samples were loaded on a pre-run 8% polyacrylamide gel and electrophoresis was continued at 30 mA for 90 minutes. The signal was then detected and quantified with Odyssey infrared imaging system (LI-COR). For loading control, 10 µg of nuclear proteins from each sample was subjected to Western blot analysis for retinoblastoma protein, which showed no alternation after B-DIM or Taxotere treatment.

NF-κB p65 cDNA transfection

MDA-MB-231 cells were seeded in a six-well plate (1.5 x10^5 cells per well) and incubated at 37°C for 24 hours. Then, the cells were transfected with NF-κB p65 cDNA or control empty vector by ExGen 500 (Fermentas, Hanover, MD). After 7 hours, the p65 cDNA-transfected cells were treated with a combination of B-DIM and chemotherapeutic agents as described above. Then, the cytoplasmic proteins and nuclear proteins were extracted. NF-κB p65 protein expression was detected by Western blot analysis and NF-κB DNA-binding activity was measured by EMSA. Also, the apoptotic cells in the p65 cDNA-transfected cells with different treatments were detected using Cell Apoptosis ELISA Detection Kit (Roche).

Western blot analysis

Twenty-five micrograms of cell extract from p65 cDNA transfection or 50 µg of tumor lysate from animal experiments was subjected to SDS-PAGE and electrophoretically transferred to a nitrocellulose membrane. Membranes were then incubated with monoclonal anti-phospho-Akt Ser473 (1:1,000, Cell Signaling, Beverly, MA), Akt (1:500, Santa Cruz Biotech, Santa Cruz, CA), polyclonal anti-NF-κB p65 (1:1,000, Upstate, Lake Placid, NY), anti-survivin (1:200, Santa Cruz, Santa Cruz, CA), anti-Bcl-XL (1:200, Santa Cruz), anti-BCL2 (1:5,000, Biomol, Plymouth Meeting, PA), or anti–β-actin (1:5,000, Sigma, St. Louis, MO) antibodies, washed with Tween 20-TBS, and incubated with secondary antibody conjugated with peroxidase. The signal was then detected using the chemiluminescent detection system (Pierce, Rockford, IL).

Animal studies

Female homozygous ICR scid/scid mice, ages 4 weeks, were purchased from Taconic Farms (Germantown, NY). The mice were maintained according to the NIH standards established in the Guidelines for the Care and Use of Experimental Animals. All experimental protocols were approved by the Animal Investigation Committee of Wayne State University (Detroit, MI). To initiate the
xenografts, 5x10^6 MDA-MB-231 cells (in serum free medium) were injected subcutaneously (sc) bilaterally in the flank areas of two SCID mice. Animals were observed for development of sc tumors at the sites of injection (usually in 2-3 weeks). When the tumor size reached 1500mg, animals were euthenized and the tumors were removed and dissected into small pieces (~30 mg). Small pieces of tumors were then transplanted sc into right and left flanks of a new group of SCID mice using 12-gauge trocar. Animals were examined three times per week for the development of palpable tumors (usually in 2 weeks). Once palpable tumors developed (0.5 x 0.5 cm, 63 mg), animals were randomly divided into 4 groups of 10 animals in each group. Group-I was assigned as control and group-II mice were given B-DIM by oral gavage (3.5 mg/day/animal by oral gavage). In addition, the mice from group-III received three doses of Taxotere (5 mg/kg, i.v.) every 72 hours after 24 hours of B-DIM gavaging (36, 37). Group-IV was exposed to B-DIM and also treated with Taxotere as shown for groups-II and III. The dose of B-DIM selected for this experiment was based on our previous studies that showed anti-tumor activity (7, 35, 38-41). Sesame seed oil show as safe by other researchers, was used to facilitate gavage and avoid irritation of the esophagus (42). The control mice received only sesame seed oil without B-DIM. Mice from all experimental groups were sacrificed three weeks after the start of all treatments and the tumors were harvested from each animal and processed for preparation of nuclear proteins as well as total protein for Western blot analysis. The activity of NF-κB in tumor cells was measured by EMSA and the poly (ADP-ribose) polymerase (PARP) cleavage in tumor cells was assessed by Western blot analysis. The volume of the tumor in each group was determined by weekly caliper measurement according to the formula \(ab^{3/2}\) where \(a = \) length and \(b = \) shortest measurement.

Tissue collection, fixation, and H&E staining

Freshly harvested tumors grown were fixed in 10% buffered formalin for 48 hours and then embedded, and sectioned. Samples were then washed with tap water and soaked in a graded series of 50%, 60%, 70%, 80%, and 90% ethanol for 30 minutes and then in 90% and 100% ethanol for 1 hour. They were then held in a solution of 100% ethanol and xylene at a 1:1 ratio for 30 minutes before being embedded in paraffin and held at 60°C for 1 hour to make paraffin blocks. Transverse sections (5 µm) were taken from the blocks and prepared for histochemical staining. H&E staining was used for histologic observation.

RESULTS:

B-DIM potentiated breast cancer cell growth inhibition caused by Taxotere

MDA-MB-231 breast cancer cells were treated with B-DIM, Taxotere, or B-DIM in combination with lower doses of Taxotere. The cell viability was determined by MTT assay and the effect of B-DIM or Taxotere on the growth of different cancer cells is shown in Fig. 1. We have tested several doses of B-DIM and Taxotere with different time points and we found that treatment of cells with B-DIM or Taxotere alone for 72 hours commonly caused 30-40% growth inhibition in cancer cells using the doses tested (Fig. 1A and 1B). However, B-DIM in combination with lower doses of Taxotere resulted in ~50% growth inhibition in this cancer cells, suggesting the greater inhibitory effect of combination treatment (Fig. 1C). These results showed that combination of B-DIM along with lower doses of Taxotere elicited significantly greater inhibition of cancer cell growth compared with either agent alone.
B-DIM potentiated breast cancer cell growth inhibition caused by Taxotere

B-DIM in combination with Taxotere significantly inhibited cell proliferation in MDA-MB-231 breast cancer cells. For single-agent treatment, breast cancer cells were treated with B-DIM (15, 30, or 45 μM), Taxotere (0.5, 0.75 or 1.0 nM) alone for 72 hours (Fig 1A and 1B). For combination, breast cancer cells were treated with 30 μM DIM and then exposed to 1.0 nM Taxotere for 72 hours (Fig 1C). Cell viability was tested by MTT assay. The data were obtained from three individual experiments. *, P<0.05 compared with control.

B-DIM sensitized breast cancer cells to apoptosis induced by Taxotere

By apoptotic cell death ELISA analysis, we observed similar results showing that both B-DIM and Taxotere alone induced apoptosis in breast cancer cells tested (Fig. 2A). Moreover, we found that 30 μM B-DIM combined with lower doses of Taxotere induced greater apoptosis in the cancer cells compared with single-agent treatment (Fig. 2A). We also observed that the B-DIM and Taxotere combination treatment in vitro produced PARP cleavages compared with monotherapy (Fig. 2B), suggesting greater apoptosis induced by the combination treatment. Using Western blot analysis, we found that B-DIM alone or in combination with chemotherapeutic agents down-regulated the expression of p-Akt, survivin and Bcl-XL in NF-κB p65 cDNA-transfected or parental breast cancer cells (Fig. 3). These results are consistent with the cell growth inhibition observed by MTT assay, suggesting that greater cell growth inhibition resulting from the combination treatment may be mediated through the induction of greater apoptosis in breast cancer cells.

Fig 1: B-DIM potentiated breast cancer cell growth inhibition caused by Taxotere. B-DIM in combination with Taxotere significantly inhibited cell proliferation in MDA-MB-231 breast cancer cells. For single-agent treatment, breast cancer cells were treated with B-DIM (15, 30, or 45 μM), Taxotere (0.5, 0.75 or 1.0 nM) alone for 72 hours (Fig 1A and 1B). For combination, breast cancer cells were treated with 30 μM DIM and then exposed to 1.0 nM Taxotere for 72 hours (Fig 1C). Cell viability was tested by MTT assay. The data were obtained from three individual experiments. *, P<0.05 compared with control.

Fig 2: Induction of apoptosis in breast cancer cells tested by ELISA and PARP cleavage assay. MDA-MB-231 breast cancer cells were treated 30 μM B-DIM and then simultaneously exposed to 1.0 nM Taxotere for 72 hours (Fig 2A). PARP cleavage assay showed that combination treatment with B-DIM and Taxotere induced significantly greater apoptosis in vitro (Fig 2B). *, P<0.05 compared with control.
Fig 3: Western blot analysis for Akt, p-Akt, survivin and Bcl-xL in NF-κB p65 cDNA transfected and parental MDA-MB-231 breast cancer cells (Fig 3A). (Control, parental; p65 cDNA, p65 cDNA transfection; B-DIM 30 µM, 30 µmol/L B-DIM; p65 cDNA + B-DIM 30 µM, p65 cDNA transfection and 30 µmol/L B-DIM; Tax 1 nM, 1 nmol/L Taxotere; p65 cDNA + Tax 1 nM, p65 cDNA transfection and 1 nmol/L Taxotere; B-DIM + Tax, 30 µmol/L B-DIM + 1nmol/L Taxotere; p65 cDNA + B-DIM + Tax, p65 cDNA transfection + 30 µmol/L B-DIM + 1 nmol/L Taxotere). The signal of each protein expression was quantified with Gel Doc 1000 image system (Bio-Rad, Hercules, CA).

Effect of B-DIM and Taxotere on NF-κB p65 expression and NF-κB DNA-binding activity

Nuclear proteins from cultured cancer cells treated with Taxotere were subjected to analysis for NF-κB DNA-binding activity as measured by EMSA. The results showed that 2 nM Taxotere treatment for 2 hours significantly induced NF-κB DNA-binding activity in cancer cells compared with the untreated cells (Data not shown) whereas 1 nM Taxotere treatment for 72 hours did not change NF-κB DNA-binding activity in cancer cells compared with the untreated cells (Fig 4A). Importantly, NF-κB p65 cDNA transfection enhanced the NF-κB DNA-binding activity whereas B-DIM alone or combination with Taxotere abrogated the expression and activation of NF-κB p65 (Fig. 4A). These results clearly suggest that B-DIM in combination with Taxotere inactivated the expression and activity of NF-κB through decreasing the expression and activation of NF-κB p65. Furthermore, it has been indicated that inhibition of NF-κB potentiated the anti-cancer effect of chemotherapeutic agents (43). In the present study, we found that NF-κB p65 cDNA transfection enhanced the expression of nuclear and cytoplasmic NF-κB p65 in breast cancer cells while B-DIM in combination with Taxotere significantly abrogated this expression which was measured by Western blot analysis (Fig 4B), suggesting that B-DIM and Taxotere treatment inactivates NF-κB p65 expression, which may contribute to increased growth inhibition and apoptosis in breast cancer cells.
Fig 4A and 4B: NF-κB DNA-binding activity tested by EMSA, Western blot analysis for nuclear and cytoplasmic and the effect of p65 cDNA transfection on the induction of apoptosis in breast cancer cells. After 7 hours, the p65 cDNA-transfected breast cancer cells were treated with combination of B-DIM, 30 µmol/L and Taxotere, 1 nmol/L. Then, the nuclear proteins were extracted, and NF-κB DNA-binding activity was measured by EMSA (Control, parental; p65 cDNA, p65 cDNA transfection; B-DIM 30 µM, 30 µmol/L B-DIM; p65 cDNA + B-DIM 30µM, p65 cDNA transfection and 30 µmol/L B-DIM; Tax 1 nM, 1 nmol/L Taxotere; p65 cDNA + Tax 1 nM, p65 cDNA transfection and 1 nmol/L Taxotere; B-DIM + Tax, 30 µmol/L B-DIM + 1nmol/L Taxotere; p65 cDNA + B-DIM + Tax, p65 cDNA transfection + 30 µmol/L B-DIM + 1 nmol/L Taxotere) (Fig 4A). Western blot analysis for nuclear and cytoplasmic NF-κB p65 in p65 cDNA–transfected breast cancer cells (Control, parental; p65 cDNA, p65 cDNA transfection; B-DIM 30 µM, 30 µmol/L B-DIM; p65 cDNA + B-DIM 30µM, p65 cDNA transfection and 30 µmol/L B-DIM; Tax 1 nM, 1 nmol/L Taxotere; p65 cDNA + Tax 1 nM, p65 cDNA transfection and 1 nmol/L Taxotere; B-DIM + Tax, 30 µmol/L B-DIM + 1nmol/L Taxotere; p65 cDNA + B-DIM + Tax, p65 cDNA transfection + 30 µmol/L B-DIM + 1 nmol/L Taxotere) (Fig 4B). The signal of each protein expression was quantified with Gel Doc 1000 image system (Bio-Rad, Hercules, CA). The data were obtained from three individual experiments. *, P<0.05 compared with control.

Apoptosis-enhancing effect of B-DIM is mediated through the NF-κB pathway

We transfected NF-κB p65 cDNA into MDA-MB-231 cells, treated the transfected cells with B-DIM or Taxotere and detected apoptosis. We found that p65 cDNA transfection inhibited apoptosis in B-DIM-treated and untreated breast cancer cells (Fig 4C). In contrast, B-DIM combined with Taxotere showed a greater inhibitory effect on the induction of apoptosis in p65 cDNA-transfected breast cancer cells compared with Taxotere monotherapy (Fig 4C). These results provide mechanistic support in favor of our claim that the apoptosis-inducing effect of Taxotere is enhanced by B-DIM and that it is partly mediated through the NF-κB pathway.
Fig 4C: The p65 cDNA-transfected cells were treated with combination of B-DIM and Taxotere. In p65 cDNA transfected cells with different treatments, the apoptotic cells were detected using Cell Apoptosis ELISA Detection Kit (Roche) (Fig 4C) (Control, parental; p65 cDNA, p65 cDNA transfection; B-DIM 30 µM, 30 µmol/L, B-DIM; p65 cDNA + B-DIM 30 µM, p65 cDNA transfection and 30 µmol/L B-DIM; Tax 1 nM, 1 nmol/L Taxotere; p65 cDNA + Tax 1 nM, p65 cDNA transfection and 1 nmol/L Taxotere; B-DIM + Tax, 30 µmol/L B-DIM + 1nmol/L Taxotere; p65 cDNA + B-DIM + Tax, p65 cDNA transfection + 30 µmol/L B-DIM + 1 nmol/L Taxotere). The data were obtained from three individual experiments. *, P<0.05 compared with control.

Inhibition of tumor growth in vivo by B-DIM alone or in combination with Taxotere

To test whether B-DIM has any anti-tumor effect in vivo, we conducted an animal experiment using a xenograft model of breast cancer. Under our experimental conditions described earlier, we found that B-DIM significantly inhibited MDA-MB-231 tumor growth and potentiated MDA-MB-231 tumor growth inhibition induced by Taxotere, demonstrating an enhanced inhibitory effect of B-DIM/Taxotere combination treatment on the in vivo model of breast cancer (Fig 5A). H&E histology evaluation showed the maximum degree of necrosis in B-DIM/Taxotere combination treatment group (Fig. 5B). We also observed that the B-DIM and Taxotere combination treatment in vivo produced more PARP cleavages compared with monotherapy (Fig. 5C), suggesting greater apoptosis induced by the combination treatment in vivo. The body weight of mice in each group did not show any significant difference, suggesting no apparent toxicity due to B-DIM and Taxotere treatment. To explore the molecular mechanism by which B-DIM potentiated the anti-tumor and anti-metastatic activity of Taxotere, we further analyzed the NF-κB expression altered by B-DIM or Taxotere treatment.

Figure 5

A

<table>
<thead>
<tr>
<th>Tumor Volume (mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
</tr>
<tr>
<td>B-DIM</td>
</tr>
<tr>
<td>Taxotere</td>
</tr>
<tr>
<td>B-DIM + Taxotere</td>
</tr>
</tbody>
</table>

B

![PARP cleavage assay](image)

PARP cleavage assay showed that combination treatment with B-DIM and Taxotere induced significantly greater apoptosis in vivo (Fig 5C). *, P<0.05 compared with control.
B-DIM abrogated activation of NF-κB activity in vivo

Using EMSA, we found that B-DIM in vitro significantly inhibited NF-κB DNA-binding activity and also abrogated p65 cDNA transfection–induced NF-κB DNA binding activity (Fig. 4A). More importantly, our animal studies showed that dietary B-DIM in combination with Taxotere also inhibited NF-κB DNA binding activity in SCID s.c. tumors (Fig. 5D). These results show that B-DIM in combination with Taxotere in vitro and in vivo significantly reduces NF-κB DNA-binding activity resulting in breast cancer cell killing.

![Gel shift assay](image)

Figure 5

*Fig 5: Gel shift assay for NF-κB was performed on randomly selected frozen tumor tissues obtained from each treatment groups (lane 1-2: control; lane 3-4: B-DIM ; lane 5-6: Taxotere ; lane 7-8: B-DIM and Taxotere (combination treatment) of animals. Results showed that B-DIM in combination with Taxotere was effective in down-regulating NF-κB in treated animals relative to control tumors (Fig. 5D). *, P<0.05 compared with control.*

KEY RESEARCH ACCOMPLISHMENT

1. DIM in combination with low-dose Taxotere enhances the inhibition of cell growth and induction of apoptosis in MDA-MB-231 breast cancer cells through inhibition of the NF-κB signaling pathway both in vitro and in vivo.
2. Our results suggest that DIM is an effective agent in sensitizing breast cancer cells to Taxotere, which is likely be a novel breakthrough for devising optimal therapies for breast cancer.

REPORTABLE OUTCOMES

CONCLUSIONS

Previous studies using 3, 3’-diindolylmethane (DIM), a stable condensation product of indole-3-carbinol (I3C) with greater bioavailability, showed superiority compared to I3C, suggesting that DIM could be a useful anti-tumor agent. Our present results showed that DIM in combination with low-dose of Taxotere enhances the inhibition of cell growth and induction of apoptosis in breast cancer cells through inhibition of the NF-κB signaling pathway. Our findings provide experimental evidence in support of chemo-sensitizing effect of DIM against breast cancer which could become a novel breakthrough for devising optimal therapies for breast cancer.

REFERENCES

Appendix
Inactivation of NF-κB by 3, 3’-diindolylmethane (DIM) contributes to increased apoptosis induced by chemotherapeutic agent in breast cancer cells

Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI

Running title: B-DIM sensitizes breast cancer cells to chemotherapy

Keywords: B-DIM, Taxotere, Akt, NF-κB and breast cancer

*All correspondence to:
KM Wahidur Rahman, Ph.D.
Dept. of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 715 HWCRC, 4100 John R, Detroit, MI 48201, USA.
Tel: 313-576-8273
Fax: 313-576-8379
E-mail: kmrahman@med.wayne.edu
ABSTRACT

Constitutive activation of Akt or NF-κB has been reported to play a role in de novo resistance of cancer cells to chemotherapeutic agents, which is a major cause of treatment failure in cancer chemotherapy. Previous studies have shown that 3, 3'-diindolylmethane (DIM), a major in vivo acid-catalyzed condensation product of indole-3-carbinol (I3C), is a potent inducer of apoptosis, inhibitor of tumor angiogenesis and inactivator of Akt/NF-κB signaling in breast cancer cells. However, little is known regarding the inactivation of Akt/NF-κB that leads to chemosensitization of breast cancer cells to chemotherapeutic agents such as Taxotere. Therefore, we examined whether the inactivation Akt/NF-κB signaling caused by B-DIM could sensitize breast cancer cells to chemotherapeutic agents both in vitro as well as in vivo. MDA-MB-231 cells were simultaneously treated with 15 to 45 µM B-DIM and 0.5 to 1.0 nM Taxotere for 24 to 72 hours. Cell growth inhibition assay, apoptosis assay, EMSA, and Western blotting were performed. The combination treatment of 30 µM B-DIM with 1.0 nM Taxotere elicited significantly greater inhibition of cell growth compared with either agent alone. The combination treatment induced greater apoptosis in MDA-MB-231 cells compared with single agents. Moreover, we found that NF-κB activity was significantly decreased in cells treated with B-DIM and Taxotere. We also have tested our hypothesis using transfection studies followed by combination treatment with B-DIM/Taxotere and found that combination treatment significantly inhibited cell growth and induced apoptosis in MDA-MB-231 breast cancer cells mediated by the inactivation of NF-κB, a specific target in vitro and in vivo. These results were also supported by animal experiments which clearly showed that B-DIM sensitized the breast tumors to Taxotere which resulted in greater anti-tumor activity mediated by the inhibition of Akt and NF-κB. Collectively, our results clearly suggest that inhibition of Akt/NF-κB signaling by B-DIM leads to chemosensitization of breast cancer cells to Taxotere, which may contribute to increased growth inhibition and apoptosis in breast cancer cells. The data obtained from our studies could be a novel breakthrough in cancer therapeutics by using non-toxic agents such as B-DIM in combination with other conventional therapeutic agents such as Taxotere.
INTRODUCTION

Carcinoma of the breast is the most common cancer in American women and remains the second leading cause of cancer related female deaths in the USA (1). Currently, breast cancer is treated with surgery, chemotherapy, radiation therapy or combined modalities with remarkable success. In addition, patients with breast cancer or pre-neoplastic lesions are also treated with hormonal therapy either for treatment or prevention purposes. Although these treatment modalities are successful, a significant number of patients either do not respond to commonly used chemotherapeutic agents or have tumor recurrence during therapy and develop metastasis for which there is no curative therapy. The failure in the treatment is largely contributed by de novo (intrinsic) chemo-resistance and/or acquired chemo-resistance of tumor cells (2, 3). Therefore, this study was designed to eliminate chemo-resistant pathways of tumor cells prior to therapy with a conventional therapeutic agent in order to achieve optimal results.

Nuclear factor kappa B (NF-κB) is a key regulator and transcription factor of genes which mediate apoptotic signaling pathways; it also plays critical roles in cell proliferation, cell adhesion, inflammation, differentiation, angiogenesis, and tumor cell invasion (3-7). It has been reported that activated NF-κB blocks cellular apoptosis in several different cell types (5-9) and that the inactivation of NF-κB makes cells more sensitive to apoptosis-inducing agents (10). Studies have shown that the activation of Akt and NF-κB is responsible for the resistance of cancer cells to chemotherapeutic agents and contributes to treatment failure in cancer chemotherapy (2, 3, 11-14). Since NF-κB plays important roles in many cellular processes, research on the interaction between NF-κB activation and other cell signal transduction pathways, including the PI3K/Akt pathway, has received increased attention in recent years. Recently, constitutive activation of NF-κB was found in human breast cancer cells, possibly due to the activation of different signaling pathways, such as PI3K/Akt and MAP kinase, which are also known to increase the expression of Bcl-2/Bcl-X_L and other NF-κB targeted genes (2, 3, 11-17). It has also been shown that expression of anti-apoptotic protein Bcl-2/Bcl-X_L is associated with cancer cell viability and drug
resistance (15); unfortunately, the clinical importance of NF-κB expression remains unclear in patients with breast cancer. We, therefore, hypothesize that the down-regulation of Akt/NF-κB signaling in breast cancer cells could be a novel therapeutic approach for achieving optimal results in patients with chemo-resistant breast cancer. However, very little is known regarding the inactivation of Akt/NF-κB that leads to sensitization of breast cancers to conventional therapeutic agent such as Taxotere.

Several studies have shown that inhibition of Akt activation by PI3-K inhibitor (LY294002 or Wortmannin) sensitizes cancer cells, particularly breast cancer cells, to undergo apoptotic cell death induced by Adriamycin and Taxotere (2, 18, 19). These results strongly suggest that the inactivation of the Akt pathway, which in turn will inactivate the NF-κB pathway, will also sensitize breast cancer cells to Adriamycin as well as Taxotere. Recent studies from our laboratory have indicated that inactivation of NF-κB by pre-treatment with genistein leads to chemo-sensitization of pancreatic cancer cells to apoptosis induced by docetaxel and cisplatin (20). Another study also indicated that inactivation of NF-κB can directly chemo-sensitize pancreatic cancer cells to gemcitabine (21). A recent study has indicated that DIM and Paclitaxel can promote apoptosis in MDA-MB-435eb1 (Her2/Neu positive, ER-ve) human breast cancer cells (22). Moreover studies from our laboratory and others have shown that B-DIM is a potent inhibitor of cell growth, inducer of apoptotic cell death and inhibitor of tumor angiogenesis, which is believed to be partly due to inactivation of Akt and NF-κB signaling pathways in several cancer cells (5, 6, 23-26). More recently, we found that B-DIM can inhibit Akt and NF-κB in breast cancer cells, suggesting that DIM could also sensitize the breast cancer cells to Taxotere (6). Our recent results also show that the inactivation of NF-κB down-regulates its transcriptional downstream signaling molecules such as Bcl-2, Bcl-X\textsubscript{L} and survivin (5-7, 27, 28) leading us to believe that B-DIM not only inactivates NF-κB but also down regulates its important down-stream regulatory genes. This effect of B-DIM could, in turn, sensitize chemo-resistance breast cancer cells to Taxotere-induced killing. In this study, we tested our hypothesis using MDA-MB-231 breast cancer cell line (ER-ve) \textit{in vitro} and in animal model \textit{in vivo}
Rahman et al

(MDA-MB-231 induced tumors in SCID mouse) exposed to B-DIM alone, Taxotere alone or their combinations. Because we strongly believe that the inactivation of NF-κB pathways could be successfully exploited for the development of novel therapeutic strategies for estrogen independent breast cancer using B-DIM in combination with Taxotere. In this study we specifically investigated how B-DIM could sensitize breast cancer cells to conventional therapeutic agents such as Taxotere. We found that B-DIM could sensitize breast tumor cells to Taxotere, resulting in greater anti-tumor activity by inactivating Akt, NF-κB and other targeted genes. Our results suggest that B-DIM is an effective agent in sensitizing breast cancer cells to Taxotere, which is likely, be a novel breakthrough for devising optimal therapies for breast cancer.
MATERIALS AND METHODS

Cell culture and reagents

MDA-MB-231 human breast cancer cells (invasive and ER – ve) (ATCC, Manassas, VA) were cultured in DMEM/F12 medium (Invitrogen, Carlsbad, CA) supplemented with 10% FBS and 1% penicillin/streptomycin in a 5% CO$_2$ atmosphere at 37°C. DIM (Bio Response, Boulder, CO; commonly known as BR-DIM and hereafter termed as B-DIM) was dissolved in DMSO to make 20 mM stock solution and was added directly to the media at different concentration. Taxotere (Aventis Pharmaceuticals, Bridgewater, NJ) was dissolved in DMSO to make a 4 µM stock solution.

Cell growth inhibition by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay

MDA-MB-231 cells were seeded in 96-well culture dishes. After 24 hours of incubation MDA-MB-231 were treated with 15, 30 or 45 µM B-DIM and then exposed to chemotherapeutic agents (0.5, 0.75 or 1.0 nM Taxotere) for 24, 48 or 72 hours. For single-agent treatment, MDA-MB-231 cells were treated with B-DIM (15, 30, or 45 µM) and/or Taxotere (0.5, 0.75 or 1.0 nM) alone for 24 to 72 hours. After treatment, cancer cells were incubated with 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT; 0.5 mg/mL, Sigma, St. Louis, MO) at 37°C for 2 hours and then with isopropyl alcohol at room temperature for 1 hour. The spectrophotometric absorbance of the samples was determined by ULTRA Multifunctional Microplate Reader (TECAN, Durham, NC) at 595 nm.

Histone/DNA ELISA for detecting apoptosis

Cell Apoptosis ELISA Detection Kit (Roche, Palo Alto, CA) was used to detect apoptosis according to the manufacturer’s protocol (6, 29-32). Briefly, MDA-MB-231 cells were treated with B-DIM and/or chemotherapeutic agents (Taxotere) as described above. After treatment, the cytoplasmic histone/DNA fragments from cancer cells with different treatments were extracted and bound to immobilize anti-histone antibody. Subsequently, the peroxidase-conjugated anti-DNA antibody was used
for the detection of immobilized histone/DNA fragments. After addition of substrate for peroxidase, the spectrophotometric absorbance of the samples was determined by ULTRA Multifunctional Microplate Reader (TECAN) at 405 nm.

DNA ladder analysis for detecting apoptosis

MDA-MB-231 cells were treated with 30 µM DIM and then exposed to chemotherapeutic agents (1.0 nM Taxotere) for 72 hours. For single-agent treatment MDA-MB-231 cells were treated with 30 µM B-DIM, 1.0 nM Taxotere alone for 72 hours. After treatment, cellular cytoplasmic DNA from MDA-MB-231 cells with different treatments was extracted and the DNA ladder was visualized as described previously (5, 6).

NF-κB DNA-binding activity measurement

MDA-MB-231 cells were plated at a density of 1x10^5 cells in 100 mm dishes and incubated. After 24 hours, the cells were treated with a combination of B-DIM and chemotherapeutic agents as described above. For single-agent treatment, cancer cells were treated with B-DIM (30 or 45 µM) and 1 nM Taxotere alone for 72 hours. Following treatment, nuclear protein in the cells was extracted as described previously (5, 6). Using randomly selected frozen tumor tissue, nuclear proteins were also extracted as described previously (7). For electrophoretic mobility shift assay (EMSA), 10 µg of nuclear protein was assembled with 5x Gel Shift Binding buffer (20% glycerol, 5 mmol/L MgCl_2, 2.5 mmol/L EDTA, 2.5 mmol/L DTT, 250 mmol/L NaCl, 50 mmol/L Tris-HCl), 0.25 mg/mL poly(dI)-poly(dC), and IRDye 700-labeled NF-κB oligonucleotide (LI-COR, Lincoln, NE). After incubation at room temperature for 30 minutes, the samples were loaded on a pre-run 8% polyacrylamide gel and electrophoresis was continued at 30 mA for 90 minutes. The signal was then detected and quantified with Odyssey infrared imaging system (LI-COR). For loading control, 10 µg of nuclear proteins from each sample was subjected
to Western blot analysis for retinoblastoma protein, which showed no alternation after B-DIM or Taxotere treatment.

NF-κB p65 cDNA transfection

MDA-MB-231 cells were seeded in a six-well plate (1.5 x 10^5 cells per well) and incubated at 37°C for 24 hours. Then, the cells were transfected with NF-κB p65 cDNA or control empty vector by ExGen 500 (Fermentas, Hanover, MD). After 7 hours, the p65 cDNA-transfected cells were treated with a combination of B-DIM and chemotherapeutic agents as described above. Then, the cytoplasmic proteins and nuclear proteins were extracted. NF-κB p65 protein expression was detected by Western blot analysis and NF-κB DNA-binding activity was measured by EMSA. Also, the apoptotic cells in the p65 cDNA-transfected cells with different treatments were detected using Cell Apoptosis ELISA Detection Kit (Roche).

Western blot analysis

Twenty-five micrograms of cell extract from p65 cDNA transfection or 50 µg of tumor lysate from animal experiments was subjected to SDS-PAGE and electrophoretically transferred to a nitrocellulose membrane. Membranes were then incubated with monoclonal anti-phospho-Akt Ser473 (1:1,000, Cell Signaling, Beverly, MA), Akt (1:500, Santa Cruz Biotech, Santa Cruz, CA), polyclonal anti-NF-κB p65 (1:1,000, Upstate, Lake Placid, NY), anti-survivin (1:200, Santa Cruz, Santa Cruz, CA), anti-Bcl-XL (1:200, Santa Cruz), anti-PARP (1:5,000, Biomol, Plymouth Meeting, PA), or anti–β-actin (1:5,000, Sigma, St. Louis, MO) antibodies, washed with Tween 20-TBS, and incubated with secondary antibody conjugated with peroxidase. The signal was then detected using the chemiluminescent detection system (Pierce, Rockford, IL).

Animal studies

Female homozygous ICR scid/scid mice, ages 4 weeks, were purchased from Taconic Farms (Germantown, NY). The mice were maintained according to the NIH standards established in the
Guidelines for the Care and Use of Experimental Animals. All experimental protocols were approved by the Animal Investigation Committee of Wayne State University (Detroit, MI). To initiate the xenografts, 5x10^6 MDA-MB-231 cells (in serum free medium) were injected subcutaneously (sc) bilaterally in the flank areas of two SCID mice. Animals were observed for development of sc tumors at the sites of injection (usually in 2-3 weeks). When the tumor size reached 1500 mg, animals were euthanized and the tumors were removed and dissected into small pieces (~30 mg). Small pieces of tumors were then transplanted sc into right and left flanks of a new group of SCID mice using 12-gauge trocar. Animals were examined three times per week for the development of palpable tumors (usually in 2 weeks). Once palpable tumors developed (0.5 x 0.5 cm, 63 mg), animals were randomly divided into 4 groups of 10 animals in each group. Group-I was assigned as control and group-II mice were given B-DIM by oral gavage (3.5 mg/day/animal by oral gavage). In addition, the mice from group-III received three doses of Taxotere (5 mg/kg, i.v.) every 72 hours after 24 hours of B-DIM gavaging (33, 34). Group-IV was exposed to B-DIM and also treated with Taxotere as shown for groups-II and III. The dose of B-DIM selected for this experiment was based on our previous studies that showed anti-tumor activity (6, 28, 35-37). Sesame seed oil show as safe by other researchers, was used to facilitate gavage and avoid irritation of the esophagus (7, 38). The control mice received only sesame seed oil without B-DIM. Mice from all experimental groups were sacrificed three weeks after the start of all treatments and the tumors were harvested from each animal and processed for preparation of nuclear proteins as well as total protein for Western blot analysis. The activity of NF-κB in tumor cells was measured by EMSA and the poly (ADP-ribose) polymerase (PARP) cleavage in tumor cells was assessed by Western blot analysis. The volume of the tumor in each group was determined by weekly caliper measurement according to the formula \(ab^2/2\) where \(a = \) length and \(b = \) shortest measurement.

Tissue collection, fixation, and H&E staining

Freshly harvested tumors grown were fixed in 10% buffered formalin for 48 hours and then embedded, and sectioned. Samples were then washed with tap water and soaked in a graded series of
50%, 60%, 70%, 80%, and 90% ethanol for 30 minutes and then in 90% and 100% ethanol for 1 hour. They were then held in a solution of 100% ethanol and xylene at a 1:1 ratio for 30 minutes before being embedded in paraffin and held at 60°C for 1 hour to make paraffin blocks. Transverse sections (5 µm) were taken from the blocks and prepared for histochemical staining. H&E staining was used for histologic observation.
RESULTS

B-DIM potentiates breast cancer cell growth inhibition caused by Taxotere

MDA-MB-231 breast cancer cells were treated with B-DIM, Taxotere, or B-DIM in combination with lower doses of Taxotere. The cell viability was determined by MTT assay and the effect of B-DIM or Taxotere on the growth of different cancer cells is shown in Fig. 1. We have tested several doses of B-DIM and Taxotere with different time points and found that treatment of cells with B-DIM or Taxotere alone for 72 hours typically caused 30-40% growth inhibition in cancer cells using the doses tested (Fig. 1A and 1B). However, B-DIM in combination with lower doses of Taxotere resulted in ~50% growth inhibition in this cancer cells, suggesting the greater inhibitory effect of combination treatment (Fig. 1C). These results showed that combination of B-DIM along with lower doses of Taxotere elicited significantly greater inhibition of cancer cell growth compared with either agent alone. The lower dose of Taxotere in inhibiting cell growth when combined with a non-toxic agent (B-DIM) will have significant ramification for extending our studies for human breast cancer treatment.

B-DIM sensitizes breast cancer cells to apoptosis induced by Taxotere

By three independent measurement of apoptotic assays, we observed induction of apoptosis in breast cancer cells treated with B-DIM and Taxotere. By apoptotic cell death ELISA analysis and DNA ladder analysis, we observed similar results showing that both B-DIM and Taxotere alone induced apoptosis in breast cancer cells tested (Fig. 2A and B). Moreover, we found that 30 µM B-DIM combined with lower doses of Taxotere induced greater apoptosis in the cancer cells compared with single-agent treatment (Fig. 2A and B). We also observed that the B-DIM and Taxotere combination treatment in vitro and in vivo produced PARP cleavages compared with monotreatment (Fig. 2C and D), suggesting greater apoptosis induced by the combination treatment. Using Western blot analysis, we found that B-DIM alone or in combination with chemotherapeutic agents down-regulated the expression of p-Akt, survivin and Bcl-XL in NF-κB p65 cDNA-transfected or parental breast cancer cells (Fig. 3). These results are
consistent with the cell growth inhibition observed by MTT assay, suggesting that greater cell growth inhibition resulting from the combination treatment is partly mediated through the induction of greater apoptosis in breast cancer cells.

Inhibition of tumor growth in vivo by B-DIM alone or in combination with Taxotere

To test whether B-DIM has any anti-tumor effect *in vivo*, we conducted an animal experiment using a xenograft model of breast cancer. Under our experimental conditions described earlier, we found that B-DIM significantly inhibited MDA-MB-231 tumor growth and potentiated MDA-MB-231 tumor growth inhibition induced by Taxotere, demonstrating an enhanced inhibitory effect of B-DIM/Taxotere combination treatment on the *in vivo* model of breast cancer (Fig 4A). H&E histology evaluation showed the maximum degree of necrosis in B-DIM/Taxotere combination treatment group (Fig. 4B). The body weight of mice in each group did not show any significant difference, suggesting no apparent toxicity due to B-DIM and Taxotere treatment. To explore the molecular mechanism by which B-DIM potentiated the anti-tumor and anti-metastatic activity of Taxotere, we further analyzed the NF-κB expression altered by B-DIM or Taxotere treatment.

B-DIM causes inactivation of NF-κB DNA binding activity in vivo

Using EMSA, we found that B-DIM *in vivo* significantly inhibited NF-κB DNA-binding activity (Fig. 4C). Importantly, our animal studies showed that dietary B-DIM in combination with Taxotere inhibited NF-κB DNA binding activity in SCID s.c. tumors (Fig. 4C). These results show that B-DIM in combination with Taxotere *in vitro* and *in vivo* significantly reduces NF-κB DNA-binding activity resulting in breast cancer cell killing.

Effect of B-DIM and Taxotere on NF-κB p65 expression and NF-κB DNA-binding activity

Nuclear proteins from cultured cancer cells treated with Taxotere were subjected to analysis for NF-κB DNA-binding activity as measured by EMSA. The results showed that 2 nM Taxotere treatment
for 2 hours significantly induced NF-κB DNA-binding activity in cancer cells compared with the untreated cells (Data not shown) whereas 1 nM Taxotere treatment for 72 hours did not change NF-κB DNA-binding activity in cancer cells compared with the untreated cells (Fig 5A). Importantly, NF-κB p65 cDNA transfection enhanced the NF-κB DNA-binding activity whereas B-DIM alone or combination with Taxotere abrogated the expression and activation of NF-κB p65 (Fig. 5A). These results clearly suggest that B-DIM in combination with Taxotere exerted inhibitory effects by abrogating NF-κB DNA-binding activity through decreasing the expression and activation of NF-κB p65. Furthermore, it has been indicated that inhibition of NF-κB potentiated the anti-cancer effect of chemotherapeutic agents (39). In the present study, we found that NF-κB p65 cDNA transfection enhanced the expression of nuclear and cytoplasmic NF-κB p65 in breast cancer cells while B-DIM in combination with Taxotere significantly abrogated this expression which was measured by Western blot analysis (Fig 5B), suggesting that B-DIM and Taxotere treatment inactivates NF-κB p65 expression, which may contribute to increased growth inhibition and apoptosis in breast cancer cells.

Apoptosis-enhancing effect of B-DIM is mediated through the NF-κB pathway

We transfected NF-κB p65 cDNA into MDA-MB-231 cells, treated the transfected cells with B-DIM or Taxotere and detected apoptosis. We found that p65 cDNA transfection inhibited apoptosis in B-DIM-treated and untreated breast cancer cells (Fig 5C). In contrast, B-DIM combined with Taxotere showed a greater inhibitory effect on the induction of apoptosis in p65 cDNA-transfected breast cancer cells compared with Taxotere monotreatment (Fig 5C). These results provide mechanistic support in favor of our claim that the apoptosis-inducing effect of Taxotere is enhanced by B-DIM and that it is partly mediated through the NF-κB pathway.
Statistical analysis

The statistical significance was determined using student’s t-test and $P<0.05$ was considered significant.
DISCUSSION

Current reports have shown that plant-derived dietary compounds provide protection against the development of certain cancers including breast cancer (40-42). We and others have previously shown that dietary I3C, a natural compound present in cruciferous vegetables, inhibits proliferation and induces apoptosis in several tumor cell lines (5-7, 23, 27, 28, 43-45). B-DIM has also been found to possess anticarcinogenic effects in experimental animals and to inhibit the growth of human cancer cells (6, 22, 23, 25, 28, 36). More recently, we found that B-DIM can inhibit Akt and NF-κB in breast cancer cells, suggesting that B-DIM could sensitize the breast cancer cells to Taxotere (6). Taxotere has been frequently used for treatment of various cancers including breast cancer, alone or in combination with other agents (46, 47). Each of these compounds is useful against breast cancer cells with clearly different mechanism(s) of action. Here, we report that suppression of constitutively active NF-κB in MDA-MB-231 cells is a major event by which B-DIM sensitizes breast cancer cells to a chemotherapeutic agent, and, as such, Taxotere could induce more apoptosis in breast cancer cells when combined with B-DIM compared to either agents alone.

Apoptosis is one of the most vital pathways through which chemopreventive agents inhibit the overall growth of cancer cells. Thus, it is important to investigate whether inhibition of cell proliferation and induction of apoptosis is associated with the down-regulation of apoptosis-related genes such as Akt, Bcl-X\textsubscript{L} and survivin by B-DIM, which could lead to chemosensitization of breast cancer cell to chemotherapeutic agents such as Taxotere (6, 28, 48, 49). Previously, we and others have shown that B-DIM down-regulates NF-κB and its targeted genes, such as Akt, BclX\textsubscript{L} and survivin (5, 6, 26, 28). In the present study, our results showed that B-DIM and Taxotere as single agents did induce apoptosis in MDA-MB-231 breast cancer cells. However, treatment of cells with B-DIM in combination with a lower dose of Taxotere resulted in a significantly greater induction of apoptosis in MDA-MB-231 breast cancer cells as documented by ELISA, DNA ladder and PARP cleavage assay, in conjunction with a more significant inhibition of cell growth as observed by MTT assay. These results suggest that more
significant inhibition of MDA-MB-231 cell growth caused by a low dose of combination treatment may be mediated by increased induction of apoptosis.

Constitutively activated NF-κB has been found in many tumors (3, 50). Therefore, to determine the mechanism(s) of increased apoptosis induced by B-DIM and Taxotere, we investigated the activity of NF-κB, which plays a critical role in the inhibition of apoptotic response. NF-κB also regulates the expression of a large number of genes that play critical roles in apoptosis, viral replication, tumorigenesis, various autoimmune diseases and inflammation (3). NF-κB is composed of a heterodimer of p65 and p50 subunits in most cell types and is sequestered in the cytoplasm by its inhibitory proteins, the IκBs (3, 5, 6, 51). During the phosphorylation and degradation of IκBs, NF-B p65 is activated and rapidly transported from the cytoplasm to the nucleus in cancer cells (3, 5, 6, 51). Therefore, NF-κB p65 has been described as a major culprit and important therapeutic target in cancer (3, 4, 52). It has been reported that inhibition of NF-κB can enhance the anti-cancer effect of chemotherapeutics agents (39). It is known that Taxotere, a chemotherapeutics agent is commonly used to treat patients with breast cancer; however, the use of high-dose Taxotere in these patients always leads to various levels of toxicity and thus reduces its therapeutic benefit (53, 54). In the present study, we conducted NF-κB p65 cDNA transfection and found that p65 cDNA transfection increased the expression of NF-κB. However, B-DIM inhibited the expression of NF-κB DNA-binding activity, whereas Taxotere showed a lesser degree of apoptosis, supporting the observation that NF-κB causes inhibition of apoptosis. We have previously reported that DIM inhibits NF-κB activity in breast cancer cells (6). Importantly, our present results showed that B-DIM in combination with a low dose of Taxotere was significantly associated with the inhibition of cell proliferation and induction of apoptosis, which could be due to the inhibition of NF-κB p65 expression and NF-κB DNA-binding activity by B-DIM, which in turn sensitizes breast cancer cells to Taxotere-induced killing. Several clinical trials have also suggested that the combination treatments may have greater anti-cancer activity than single agents (55, 56). Therefore, our findings provide a possible
mechanism for the greater induction of apoptosis by a low dose of Taxotere in combination with B-DIM, suggesting that B-DIM could be potentially useful when combined with chemotherapeutic agents for the treatment of breast cancer and, as such, will have lower systemic toxicity compared to current modalities.

Furthermore, to investigate whether B-DIM could sensitize of breast cancer cells to Taxotere, we conducted in vivo study. We found that B-DIM in combination with Taxotere could inhibit tumor growth in MDA-MB-231 tumor xenograft model that could be mechanistically linked with inactivation of NF-κB activity. Our present observation also showed that the maximum degree of necrosis occurred in B-DIM plus Taxotere treatment group. These results further support the conclusion that B-DIM-mediated inhibition of NF-κB activation promotes Taxotere-induced apoptosis in vivo. Overall, our results showed that blocking NF-κB signaling by B-DIM could lead to chemo-sensitization of breast cancer cells to chemotherapeutic agents such as Taxotere. Importantly, the data obtained from our in vitro as well as in vivo experiments could be a novel breakthrough approach in cancer therapeutics using a non-toxic agent such as B-DIM in combination with lower dose of other conventional chemotherapeutic agents.

It is known that resistance to chemotherapeutic agents is the major cause for treatment failure in cancer chemotherapy. Inhibition of NF-κB was found to potentiate the anti-cancer effect of chemotherapeutic agents (39). However, to achieve greater inhibitory effect, combination treatment with other chemopreventive agents could be a better therapeutic approach. It has been reported that Taxotere is one of the most potent chemotherapeutic agents for the treatment of patients with metastatic and early-stage breast cancer (57) and several studies have shown that histone deacyetylase inhibitor LAQ824 and genistein sensitizes cancer cells to undergo apoptotic cell death induced by Taxotere (18, 20, 57). It is also known that the use of high-dose Taxotere for patients with breast cancer leads to various levels of toxicity thereby reducing its therapeutic benefit (54). Several clinical trails have also suggested that combination treatments may have greater anti-cancer activity than single agents (56). Our findings also showed that B-DIM can sensitize breast cancer cells to Taxotere. Our results along with previous reports strongly suggest that the effect of B-DIM may be mediated through the inhibition of NF-κB signaling, resulting in the
inhibition of cell proliferation and induction of apoptosis, which could lead to sensitization of breast cancer cells to conventional therapeutics agents such as Taxotere (Fig 6). However, the combination treatment may result in different levels of systematic toxicities (58, 59). Thus, optimization of combination chemotherapy based on molecular mechanism may improve therapeutic indexes that are critically needed for the treatment of patients with breast cancer. In the present study, our results clearly showed that combination of lower dose of a chemotherapeutic agent with a non-toxic dietary compound (B-DIM) with no side effect in humans could be a novel therapeutic strategy against breast cancers.

In summary, our results demonstrate that B-DIM in combination with low-doses of Taxotere enhances the inhibition of cell growth and the induction of apoptosis in MDA-MB-231 breast cancer cells through inhibition of the NF-κB signaling pathway both in vitro and in vivo. Our results open a new avenue and challenge the current paradigm for the prevention and/or treatment of breast cancer; however, further investigation including clinical trials are warranted in order to prove or disprove the usefulness of B-DIM in combination with conventional therapeutic agents for the treatment of breast cancer.
ACKNOWLEDGEMENTS

This work was supported by Concept Awards funded by Department of Defense (DOD) to KM Wahidur Rahman. Grant number: W81XWH-04-1-0689 and W81XWH-05-1-0505. We thank Danielle Anstett for her editorial assistance.
REFERENCES

FIGURE LEGENDS

Fig 1: B-DIM potentiated breast cancer cell growth inhibition caused by Taxotere. B-DIM in combination with Taxotere significantly inhibited cell proliferation in MDA-MB-231 breast cancer cells. For single-agent treatment, breast cancer cells were treated with B-DIM (15, 30, or 45 µM), Taxotere (0.5, 0.75 or 1.0 nM) alone for 72 hours (Fig 1A and 1B). For combination, breast cancer cells were treated with 30 µM DIM and then exposed to 1.0 nM Taxotere for 72 hours (Fig 1C). Cell viability was tested by MTT assay. The data were obtained from three individual experiments. *, P<0.05 compared with control.

Fig 2: Induction of apoptosis in breast cancer cells tested by ELISA, DNA ladder and PARP cleavage assay. Histone/DNA fragment analysis by ELISA (Fig 2A). MDA-MB-231 breast cancer cells were treated 30 µM B-DIM and then simultaneously exposed to 1.0 nM Taxotere for 72 hours (Fig 2A). MDA-MB-231 breast cancer cells treated with B-DIM and Taxotere for 72 hours as illustrated by the DNA ladder (Lane 1: DNA marker; Lane 2: control; Lane 3, 4 and 5: cells treated with B-DIM 30 µM, Tax 1 nM, B-DIM 30 µmol/L + Taxotere 1nmol/L, respectively) (Fig 2B). PARP cleavage assay showed that combination treatment with B-DIM and Taxotere induced significantly greater apoptosis both *in vitro* (Fig 2C) and *in vivo* (Fig 2D) (Lane 1: control; Lane 2, 3 and 4: cells treated with B-DIM 30 µM, Tax 1 nM, B-DIM 30 µmol/L + Taxotere 1nmol/L, respectively). *, P<0.05 compared with control.

Fig 3: Western blot analysis for Akt, p-Akt, survivin and Bcl-X_L in NF-κB p65 cDNA transfected and parental MDA-MB-231 breast cancer cells (Fig 3). (Control, parental; p65 cDNA, p65 cDNA transfection; B-DIM 30 µM, 30 µmol/L B-DIM; p65 cDNA + B-DIM 30µM, p65 cDNA transfection and 30 µmol/L B-DIM; Tax 1 nM, 1 nmol/L Taxotere; p65 cDNA + Tax 1 nM, p65 cDNA transfection and 1 nmol/L Taxotere; B-DIM + Tax, 30 µmol/L B-DIM + 1nmol/L Taxotere; p65 cDNA + B-DIM + Tax,
p65 cDNA transfection + 30 µmol/L B-DIM + 1 nmol/L Taxotere). The signal of each protein expression was quantified with Gel Doc 1000 image system (Bio-Rad, Hercules, CA).

Fig 4: Inhibition of MDA-MB-231 tumor growth by B-DIM and Taxotere using xenograft model of breast cancer. Under the experimental conditions, treatment of animals with B-DIM in combination with Taxotere caused 50% reduction in tumor volume compared with control group (Fig. 4A). MDA-MB-231 cells were grown subcutaneously in the SCID animals. After the termination, the entire xenograft "tumor mass" was harvested from each animal and totally embedded for histological processing. Histological evaluation represent the largest "two dimensional" tumor mass measurements of the four study groups with a significant decline in these measurements from the control to the B-DIM (3.5 mg/day/animal by oral gavage), Taxotere (5 mg/kg, i.v.) and B-DIM + Taxotere combination treatment groups, respectively. Microscopically, the viable tumor in all groups is composed of solid sheets of malignant tumor cells with moderate to significant nuclear polymorphism and high mitotic rate including abnormal figures. Variable degrees of tumor necrosis was evident in all sections ranging from 5-90% and the B-DIM plus Taxotere group showed the maximum degree of necrosis (Fig. 4B). Gel shift assay for NF-κB was performed on randomly selected frozen tumor tissues obtained from each treatment groups (lane 1-2: control; lane 3-4: B-DIM; lane 5-6: Taxotere; lane 7-8: B-DIM and Taxotere (combination treatment) of animals. Results showed that B-DIM in combination with Taxotere was effective in down-regulating NF-κB in treated animals relative to control tumors (Fig. 4C). *, P<0.05 compared with control.

Fig 5: NF-κB DNA-binding activity tested by EMSA, Western blot analysis for nuclear and cytoplasmic and the effect of p65 cDNA transfection on the induction of apoptosis in breast cancer cells. After 7 hours, the p65 cDNA-transfected breast cancer cells were treated with combination of B-DIM, 30 µmol/L and Taxotere, 1 nmol/L. Then, the nuclear proteins were extracted, and NF-κB DNA-binding activity was measured by EMSA (Control, parental; p65 cDNA, p65 cDNA transfection; B-DIM 30 µM, 30 µmol/L
B-DIM; p65 cDNA + B-DIM 30µM, p65 cDNA transfection and 30 µmol/L B-DIM; Tax 1 nM, 1 nmol/L Taxotere; p65 cDNA + Tax 1 nM, p65 cDNA transfection and 1 nmol/L Taxotere; B-DIM + Tax, 30 µmol/L B-DIM + 1nmol/L Taxotere; p65 cDNA + B-DIM + Tax, p65 cDNA transfection + 30 µmol/L B-DIM + 1 nmol/L Taxotere) (Fig 5A). Western blot analysis for nuclear and cytoplasmic NF-κB p65 in p65 cDNA–transfected breast cancer cells. Lane 1: Control, parental; Lane 2, 3, 4, 5, 6, 7, and 8: p65 cDNA, p65 cDNA transfection; B-DIM 30 µM, 30 µmol/L B-DIM; p65 cDNA + B-DIM 30µM, p65 cDNA transfection and 30 µmol/L B-DIM; Tax 1 nM, 1 nmol/L Taxotere; p65 cDNA + Tax 1 nM, p65 cDNA transfection and 1 nmol/L Taxotere; B-DIM + Tax, 30 µmol/L B-DIM + 1nmol/L Taxotere; p65 cDNA + B-DIM + Tax, p65 cDNA transfection + 30 µmol/L B-DIM + 1 nmol/L Taxotere, respectively (Fig. 5B). The signal of each protein expression was quantified with Gel Doc 1000 image system (Bio-Rad, Hercules, CA). The p65 cDNA-transfected cells were treated with combination of B-DIM and Taxotere. In p65 cDNA transfected cells with different treatments, the apoptotic cells were detected using Cell Apoptosis ELISA Detection Kit (Roche) (Fig 5C) (Control, parental; p65 cDNA, p65 cDNA transfection; B-DIM 30 µM, 30 µmol/L B-DIM; p65 cDNA + B-DIM 30 µM, p65 cDNA transfection and 30 µmol/L B-DIM; Tax 1 nM, 1 nmol/L Taxotere; p65 cDNA + Tax 1 nM, p65 cDNA transfection and 1 nmol/L Taxotere; B-DIM + Tax, 30 µmol/L B-DIM + 1nmol/L Taxotere; p65 cDDNA + B-DIM + Tax, p65 cDNA transfection + 30 µmol/L B-DIM + 1 nmol/L Taxotere). The data were obtained from three individual experiments. *, P<0.05 compared with control.

Fig 6: Schematic representation of potential anti-cancer effect of chemotherapeutic agents mediated by B-DIM-induced inhibition of Akt and NF-κB activity.
Figure 3

The figure shows a gel analysis of various treatments on protein expression levels. The treatments include Control, p65 cDNA, B-DIM 30 μM, p65 cDNA + Tax 1 nM, B-DIM 30 μM + Tax 1 nM, p65 cDNA + B-DIM + Tax, and B-DIM + Tax. The proteins analyzed are Akt, pAkt, Survivin, Bcl-xL, and β-actin.
Figure 4

Panel A: Graph showing tumor volume (mm³) over weeks for Control, B-DIM, Taxotere, B-DIM and Taxotere treatments. The graph displays a comparison of tumor growth over time with error bars indicating variability.

Panel B: Images showing histological sections of control, B-DIM, Taxotere, and B-DIM + Taxotere treatments. The sections are stained, and the images illustrate the differences in tumor tissue structure among treatments.

Panel C: Gel electrophoresis images for Control, B-DIM, Tax, B-DIM + Tax treatments. The gel shows bands for NFκB and Rb proteins, with the B-DIM + Tax treatment having a more distinct band for NFκB and a fainter band for Rb.
Figure 5

A

Control, p65 cDNA, B-DIM 30 μM, p65 cDNA, B-DIM 30 μM, Tax 1 nM, p65 cDNA, B-DIM, p65 cDNA, B-DIM + Tax

NFκB

Rb

B

1 2 3 4 5 6 7 8

Cytoplasmic NF-κB p65

Nuclear NF-κB p65

β-actin

C

O.D. of Histone/DNA at 405 nm

Cont p65 p65+ Tax p65+ Tax p65+ B-DIM + Tax B-DIM + Tax

*
Figure. 6

Akt

Taxotere \rightarrow NFκB \rightarrow Bcl$_2$ / Bcl-xL / Survivin

B-DIM

Apoptosis \leftarrow B-DIM + Taxotere

Cell growth / Survival

anti-apoptosis
Gene Expression Profiling Revealed Survivin as a Target of 3,3′-Diindolylmethane-Induced Cell Growth Inhibition and Apoptosis in Breast Cancer Cells

KM Wahidur Rahman, Yiwei Li, Zhiwei Wang, Sarah H. Sarkar, and Fazlul H. Sarkar
Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan

Abstract
The phytochemical indole-3-carbinol (I3C), found in cruciferous vegetables, and its major acid-catalyzed reaction product 3,3′-diindolylmethane (DIM) showed anticancer activity mediated by its pleiotropic effects on cell cycle progression, apoptosis, carcinogen bioactivation, and DNA repair. To further elucidate the molecular mechanism(s) by which 3,3′-diindolylmethane exerts its effects on breast cancer cells, we have used microarray gene expression profiling analysis. We found a total of 1,238 genes altered in 3,3′-diindolylmethane-treated cells, among which 550 genes were down-regulated and 688 genes were up-regulated. Clustering analysis showed significant alterations in some genes that are critically involved in the regulation of cell growth, cell cycle, apoptosis, and signal transduction, including down-regulation of survivin. Previous studies have shown that antiapoptotic protein survivin is overexpressed in many human cancers, including breast cancer. However, very little or no information is available regarding the consequence of down-regulation of survivin for cancer therapy. We, therefore, hypothesized that down-regulation of survivin as observed by 3,3′-diindolylmethane could be an important approach for the treatment of breast cancer. We have tested our hypothesis using multiple molecular approaches and found that 3,3′-diindolylmethane inhibited cell growth and induced apoptosis in MDA-MB-231 breast cancer cells by down-regulating survivin, Bcl-2, and cdc25A expression and also caused up-regulation of p21WAF1 expression, which could be responsible for cell cycle arrest. Down-regulation of survivin by small interfering RNA before 3,3′-diindolylmethane treatment resulted in enhanced cell growth inhibition and apoptosis, whereas overexpression of survivin by cDNA transfection abrogated 3,3′-diindolylmethane-induced cell growth inhibition and apoptosis. These results suggest that targeting survivin by 3,3′-diindolylmethane could be a new and novel approach for the prevention and/or treatment of breast cancer. (Cancer Res 2006; 66(9): 4952-60)

Introduction
Breast cancer is the second leading cause of cancer-related deaths in women in the United States (1), suggesting that early diagnosis and prevention of this disease is urgently needed. Currently, breast cancer is treated with surgery, chemotherapy, and radiation therapy or combined modalities with remarkable success. In addition, patients with breast cancer or preneoplastic lesions are also treated with hormonal therapy either for treatment or prevention purposes. Although these treatment modalities are successful, a significant number of patients either do not respond to therapy, or the tumor may recur during therapy and develop metastasis, for which there is limited curative therapy. This inadequate outcome strongly suggests that the evaluation of novel targeted therapeutic agents is urgently needed to improve the treatment outcome of patients diagnosed with this disease.

It has been well known that many genes play important roles in the control of cell growth, differentiation, apoptosis, inflammation, stress response, and many other physiologic processes (2–10). Among those genes, survivin, a member of the inhibitor of apoptosis protein (IAP) family, plays important roles in tumorigenesis, progression of breast carcinoma, cell invasion, metastasis, and resistance to chemotheraphy (10–15). Several studies have suggested that the antiapoptotic protein survivin is overexpressed in many human cancers, including breast cancer (9, 10). It has also been shown that expression of survivin is associated with cancer cell viability and drug resistance (16). Previous studies in determining the association of survivin with prognosis in breast cancer patients has been controversial (17); thus, the clinical importance of survivin expression remains unclear in patients with breast cancer. We believe that the down-regulation of survivin in breast cancer cells could be a novel therapeutic approach for achieving optimal results in patients with chemoresistant breast cancer. However, very little or no information is currently available regarding the consequence of down-regulation of survivin in cell fate and whether this down-regulation could offer potential therapeutic benefits in breast cancer patients.

Studies from our laboratory and others have shown that 3,3′-diindolylmethane, a major in vivo acid-catalyzed condensation product of indole-3-carbinol (I3C), is a potent inhibitor of cell growth and inducer of apoptotic cell death (4, 18–22). However, the comprehensive molecular mechanism(s) by which I3C/3,3′-diindolylmethane inhibits cell growth and apoptosis is still unknown. However, the 3,3′-diindolylmethane’s pleiotropic effects on breast cancer cells could be due to alterations in gene expression profiles that are important for cell growth and induction of apoptosis. Thus, understanding the molecular biological properties of 3,3′-diindolylmethane may lead to the clinical development of mechanism-based chemopreventive and/or therapeutic strategies for breast cancer. Microarray gene expression profiling allows examination of the expression of a large number of genes and, in turn, provides an opportunity for determining the effects of anticancer agents on cancer cells. The alterations of gene expression profiles by several anticancer agents have been reported (23, 24). In this study, we used the high-throughput gene chip, which contains 22,215 known genes to better understand the...
precise molecular mechanism(s) by which 3,3'-diindolylmethane exerts its effects on breast cancer cells. We found a total of 1,238 genes altered by 3,3'-diindolylmethane treatment, among which 550 genes were down-regulated and 668 genes were up-regulated, many of which are associated with regulation of cell growth, cell cycle, apoptosis, and intracellular signaling. We also found a significant down-regulation of survivin expression. Based on our results, we further tested and found that 3,3'-diindolylmethane-induced down-regulation of survivin is, in part, mechanistically associated with 3,3'-diindolylmethane-induced cell growth inhibition and apoptosis.

Materials and Methods

Cell culture and growth inhibition. For the present study, we have used human breast epithelial cells MDA-MB-231, which is tumorigenic [American Type Culture Collection (ATCC), Manassas, VA]. It has aggressive invasion capacity and can also grow very well in an animal model (ATCC). MDA-MB-231 was grown in DMEM/F12 (Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum and 1% penicillin and streptomycin in a 5% CO₂ atmosphere at 37°C. 3,3'-Diindolylmethane (LKT Laboratories, St. Paul, MN) was dissolved in DMSO to make 20 mmol/L stock solution and was added directly to the media at different concentrations. Concentration between 30 and 60 μmol/L 3,3'-diindolylmethane seems adequate for this study primarily because results of several studies have indicated that 3,3'-diindolylmethane exhibits promising cancer protective activities, especially against mammary neoplasia (8, 25–28). Moreover, based on these previous studies, including our own study, we have chosen different concentrations of 3,3'-diindolylmethane for this study, which is relevant and achievable in vivo. Survivin small interfering RNA (siRNA) and siRNA control were obtained from Santa Cruz Biotechnology (Santa Cruz, CA) and was added directly to the media at different concentrations.

Cell growth inhibition studies by MTT assay. For growth inhibition, MDA-MB-231 cells (2 × 10⁴) were seeded in a 96-well culture plate and subsequently treated with 10, 20, 30, 40, and 60 μmol/L 3,3'-diindolylmethane for 24, 48, and 72 hours, whereas control cells received 0.01% DMSO in culture medium. After treatment, the cells were incubated with MTT reagent (0.5 mg/mL; Sigma) at 37°C for 2 hours and then with isopropanol at room temperature for 1 hour. Spectrophotometric absorbance of the samples was determined by using a BioArray HighYield RNA Transcript Labeling kit (ENZO Biochem, New York, NY) and purified using the RNeasy Mini kit. The purified cRNA was fragmented by incubation in fragmentation buffer [200 mmol/L Tris-acetate (pH 8.1), 500 mmol/L potassium acetate, 150 mmol/L magnesium acetate] at 95°C for 35 minutes and chilled on ice. The fragmented labeled cRNA was applied to the Human Genome U133A Array (Affymetrix, Santa Clara, CA), which contains 22,215 human gene sequence, and hybridized to the probes in the array. After washing and staining, the arrays were scanned using a HP GeneArray Scanner (Hewlett-Packard, Palo Alto, CA). Two independent experiments were done to verify the reproducibility of our results.

Plasmid and transfection. For transfection, we used human breast cancer cells transfected with survivin siRNA and siRNA control, respectively, using LipofectAMINE 2000. MDA-MB-231 cells were transiently transfected with survivin cDNA. The transfected cells were treated with 40 and 60 μmol/L 3,3'-diindolylmethane for 24, 48, and 72 hours or kept as control. The cell growth and apoptotic cell death of transfected cells with and without treatments were measured using MTT assay and cell apoptosis ELISA Detection kit (Roche), respectively.

Histone/DNA ELISA for detecting apoptosis. The cell apoptosis ELISA detection kit (Roche, Palo Alto, CA) was used to detect apoptosis in breast cancer cells treated with 3,3'-diindolylmethane according to manufacturer's protocol. Briefly, the cytoplasmic histone/DNA fragments from MDA-MB-231 breast cancer cells treated with 40 and 60 μmol/L 3,3'-diindolylmethane or DMSO (vehicle control) for 24, 48, or 72 hours were extracted and bound to immobilized anti-histone antibody. Subsequently, the peroxidase-conjugated anti-DNA antibody was used for the detection of immobilized histone/DNA fragments. After addition of substrate for peroxidase, the spectrophotometric absorbance of the samples was determined by using Ultra Multifunctional Microplate Reader at 405 nm.

Plasmid and transfection. The survivin cDNA plasmid encoding survivin were obtained from Science Reagents (Ipswich, MA). MDA-MB-231 cells were transfected with survivin siRNA and siRNA control, respectively, using LipofectAMINE 2000. MDA-MB-231 cells were transiently transfected with human survivin cDNA. The transfected cells were treated with 40 and 60 μmol/L 3,3'-diindolylmethane for 24, 48, and 72 hours or kept as control. The cell growth and apoptotic cell death of transfected cells with and without treatments were measured using MTT assay and cell apoptosis ELISA Detection kit (Roche), respectively.

cDNA microarray analysis. MDA-MB-231 cells were treated with 40 μmol/L 3,3'-diindolylmethane for 6, 24, and 48 hours. 3,3'-Diindolylmethane is the in vivo dimeric product of 3,3'-diindolylmethane chosen for the microarray experiment were close to IC₅₀. However, the biological relevance of these doses in relation to prevention or therapy has not been fully evaluated. The rationale for choosing these time points was to capture the expression profiles of early-response genes, genes that may be involved in the onset of growth inhibition and apoptotic processes, and, finally, genes that may be involved during active growth inhibition and apoptosis. Total RNA from each sample was isolated by Trizol (Invitrogen) and purified using the RNeasy Mini kit and RNase-free DNase Set (Qiagen, Valencia, CA) according to the manufacturer's protocols.

Microarray data normalization and analysis. The gene expression levels of samples were normalized and analyzed using Microarray Suite, MicroDB and Data Mining Tool software (Affymetrix). The signal value of the experimental array was multiplied by a normalization factor to make its mean intensity equivalent to the mean intensity of the control array using Microarray Suite software according to manufacturer's protocol. The absolute call (present, marginal, and absent) and average difference of 22,215 gene expressions in a sample and the absolute call difference, fold change, and average difference of gene expressions between two or several samples was identified using the abovementioned software. Statistical analysis of the difference in the mean expression of genes showing a >2-fold change was done repeatedly between treated and untreated samples using t tests. Average-linkage hierarchical clustering of the data was applied using the Cluster method (29), and the results were displayed with TreeView (29).

Real-time reverse transcription-PCR analysis for gene expression. To verify the alterations of gene expression at the mRNA level, which appeared on the microarray, we chose 15 representative genes (Table 2) with varying expression profiles for real-time reverse transcription-PCR (RT-PCR) analysis. Two micrograms of total RNA from each sample were subjected to reverse transcription using the Superscript first-strand cDNA synthesis kit (Invitrogen) according to the manufacturer's protocol. Real-time PCR reactions were then carried out in a total of 25 μL of reaction mixture (2 μL of cDNA, 12.5 μL of 2× SYBR Green PCR Master Mix, 1.5 μL of each 5 μmol/L forward and reverse primers, and 7.5 μL of H₂O) in an ABI Prism 7700 Sequence Detection System (Applied Biosystems, Foster City, CA). The PCR program was initiated for 10 minutes at 95°C before 40 thermal cycles, each of 15 seconds at 95°C, and 1 minute at 60°C. Data was analyzed according to the comparative Cₐ method and was normalized by actin expression in each sample. Melting curves for each PCR reaction were generated to ensure the purity of the amplification product.

Western blot analysis. To verify whether the alterations of genes at the level of transcription ultimately result in the alterations at the level of translation, we conducted Western blot analysis for selected genes with varying expression profiles. The MDA-MB-231 cells were treated with 10, 20, 30, 40, and 60 μmol/L 3,3'-diindolylmethane for 6, 12, and 48 hours. After treatment, the cells were lysed, and protein concentration was measured.
using bicinchoninic acid protein assay (Pierce, Rockford, IL). The proteins were subjected to 10%, 12%, or 14% SDS-PAGE and electrophoretically transferred to nitrocellulose membrane. The membranes were incubated with anti-p21WAF1 (1:500; Upstate, Lake Placid, NY), anti-survivin (1:200; R&D Systems, Minneapolis, MN), anti-cell division cycle cdc25A (1:200; Santa Cruz Biotechnology), anti-Bcl-2 (1:250; Calbiochem, San Diego, CA), and anti-β-actin (1:10,000; Sigma) primary antibodies and subsequently incubated with the secondary antibodies conjugated with peroxidase. All secondary antibodies were obtained from Pierce. The signal was then detected using chemiluminescence detection system (Pierce).

Statistical analysis. The statistical significance was determined using Student’s t-test, and \(P < 0.05 \) was considered significant.

Results

Cell growth inhibition by 3,3′-diindolylmethane treatment.

MTT assay showed that the treatment of MDA-MB-231 breast cancer cells with 3,3′-diindolylmethane resulted in a dose- and time-dependent inhibition of cell proliferation (Fig. 1), showing the inhibitory effect of 3,3′-diindolylmethane on MDA-MB-231 cell growth. The proliferation of MDA-MB-231 cells was significantly inhibited by 40 μmol/L 3,3′-diindolylmethane treatment for 48 and 72 hours (30% and 40%, respectively) compared with 60 μmol/L 3,3′-diindolylmethane treatment for 24, 48, and 72 hours (40%, 60%, and 70%, respectively). * \(P < 0.05 \); ** \(P < 0.01 \).

Regulation of the mRNA expression by 3,3′-diindolylmethane treatment.

The gene expression profile of MDA-MB-231 breast cancer cells treated with 3,3′-diindolylmethane was assessed using cDNA microarray. We found a total of 1,238 genes that showed a >1.5-fold change after 48 hours of 3,3′-diindolylmethane treatment. Among these genes, 550 genes were down-regulated, and 688 genes were up-regulated in 3,3′-diindolylmethane-treated MDA-MB-231 breast cancer cells. The altered expressions of most
genes occurred after only 6 hours of 3,3'-diindolylmethane treatment and were more evident with longer treatment (Fig. 2).

After clustering based analysis according to their biological functions, we found down-regulation and up-regulation of several genes, which are related to apoptosis, angiogenesis, tumor cell invasion, and metastasis (Fig. 2; Table 1).

Target confirmation by real-time RT-PCR. To confirm these alterations in gene expression, we conducted RT-PCR analysis of selected genes (Table 2). The results of RT-PCR analysis for these selected genes (BACH1, BIRC5, CCNE2, cdc25A, F2F1, FOXM1, MCM5, p21Cip1, p57Kip2, PCNA, TACC3, and UBC1) were in direct agreement with the microarray data (Fig. 3A; Table 1). The same alternations at the mRNA levels were observed by RT-PCR analysis after 3,3'-diindolylmethane treatment, although the fold change in the expression level was not exactly similar between these two different analytic methods (Fig. 3A; Table 1).

To further verify the regulation of gene expression at the protein level by 3,3'-diindolylmethane treatment, we narrowed down few genes from the different analytic methods (Fig. 3A; Table 1). The same alternations at the mRNA levels were observed by RT-PCR analysis after 3,3'-diindolylmethane treatment, although the fold change in the expression level was not exactly similar between these two different analytic methods (Fig. 3A; Table 1). The same alternations at the mRNA levels were observed by RT-PCR analysis after 3,3'-diindolylmethane treatment, although the fold change in the expression level was not exactly similar between these two different analytic methods (Fig. 3A; Table 1).

Table 1. Fold changes of specific genes in MDA-MB-231 cells treated with 3,3'-diindolylmethane

<table>
<thead>
<tr>
<th>Genes</th>
<th>MDA-MB-231</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 h</td>
</tr>
<tr>
<td>Cell cycle, apoptosis, and cell proliferation</td>
<td></td>
</tr>
<tr>
<td>NM_004702.1, cyclin E2 (CCNE2)</td>
<td>NC</td>
</tr>
<tr>
<td>Al343459, cdc25A</td>
<td>NC</td>
</tr>
<tr>
<td>NM_001760.1, cyclin D3 (CCND3)</td>
<td>NC</td>
</tr>
<tr>
<td>NM_001197.2, BCL2-interacting killer (apoptosis-inducing; BIK)</td>
<td>NC</td>
</tr>
<tr>
<td>NM_004749.1, cell cycle progression 2 protein (CPR2)</td>
<td>NC</td>
</tr>
<tr>
<td>NM_006739.1, cdc46 (MCM5)</td>
<td>NC</td>
</tr>
<tr>
<td>NM_002592.1, proliferating cell nuclear antigen (PCNA)</td>
<td>NC</td>
</tr>
<tr>
<td>NM_004526.1, mitotin (MCM2)</td>
<td>NC</td>
</tr>
<tr>
<td>NM_001237.1, cyclin A2 (CCNA2)</td>
<td>NC</td>
</tr>
<tr>
<td>AA648913, survivin (BIRC5)</td>
<td>NC</td>
</tr>
<tr>
<td>AF033111.1, Siva-2</td>
<td>NC</td>
</tr>
<tr>
<td>NM_005880.1, follistatin-like 3 (secreted glycoprotein; FSTL3)</td>
<td>–1.8</td>
</tr>
<tr>
<td>AB011446.1, mRNA for Alk2</td>
<td>NC</td>
</tr>
<tr>
<td>M73554.1, bcl-1 mRNA</td>
<td>NC</td>
</tr>
<tr>
<td>NM_001924.1, growth arrest and DNA damage–inducible, alpha (GADD45A)</td>
<td>NC</td>
</tr>
<tr>
<td>NM_005030.1, polo (Drosophila)-like kinase (PKL)</td>
<td>NC</td>
</tr>
<tr>
<td>D64137, CDK inhibitor 1C (p57Kip2)</td>
<td>NC</td>
</tr>
<tr>
<td>NM_000389.1, CDK inhibitor 1A (p21Cip1)</td>
<td>1.51</td>
</tr>
<tr>
<td>BF061658, transforming growth factor-β2</td>
<td>–2.6</td>
</tr>
<tr>
<td>NM_00145, FOXO3A</td>
<td>1</td>
</tr>
<tr>
<td>Kinase, cell signaling, and cell structure</td>
<td></td>
</tr>
<tr>
<td>NM_003954.1, mitogen-activated protein kinase kinase kinase 14 (MAP3K14)</td>
<td>NC</td>
</tr>
<tr>
<td>NM_030662.1, mitogen-activated protein kinase kinase 2 (MAP2K2)</td>
<td>NC</td>
</tr>
<tr>
<td>AW025150, mitogen-activated protein kinase kinase kinase 2 (MAP3K2)</td>
<td>NC</td>
</tr>
<tr>
<td>D31661.1, mRNA for tyrosine kinase (EPHB2)</td>
<td>NC</td>
</tr>
<tr>
<td>NM_007019.1, ubiquitin carrier protein E2-C (UBCH10)</td>
<td>NC</td>
</tr>
<tr>
<td>Transcription and translation</td>
<td></td>
</tr>
<tr>
<td>NM_021953.1, forkhead box M1 (FOXM1)</td>
<td>NC</td>
</tr>
<tr>
<td>NM_005225.1, E2F transcription factor 1 (E2F1)</td>
<td>NC</td>
</tr>
<tr>
<td>AF360549.1, BRCA1-binding helicase-like protein BACH1</td>
<td>NC</td>
</tr>
<tr>
<td>NM_005342.1, high-mobility group (nonhistone chromosomal) protein 4 (HMGI4)</td>
<td>1.1</td>
</tr>
<tr>
<td>U63824, human transcription factor RTEL-1 (RTEL1)</td>
<td>NC</td>
</tr>
<tr>
<td>NM_006312.1, nuclear receptor corepressor 2 (NCOR2)</td>
<td>NC</td>
</tr>
<tr>
<td>NM_007111.1, transcription factor Dp-1 (TDP1)</td>
<td>NC</td>
</tr>
<tr>
<td>Angiogenesis, metastasis, and invasion</td>
<td></td>
</tr>
<tr>
<td>M92934.1, connective tissue growth factor (CTGF)</td>
<td>–2.2</td>
</tr>
<tr>
<td>NM_006342.1, transforming, acidic coiled-coil containing protein 3 (TACC3)</td>
<td>NC</td>
</tr>
<tr>
<td>NM_016693.1, I transmembrane protein Fn14 (FN14)</td>
<td>NC</td>
</tr>
<tr>
<td>NM_002826.2, quiescin Q6 (QSCN6)</td>
<td>–1.2</td>
</tr>
<tr>
<td>NM_005242.2, coagulation factor II (thrombin) receptor-like 1 (F2RL1)</td>
<td>NC</td>
</tr>
<tr>
<td>NM_003600.1, serine-threonine kinase 15 (STK15)</td>
<td>NC</td>
</tr>
<tr>
<td>NM_001274.1, CHK1 (checkpoint, Schizosaccharomyces pombe) homologue (CHEK1)</td>
<td>NC</td>
</tr>
</tbody>
</table>

Abbreviation: NC, no change.

*Negative value, decrease.

*Positive value, increase.

www.aacrjournals.org 4955 Cancer Res 2006; 66: (9). May 1, 2006
RT-PCR analysis and conducted Western blot analysis only for selected few genes, which are the main focus of this study and for those genes that are critically important for the inhibition of cell growth and induction of apoptosis. Western blot analysis showed that the protein levels of BIRC5 (survivin), Bcl-2, and cdc25A were down-regulated, and p21WAF1 was up-regulated after 3,3-diindolylmethane treatment (Fig. 3B). These results suggest that 3,3-diindolylmethane regulated the transcription of the genes involved in apoptosis and cell cycle arrest, angiogenesis, tumor cell invasion, and metastasis, and these results are consistent with our previously published data in prostate cancer cells (3).

Regulation of genes involved in cell cycle and apoptotic process. After clustering based on biological function using OnoExpress and GenMAPP computerized analysis, we found that in MDA-MB-231 breast cancer cells, 3,3-diindolylmethane down-regulated the expression of some genes that are critically involved in the regulation of cell proliferation and cell cycle (Table 1; Figs. 2 and 4). In contrast, 3,3-diindolylmethane up-regulated the expression of some genes that are related to induction of apoptosis and cell cycle arrest (Table 1; Figs. 2 and 4). Western blot analysis showed that the protein levels of p21WAF1 in MDA-MB-231 cells treated for 48 hours with 3,3-diindolylmethane were up-regulated, whereas survivin, Bcl-2, and cdc25A were down-regulated (Fig. 3B). These results are novel and have not been previously shown. These results are also in direct agreement with the microarray and RT-PCR data. In addition to the effects of 3,3-diindolylmethane on cell cycle and apoptosis, 3,3-diindolylmethane also showed the regulation of genes related to signal transduction, transcription factor, oncogenesis, and tumor suppression (Table 1; Fig. 2). However, among these genes, survivin may have different roles in apoptosis in breast cancer, and because the clinical importance of survivin expression remains unclear in patients with breast cancer, we further investigated the mechanistic role of survivin during 3,3-diindolylmethane-induced cell growth inhibition and apoptosis.

Down-regulation of survivin expression by siRNA promotes 3,3-diindolylmethane-induced cell growth inhibition and apoptosis. We used Western blot analysis to detect the protein level of survivin. Intracellular survivin was down-regulated in survivin siRNA-transfected MDA-MB-231 cells compared with siRNA control–transfected cells (Fig. 5). Down-regulation of survivin expression significantly attenuated cell growth inhibition induced by 3,3-diindolylmethane (Fig. 6A). We found that treatment of cells with 3,3-diindolylmethane or survivin siRNA alone for 72 hours generally caused 60% to 70% of growth inhibition in MDA-MB-231 cells compared with control. However, 3,3-diindolylmethane plus survivin siRNA resulted in ~90% growth inhibition compared with control. Survivin siRNA–transfected MDA-MB-231 cells were significantly more sensitive to spontaneous and 3,3-diindolylmethane-induced apoptosis (Fig. 6B). These results suggest that 3,3-diindolylmethane plus survivin siRNA promotes cell growth inhibition and apoptosis to a greater degree compared with either agent alone.

Overexpression of survivin by cDNA transfection reduced 3,3-diindolylmethane-induced cell growth inhibition and apoptosis. Overexpression of survivin by cDNA transfection rescued 3,3-diindolylmethane-induced cell growth inhibition and abrogated 3,3-diindolylmethane-induced apoptosis to a certain degree (Fig. 6C and D). We found that treatment of cells with survivin cDNA for 72 hours promotes ~90% of cell growth in MDA-MB-231 cells compared with control. However, 3,3-diindolylmethane plus survivin cDNA resulted in ~35% growth inhibition compared with control (Fig. 6C). These results provide evidence for a potential role of survivin during 3,3-diindolylmethane-induced cell growth inhibition and apoptosis in MDA-MB-231 cells.

Discussion.

In the present study, we showed that 3,3-diindolylmethane elicits a significant effect on growth inhibition and induction of apoptotic processes in MDA-MB-231 breast cancer cells mediated by alterations in the gene expression of cell cycle and apoptosis regulatory genes as shown by microarray analysis. Among these genes, we found down-regulation of several genes, such as BACH1, BIRC5 (survivin), CCNE2, CDC25A, Bel-2, E2F1, FOXM1, MCM5, PCNA, TACC3, Ubch10, Aik2, and CTGF, and up-regulation of several genes, such as p21WAF1, p57Kip2, and FOXO3A, in 3,3-diindolylmethane–treated MDA-MB-231 cells that are related to the inhibition of cell growth and induction of apoptosis. To further elucidate the mechanisms of increased apoptosis induced by 3,3-diindolylmethane, we found that survivin is playing an important role during 3,3-diindolylmethane-induced cell death.

Our results also showed that cyclins (cyclin A2 and cyclin E2) and CDCs (cdc25A and cdc45) were down-regulated in 3,3-diindolylmethane-treated breast cancer cells, whereas CDK inhibitors (p21WAF1 and p57Kip2) were up-regulated, suggesting that 3,3-diindolylmethane inhibited the growth of breast cancer cell through the arrest of cell cycle and inhibition of proliferation (Fig. 4). Similar effects on the cell cycle were also observed in

<table>
<thead>
<tr>
<th>Table 2. The primer used for real-time RT-PCR analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genes</td>
</tr>
<tr>
<td>CCNE2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>cdc25A</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MCM5</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>BIRC5</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PCNA</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Aik2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>p57Kip2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>p21WAF1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>UbCH10</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>FOXM1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>E2F1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>BACH1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CTGF</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>TACC3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>β-Actin</td>
</tr>
</tbody>
</table>
| | AGGATCTTCTACTGAGTATGTCAG
3,3′-diindolylmethane-treated prostate cancer cells (3). Several studies have shown that CDCs control the molecules related to the cell cycle, and they are vital and important for the initiation and progression of the consecutive phase of the cell cycle (31, 32). It has been found that cyclins binds to cyclin-dependent protein kinase (CDK) and CDCs to control the cell cycle process (33–36). The CDK inhibitors, including p21WAF1, p27, and p57, have been shown to arrest the cell cycle and inhibit the growth of cancer cells (37–39). Inhibition of cell growth by 3,3′-diindolylmethane could also be due to the induction of apoptosis in addition to cell cycle arrest. Moreover, after analyzing microarray data, we focused on determining whether 3,3′-diindolylmethane could induce apoptosis by inhibiting the expression of survivin, which may be critically important for cell survival and cell death.

Survivin is an IAP, which is overexpressed in human cancer cells and critically needed for regulation of the balance among cell proliferation, differentiation, and apoptosis (17). It is known that nuclear factor-κB (NF-κB), a key transcription factor, up-regulates the expression and function of survivin in breast cancer cells (40). It has also been shown that expression of antiapoptotic protein survivin is associated with cancer cell viability and drug resistance (10). Previous studies in determining the association of survivin with prognosis in breast cancer patients has been controversial (17); thus, the clinical importance of survivin expression remains unclear in patients with breast cancer. However, down-regulation of survivin signaling may be a novel approach in breast cancer therapy. Because of the critical role of survivin in cell proliferation and apoptosis, we explored whether survivin could be a molecular target for 3,3′-diindolylmethane-induced cell growth inhibition and apoptosis. In this study, we showed, for the first time that 3,3′-diindolylmethane down-regulates survivin expression along with other antiapoptotic molecules. We also found that down-regulation of survivin by siRNA together with 3,3′-diindolylmethane treatment caused cell growth inhibition and apoptosis to a greater degree in breast cancer cells compared with either agent alone. Overexpression of survivin by survivin cDNA transfection abrogated 3,3′-diindolylmethane-induced apoptosis to certain degree. Therefore, we strongly believe that down-regulation of survivin is mechanistically linked with 3,3′-diindolylmethane-induced cell growth inhibition and apoptosis.

Figure 3. A, real-time RT-PCR amplification value showing the altered expression of specific genes from RNA of 3,3′-diindolylmethane (DIM)–treated MDA-MB-231 cells. B, Western blot analysis of selected gene expression in 3,3′-diindolylmethane-treated MDA-MB-231 cells at the protein level. a, expression of survivin was down-regulated with 3,3′-diindolylmethane treatment. b, expression of Bcl-2 was down-regulated with 3,3′-diindolylmethane treatment. c, expression of p21WAF1 was down-regulated with 3,3′-diindolylmethane treatment. d, expression of cdc25A was down-regulated with 3,3′-diindolylmethane treatment.
It has been reported that ectopic expression of survivin, an inhibitor of apoptosis, confers resistance to apoptosis to a variety of stimuli, and survivin is one of the most abundantly overexpressed genes in human tumors (41, 42). Genetic and biochemical data indicate that survivin functions in a unique cell division checkpoint that ensures the apoptotic demise of genetically unstable cells (41). Based on these findings, survivin has been proposed as a suitable target for drugs that can restore the apoptotic program in human tumors. A recent study has indicated that anti-survivin oligonucleotides induced apoptosis in mesothelioma cells, suggesting that down-regulation of survivin seems to be an effective therapy for mesothelioma (42). Another study has shown that survivin is expressed in the G2-M phase of the cell cycle in a cycle-regulated manner (41). It has been shown that GADD45A promotes apoptosis and regulates G2-M arrest (43), and in our study, we found that GADD45A and FOXO3A expression was up-regulated by 3,3'-diindolylmethane treatment, which could be associated with apoptotic mechanisms (44, 45). Induction of apoptosis by FOXO3A has been correlated with the disruption of mitochondrial membrane integrity, cytochrome c release, and up-regulation of BIM (46). The induction of apoptosis mediated by these molecules, including survivin, could be important molecular mechanism(s) by which 3,3'-diindolylmethane exerts its growth-inhibitory effects on breast cancer cells.

We also found that 3,3'-diindolylmethane down-regulated the expression of the forkhead transcription factor FOXM1, which correlates with proliferative status in a variety of normal and transformed cell types (47). Elevated expression of FOXM1 has been noted in both hepatocellular carcinoma and basal cell carcinoma (47). It has been indicated that FOXM1 is significantly elevated in primary breast cancer (47). Our microarray analysis showed that FOXM1 regulates genes, including survivin, that are essential for mitosis. Loss of FOXM1 expression generates mitotic spindle defects, delays cells in mitosis, and induces mitotic catastrophe (47). At the beginning of mitosis, survivin associates

Figure 4. Effect of 3,3'-diindolylmethane on cell cycle and apoptosis pathway-related gene expression as analyzed and visualized by GenMAPP software integrated with cDNA microarray data (positive value, increase in fold change; negative value, decrease in fold change).

Figure 5. MDA-MB-231 breast cancer cell growth inhibition and cell death induced by survivin siRNA and 3,3'-diindolylmethane. Survivin expression was down-regulated by 3,3'-diindolylmethane and survivin siRNA, resulting in cell death.
with microtubules of the mitotic spindle on a specific and saturable reaction that is regulated by microtubule dynamics (48). Our present findings indicated that inhibition of FOXM1 expression by 3,3'-diindolylmethane, which may disrupt survivin-microtubule interactions, resulted in the loss of survivin's antiapoptosis function and increased caspase-3 activity, a mechanism involved in cell death during mitosis. In contrast, 3,3'-diindolylmethane up-regulated the expression of tumor-suppressor genes, including p21WAF1 and p57, which may inhibit survivin expression. These results are novel and suggest that 3,3'-diindolylmethane may induce the apoptotic pathway by inhibiting cancer cell growth and survival through inhibition of transcription and oncogenesis (hypothetical diagram as in Fig. 7).

Several other potential mechanisms could explain the regulation of survivin associated with inhibition of cell proliferation and induction of apoptosis. It is known that NF-κB, a transcription factor, plays important roles in the control of cell growth, differentiation, and apoptosis (11, 12, 14, 16, 49, 50). Several studies have suggested that the activation of NF-κB up-regulates the expression of its downstream genes, such as Bcl-2/Bcl-XL and survivin, which are involved in cancer cell invasion, metastasis, and resistance to chemotherapy (16, 51). We have previously found that 3,3'-diindolylmethane is a potent inhibitor of NF-κB DNA-binding activity in breast cancer cells (8). Thus, 3,3'-diindolylmethane induced down-regulation of survivin expression could be partly due to inhibition of NF-κB activity (hypothetical diagram as in Fig. 7). We, therefore, believe that 3,3'-diindolylmethane could inhibit NF-κB expression, resulting in the down-regulation of its target genes, including survivin, and causing cell growth inhibition and apoptosis.

Taken together, we believe that targeting survivin by 3,3'-diindolylmethane could be a novel approach for the prevention and/or treatment of breast cancer. Moreover, the down-regulation of survivin by 3,3'-diindolylmethane could also be a useful strategy for chemosensitization of metastatic breast cancer cells to standard therapies. However, further in-depth investigations are needed to establish the cause and effect relationship of survivin gene regulation and 3,3'-diindolylmethane-induced cell growth inhibition and apoptosis in breast cancer in animal and human models.

Acknowledgments

Received 11/1/2005; revised 1/5/2006; accepted 2/16/2006.

Grant support: Two concept awards funded by Department of Defense grants W81XWH-04-1-0689 and W81XWH-05-1-0505 (KM Wahidur Rahman).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank Carrie Koerner for editorial assistance.
References
Therapeutic intervention of experimental breast cancer bone metastasis by indole-3-carbinol in SCID-human mouse model

KM Wahidur Rahman, Fazl H. Sarkar, Sanjeev Banerjee, Zhiwei Wang, Dezhong J. Liao, Xin Hong, and Nurul H. Sarkar

1Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan and 2Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia

Abstract
Several lines of experimental evidence have suggested that chemokine receptor CXCR4, a metastasis-promoting molecule, may play important roles in breast cancer bone metastasis. There is emerging evidence linking CXCR4 to matrix metalloproteinases (MMP) as well as their regulator nuclear factor-κB (NF-κB), a key transcription factor, which is known to activate metastasis-promoting molecules for many types of malignancies, including breast cancer. A recent study also showed that promoter region of CXCR4 has several NF-κB-binding sites, suggesting that there may be a cross-talk between CXCR4 and NF-κB. We have shown previously that indole-3-carbinol (I3C), a natural compound present in vegetables of the genus Brassica, can inhibit NF-κB in breast cancer cells. However, there are no reports in the literature showing any effect of I3C on CXCR4 expression in vitro and in vivo. We therefore examined whether I3C could inhibit bone metastasis of breast cancer by inhibiting CXCR4 and MMP-9 expression mediated via the inhibition of the NF-κB signaling pathway. Here, we have modified the severe combined immunodeficient (SCID)-human mouse model of experimental bone metastasis for use with the MDA-MB-231 breast cancer cell line. In this animal model, we found that I3C significantly inhibited MDA-MB-231 breast tumor growth, and our results were correlated with the down-regulation of NF-κB. Moreover, we found that I3C significantly inhibited the expression of multiple genes involved in the control of metastasis and invasion in vitro and in vivo, especially the expression of CXCR4 and MMP-9 along with pro-MMP-9, with concomitant decrease in Bcl-2 and increase in the proapoptotic protein Bax. From these results, we conclude that the CXCR4/NF-κB pathway is critical during I3C-induced inhibition of experimental breast cancer bone metastasis. These results also suggest that I3C could be a promising agent for the prevention and/or treatment of breast cancer bone metastasis in the future. [Mol Cancer Ther 2006;5(11):2747–56]

Introduction
Metastasis is a nonrandom process, and each cancer type has its own preferred sites of metastasis (1, 2). Metastasis of cancer cells is a complex process involving multiple steps, including invasion, angiogenesis, intravasation, trafficking of cancer cells through blood vessels, extravasations, organ-specific homing, and growth (3, 4). Bone is one of the most common sites of metastasis for human breast cancer (5). A recent study has shown that a chemokine receptor, CXCR4, is highly expressed in breast cancer cells but not in normal breast tissue, whereas its ligand, stromal-derived factor-1α (SDF-1α; also called CXCL12), is expressed in those organs where breast cancer metastasis is frequently found (6). Thus, it is quite possible that CXCR4 and/or SDF-1α signaling may be involved in attracting and homing breast cancer cells in the bone.

There are some protease systems that are required for extracellular matrix degradation for the growth of cancer cells at the metastatic sites. Matrix metalloproteinases (MMP) are a group of enzymes required for extracellular matrix degradation for the growth of cancer cells at the metastatic sites (3, 4). These enzymes are secreted as pro-proteins and usually need to be activated by urokinase-type plasminogen activators (uPA; 3, 4). There is increasing evidence connecting CXCR4 to MMPs, IL-8, and uPA (7). MMPs and uPA as well as their regulator nuclear factor-κB (NF-κB), a key transcription factor, are known to activate metastasis-promoting molecules for many types of malignancies, including breast cancer (5, 6, 8–13). NF-κB was also found to be constitutively activated in human breast cancer (14, 15). A recent study and TESS analysis (TRANSFAC 4.0 database version) also showed that the promoter region of CXCR4 has several NF-κB-binding sites, suggesting that there may be a cross-talk between NF-κB and CXCR4 (16–18). Thus, NF-κB may regulate the expression and function of CXCR4, which may, in part, be activated via up-regulation of the expression of IL-8, uPA, and MMP-9 (19). Taken together, CXCR4 may be the point of convergence of many mediators of metastatic processes at the metastatic sites.

Indole-3-carbinol (I3C) and its stable condensation product, 3,3’-diindolylmethane, are compounds that are abundant...
in cruciferous vegetables and have been shown to possess inhibitory effects on the growth and metastatic abilities of several prostate and breast cancer cell lines (20–29). It has also been shown that I3C and 3,3′-diindolylmethane inhibit cell growth and induce apoptotic cell death by their pleiotropic effects on the regulation of multiple genes, such as p21, p27, cyclin-dependent kinase, survivin, Bax/Bcl-2, cytochrome P450 1A1, and GADD153 (28, 30). Interestingly, our recent studies have shown that the effect of I3C and 3,3′-diindolylmethane is mediated by the inactivation of NF-κB (23–27, 29). Thus, agents that directly block the expression of CXCR4 signaling, partly due to inhibition of NF-κB, may have great therapeutic potential for treating metastatic breast cancer. I3C also inhibits the in vitro invasive potential of human breast cancer cell lines, suggesting that I3C could inhibit the metastatic growth of breast cancer (31). Collectively, these studies suggest that NF-κB may play a pivotal role in controlling breast cancer metastasis, a concept supported by many other lines of evidence, in breast cancer and other types of malignancies (23–27, 29).

We report here that I3C treatment of MDA-MB-231 breast cancer cells results in decreased CXCR4 mRNA expression. However, the role of I3C in the inhibition of bone metastasis of human breast cancer has not been documented, perhaps due to a lack of appropriate animal models of experimental breast cancer bone metastasis. We hypothesize that I3C-induced inhibition of NF-κB will inhibit CXCR4 and other NF-κB targeted genes that could be mechanistically responsible for the inhibition of experimental breast cancer bone metastasis in a suitable animal model.

There are some reports in the literature about the spontaneous animal model of breast cancer (32, 33). A mouse model of human prostate cancer metastasis [severe combined immunodeficient (SCID)–human (SCID-hu)] using human prostate cancer cells grown in the human bone implanted into SCID mice has been developed by Nemeth et al. (34). But there are no other reports in the literature about suitable animal models that could be used faithfully for studying human breast cancer bone metastasis using human breast cancer cell lines that grow in the marrow of human bone environment implanted s.c. into mice. We believe that the advantage of SCID-hu model may provide a more clinically relevant model for growth of human breast cancer in a human bone microenvironment. For these reasons, here, we have adapted the SCID-hu model of experimental bone metastasis for use with the MDA-MB-231 breast cancer cell line and determined the effect of I3C in vivo in this model to test our hypothesis as stated above. We found that I3C could inhibit the growth of MDA-MB-231 cells in a SCID-hu model with concomitant inhibition of CXCR4, MMP-9, and Bcl-2 mediated by the down-regulation of NF-κB.

Materials and Methods

Two-Step Real-time Quantitative Reverse Transcription-PCR Analysis of Gene Expression in I3C-Treated MDA-MB-231 Breast Cancer Cells

Total RNA was isolated in I3C-treated MDA-MB-231 breast cancer cell line by Trizol (Invitrogen, Carlsbad, CA). One microgram of total RNA was subjected to first-strand cDNA synthesis using Taqman reverse transcription reagents kit (Applied Biosystems, Foster City, CA) in a total volume of 50 μL, including 6.25 units MultiScribe reverse transcriptase and 25 pmol random hexamers. Reverse transcription reaction was done with 25°C for 10 minutes followed by 48°C for 30 minutes and 95°C for 5 minutes. The primers were checked by running a virtual PCR, and primer concentration was optimized to avoid primer dimer formation. In addition, dissociation curves were checked to avoid nonspecific amplification. Real-time PCR amplifications were undertaken in Mx4000 Multiplex QPCR System (Stratagene, La Jolla, CA) using 2 × SYBR Green PCR Master Mix (Applied Biosystems). One microliter reverse transcriptase reaction was used for a total volume of 25 μL quantitative PCRs. The thermal profile for SYBR real-time PCR was 95°C for 10 minutes followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute.

Animal Care and Human Bone Implantation

Female homozygous CB17 scid/scid mice, ages 4 weeks, were purchased from Taconic Farms (Germantown, NY). The mice were maintained according to the NIH standards established in the “Guidelines for the Care and Use of Experimental Animals,” and all experimental protocols were approved by the Animal Investigation Committee of Wayne State University (Detroit, MI). Human fetal bone tissue was obtained by a third party, nonprofit organization (Advanced Bioscience Resources, Alameda, CA), and written informed consent was obtained from the donor, consistent with regulations issued by each state involved and the federal government. Human fetal femurs and humeri of 16 to 22 weeks of development were divided in half longitudinally and then again in half transversely into four fragments ~1 cm long and 3 or 4 mm in diameter (34). After 1 week of acclimatization, these bone fragments were implanted s.c. in the flank through a small skin incision with the opened marrow cavity against the mouse muscle. Isoflurane anesthesia was used during all surgical procedures.

Production of Breast Cancer Bone Tumors and I3C Treatment

Suspensions of MDA-MB-231 cells (2 × 10^5 cells in a volume of 20 μL PBS) were injected using a 27-gauge needle through the mouse skin directly into the marrow of implanted fetal bone. The mice were then divided into two groups: control (n = 10) and intervention (n = 10) groups (Fig. 2). Sesame seed oil was used to facilitate gavage and avoid irritation of the esophagus and was safe as shown also by others (35, 36). The mice in the intervention group were given I3C (1 mg/d/mouse) by oral gavage everyday for 5 weeks as soon as the majority of the bone implants began to enlarge (now called a “bone tumor”) as determined by caliper measurements (23rd day after cancer cell injection). The control mice received only sesame seed oil without I3C. The volume of the bone tumor in each group was determined by twice-weekly caliper measurements according to the formula ab^2 / 2, where a is the length and b is the
shortest measurement. Percentage (%) reduction in tumor volume at the end of the treatment was deduced by the formula: volume of tumor in experimental group / volume in control mice × 100. The statistical significance of differential findings between the experimental groups and control was determined by Student's t test as implemented by Excel 2000 (Microsoft Corp., Redmond, WA). The mice were sacrificed 3 months after cell injection. Bone tumors were subjected to ex vivo imaging on a Lo-Rad M-IV mammography unit (Karmanos Cancer Institute, Detroit, MI) using a magnified specimen technique. Images were developed using a Kodak 2000 screen and radiography film (Kodak, Rochester, NY). On sacrifice, tumor tissue from each mouse was harvested and cut into two pieces; one part was frozen for molecular analysis, and the other part of the tissue was fixed in formalin and embedded in paraffin for histologic evaluation and immunohistochemistry.

Tissue Collection, Fixation, and H&E Staining

Freshly harvested tumors grown in the implanted bones were fixed in 10% buffered formalin for 48 hours and decalcified with 10% EDTA, embedded, and sectioned. Samples were then washed with tap water and soaked in a graded series of 50%, 60%, 70%, 80%, and 90% ethanol for 30 minutes and then in 90% and 100% ethanol for 1 hour. They were then held in a solution of 100% ethanol and xylene at a 1:1 ratio for 30 minutes before being embedded in paraffin and held at 60°C for 1 hour to make paraffin blocks. Transverse sections (5 μm) were taken from the blocks and prepared for histochemical and immunohistochemical staining. H&E staining was used for histologic observation.

Electrophoretic Mobility Shift Assay for Measuring NF-κB Activity

MDA-MB-231 cells were plated at a density of 1 × 10⁶ in 100-mm dishes and cultured for 24 hours. Subsequently, the cultures were treated with 60 or 100 μmol/L I3C or DMSO for 24, 48, and 72 hours. I3C (Sigma-Aldrich, St. Louis, MO) was dissolved in DMSO (final concentration, 0.1%) to make a 10 mmol/L stock solution and was added directly to the culture medium at different concentrations. Nuclear extracts were prepared from control and I3C-treated breast epithelial cells as previously described (25, 29, 37) and subjected to analysis for NF-κB DNA-binding activity as measured by electrophoretic mobility shift assay. Using frozen tumor tissue, nuclear proteins were also extracted as described previously (25, 29, 37). Briefly, tissues were minced and incubated on ice for 30 minutes in 0.5 mL ice-cold buffer A composed of 10 mmol/L HEPES (pH 7.9), 1.5 mmol/L KCl, 10 mmol/L MgCl₂, 0.5 mmol/L DTT, 10% NP40, 0.1% IGEPAL CA-630, and 0.5 mmol/L phenylmethylsulfonyl fluoride. The minced tissue was homogenized using a Dounce homogenizer (Kontes Co., Vineland, NJ) followed by centrifugation at 5,000 × g at 4°C for 10 minutes. The supernatant (cytosolic proteins) was collected and kept at −70°C until use. The crude nuclear pellet was suspended in 200 μL buffer B [20 mmol/L HEPES (pH 7.9), 25% glycerol, 1.5 mmol/L MgCl₂, 420 mmol/L NaCl, 0.5 mmol/L DTT, 0.2 mmol/L EDTA, 0.5 mmol/L phenylmethylsulfonyl fluoride, 4 μmol/L leupeptin] and incubated on ice for 30 minutes. The suspension was centrifuged at 16,000 × g at 4°C for 30 minutes. The supernatant (nuclear proteins) was collected and kept at −70°C until use. The protein concentration was determined using bicinchoninic acid protein assay (Fierce Chemical Co., Rockford, IL). Electrophoretic mobility shift assay was done by preincubating 8.0 μg nuclear extract with a binding buffer containing 20% glycerol, 100 mmol/L MgCl₂, 2.5 mmol/L EDTA, 2.5 mmol/L DTT, 250 mmol/L NaCl, 50 mmol/L Tris-HCl, and 0.25 mg/mL poly(deoxyinosinic-deoxycytidylic acid) for 10 minutes. After the addition of IRDye 700-labeled NF-κB oligonucleotide, samples were incubated for an additional 20 minutes. The DNA-protein complexes were electrophoresed in an 8.0% native polyacrylamide gel and then visualized by Odyssey Infrared Imaging System using Odyssey Software Release 1.1.

Western Blot Analysis for Measuring the Protein Levels of Bcl-2, Bax, CXCR4, and MMP-9 Activity

MDA-MB-231 cells were plated on culture dishes and allowed to attach for 24 hours followed by the addition of 60 or 100 μmol/L I3C and incubated for 24, 48, and 72 hours. Control cells were incubated in the medium with DMSO for similar times. Total cell lysates were prepared using the method as described previously (25, 29, 37). Using frozen tumor tissue, nuclear proteins were extracted using the method as described previously (25, 29, 37). Briefly, tissues were minced and incubated on ice for 30 minutes in 0.5 mL ice-cold buffer A, composed of 10 mmol/L HEPES (pH 7.9), 1.5 mmol/L KCl, 10 mmol/L MgCl₂, 0.5 mmol/L DTT, 10% NP40, 0.1% IGEPAL CA-630, and 0.5 mmol/L phenylmethylsulfonyl fluoride. The minced tissue was homogenized using a Dounce homogenizer followed by centrifuging at 5,000 × g at 4°C for 10 minutes. The supernatant (cytosolic proteins) was collected for Western blot analysis. Protein content was quantified with a bicinchoninic acid protein assay (Pierce Chemical Co., Rockford, IL). Electrophoretic mobility shift assay was done by preincubating 8.0 μg nuclear extract with a binding buffer containing 20% glycerol, 100 mmol/L MgCl₂, 2.5 mmol/L EDTA, 2.5 mmol/L DTT, 250 mmol/L NaCl, 50 mmol/L Tris-HCl, and 0.25 mg/mL poly(deoxyinosinic-deoxycytidylic acid) for 10 minutes. After the addition of IRDye 700-labeled NF-κB oligonucleotide, samples were incubated for an additional 20 minutes. The DNA-protein complexes were electrophoresed in an 8.0% native polyacrylamide gel and then visualized by Odyssey Infrared Imaging System using Odyssey Software Release 1.1.

Immunohistochemical Staining for CXCR4 and MMP-9

Fresly harvested tumors grown in the implanted bones were fixed in 10% buffered formalin, decalcified, embedded, and sectioned. The paraffin sections of tumor tissues were deparaffinized then rehydrated through a graded alcohol series. Slides were placed in 10 mmol/L citrate buffer (pH 6.0) and heated in a microwave for 3 minutes. Nonspecific sites were blocked by incubation with Superblock (ScyTek, Logan, UT). Sections were incubated with antibodies to MMP-9 (Calbiochem) and CXCR4 (Santa Cruz Biotechnology, Inc., Santa Cruz, CA), MMP-9 (Santa Cruz Biotechnology), and β-actin (Sigma-Aldrich). A representative blot from three independent experiments was presented.

Molecular Cancer Therapeutics

Mol Cancer Ther 2006;5(11). November 2006
Figure 1. Real-time reverse transcription-PCR analysis of CXCR4 genes. Comparative analysis shows the down-regulation of CXCR4 mRNA expression in MDA-MB-231 cells grown in culture after 72 h of treatment with I3C compared with control. *, P < 0.05.

MMP-9 Activity Assay
MDA-MB-231 cells were seeded in a six-well plate (1.0 × 10^5 per well) and incubated at 37°C. After 24 hours, the complete medium was removed and the cells were washed with serum-free medium. The cells were then incubated in serum-free medium supplemented with 60 or 100 μmol/L I3C for 72 hours. MMP-9 activity in the conditioned medium and cell lysate was detected by using Fluorokine E Human MMP-9 Activity Assay kit (R&D System, Inc., Minneapolis, MN) according to the manufacturer’s protocol.

Invasion Assay
The invasive activity of MDA-MB-231 cells with different treatments was tested by using BD BioCoat Tumor Invasion Assay System (BD Biosciences, Bedford, MA) according to the manufacturer’s protocol with minor modification. Briefly, MDA-MB-231 cells (5 × 10^4) with serum-free medium supplemented with 60 or 100 μmol/L I3C were seeded into the upper chamber of the system. Bottom wells in the system were filled with complete medium and the same reagent treatment as the upper chamber. After 48 hours of incubation, the cells in the upper chamber were removed, and the cells, which invaded through the Matrigel matrix membrane, were stained with 4 μg/mL calcein AM in Hank’s buffered saline at 37°C for 1 hour. Then, fluorescence of the invaded cells was read in ULTRA Multifunctional microplate reader (TECAN, Research Triangle Park, NC) at excitation/emission wavelengths of 530/590 nm. These fluorescently labeled invasive cells were also photographed under a fluorescent microscope.

Statistical Analysis
The statistical significance was determined using Student’s t test, and P < 0.05 was considered significant.

Results
Regulation of CXCR4 mRNA Expression by I3C Treatment
A recent study has indicated that the MDA-MB-231 cell line highly expresses CXCR4 (17), and I3C has been shown to possess inhibitory effects on the growth and metastatic abilities of several cancers, including breast cancer (24–27, 29, 38–43). To confirm the alternations of CXCR4 expression after I3C treatment in MDA-MB-231 breast cancer cells, we conducted real-time reverse transcription-PCR analysis for the CXCR4 gene (Fig. 1). The altered mRNA expression of CXCR4 was observed as early as 24 hours after I3C treatment and was significantly more evident after 72 hours treatment. The results of reverse transcription-PCR analysis for CXCR4 gene along with published in vitro results suggest that I3C could regulate the transcription of genes involved in angiogenesis, tumor cell invasion, and metastasis (27–30, 38, 44–46). However, we asked the most important question whether I3C could affect tumor growth in the bone environment, which is answered by the following experiments.

Inhibition of Bone Tumor Growth by I3C
We report here, for the first time, the use of the SCID-hu animal model (34) as an experimental model for breast cancer bone metastasis and the effect of I3C in vivo in impeding tumor growth and metastasis. The experimental design and treatment schedule is depicted in Fig. 2. Currently, there are no reports in the literature documenting any effect of the host (i.e., mouse) environment on the bone xenograft (34, 47). Under our experimental conditions, administration of I3C by gavage treatment caused 50% reduction in tumor volume (Fig. 3A) compared with control group. The statistical analysis indicated that compared with the control group, bone tumor growth was significantly lower in the intervention (P < 0.05) group. The experiment was terminated 3 months after I3C treatment. We found that I3C (1 mg I3C/d/mouse) significantly inhibited breast cancer bone tumor growth (Fig. 3A and B) and osteolysis, documenting the efficacy of I3C in inhibiting breast cancer cell growth in the experimental model of bone metastasis. Figure 3B indicates ex vivo bone tumor X-ray showing bone osteolysis and

Figure 2. Flowchart representation of in vivo experimental design and treatment schedule. The human fetal bone was implanted s.c. in the right flank of female homozygous CB17 SCID mice through a small skin incision with the open marrow cavity against the mouse muscle. Four weeks after the bone implantation, suspensions of MDA-MB-231 cells (2 × 10^6 cells) were injected through the mouse skin directly into the marrow of implanted fetal bone. The mice in the intervention group were given I3C (1 mg I3C/d/mouse) by oral gavage everyday for 5 wks as soon as the majority of the bone implants began to enlarge (now called a “bone tumor”) as determined by caliper measurements (23rd day after cancer cell injection). The control mice received only saline without I3C. All animals were sacrificed at 12 wks after the start of the experiment.
tumor growth of MDA-MB-231 cells in the control and I3C
treatment group. Arrow indicates less residual bone in the
control group (Fig. 3B, I) relative to I3C-treated group (Fig.
3B, II). We found that treatment with I3C significantly
inhibited cellular growth of breast cancer cells in a bone
environment and also inhibited bone osteolysis in SCID-hu
mice, showing an inhibitory effect of I3C in an in vivo
model of experimental breast cancer bone metastasis. At
autopsy, all tumors were found localized at the site of
injection with essentially spread to no other organs. Our
treatment conditions did not cause any weight loss of the
animals, suggesting that I3C did not induce any deleterious
effects under the present experimental conditions. These
results show, for the first time, the efficacy of I3C in
inhibiting tumor growth in an experimental breast cancer
bone metastasis model.

Tumor Histology and Inhibition of Osteolysis by I3C

H&E histology evaluation showed typical osteolytic bone
metastasis of MDA-MB-231 cells in SCID-hu animals
(Fig. 3C). Human fetal bones s.c. implanted in SCID mice,
as shown by representative figure, were randomly selected
from each group (Fig. 3C, I). Suspensions of MDA-MB-231
cells (2 × 10^5 cells in a volume of 20 μL PBS) were injected
using a 27-gauge needle through the mouse skin directly
into the marrow of implanted fetal bone. Black arrow
represents the site of significant progression of tumor
growth as shown by representative figure from untreated
group (Fig. 3C, II). Figure 3C (III) shows representative
figure of mice from treatment group photographed at the
time of sacrifice. Red arrow represents the site of significant
regression of tumor growth in I3C treatment group
(Fig. 3C, III). In the control group, continuous osteolytic
and invasive growth into the adjacent bone resulted in
gradual loss of the bone structure. Yellow arrows, residual bone surrounded by invasive tumor cells. VI, histologic evaluation showing I3C treatment resulted in pronounced death of tumor cells (yellow arrows) and preservation of the bone structure (black arrowhead).

Inhibition of NF-κB Activation by I3C

To answer the most important question, whether treat-
ment of animals with I3C could effectively target a specific
signaling molecule, such as NF-κB in tumor tissues, nuclear
extract from frozen tumor tissues (randomly selected from
control and treatment groups) was subjected to analysis for
NF-κB DNA-binding activity as measured by electropho-
etric mobility shift assay. The results are shown in Fig. 4B,
which clearly show that I3C was effective in down-regulating
NF-κB DNA-binding activity in animal tumors receiving I3C
compared with control tumors. These in vivo results were similar to our in vitro findings (Fig. 4A), including our previously published data (27, 29), suggesting
that the inactivation of NF-κB is at least one of the molecular
mechanisms by which I3C induced antitumor activity in our
Experimental animal model. The specificity of NF-κB DNA-binding activity was confirmed by supershift assays (Fig. 4C). Retinoblastoma (Rb) protein level served as nuclear protein loading control. These data also provide proof of principle and suggest that I3C could be an effective antitumor agent in an animal model of breast cancer bone metastasis, which is mediated by inactivation of NF-κB DNA-binding activity (27, 29). The inactivation of NF-κB may decrease the expression of NF-κB downstream genes, such as CXCR4 and Bcl-2 proteins with concomitant increase in the proapoptotic protein Bax in addition to the alterations in the expression of genes which are involved in the osteolytic and apoptotic processes.

Effect of I3C on the Expression of Bcl-2, Bax, CXCR4, and MMP-9

The effect of CXCR4 expression in tumor tissue (tissue randomly selected from control and treatment groups) was studied by Western blot analysis, and we found a significant down-regulation in the expression of CXCR4 and MMP-9 in tumors of the I3C-treated group (Fig. 5B, lane 2) compared with the untreated group (Fig. 5B, lane 1). These in vivo results were similar to our in vitro findings (Fig. 5A, lanes 2 and 3). It is known that CXCR4 protein family significantly increases the viability of CD34(+) T-cell precursors by modulating the expression of Bcl-2 and Bax genes and consequently stimulating the proliferation of CD34(+) thymic precursor cells (48). We found that I3C caused a decrease in the expression of Bcl-2 and an increase in the expression of Bax in I3C-treated tumors (Fig. 5B) and MDA-MB-231-cells (Fig. 5A). These results are consistent with our previously published in vitro data on Bax and Bcl-2 expression in cells treated with I3C (24, 25). Moreover, recent evidence indicates that deregulation of MMP expression contributes to invasion, metastasis, and tumor angiogenesis (49–55). For example, overexpression of MMP-2 and MMP-9 has been reported to be positively associated with the progression of human cancers (49–58). Our present results suggest that I3C can inhibit metastasis of breast cancer cells mediated by the inhibition of MMP-9 expression. These results also provide evidence in support of our hypothesis, implicating the role of CXCR4 in metastatic tumor cells by controlling tumor cell migration. Remarkably, we show that CXCR4 may protect tumor cells by reducing apoptotic processes, resulting in increased tumor cell growth and viability. This protective effect involves both the down-regulation of the proapoptotic Bax protein and the up-regulation of the antiapoptotic Bcl-2 protein. The level of Bcl-2 expression was found to be significantly down-regulated in I3C-treated animal tumors and MDA-MB-231 cells (Fig. 5A and B). In contrast, the expression of Bax was found to be significantly up-regulated in I3C-treated animals and MDA-MB-231 cells (Fig. 5A and B). Collectively, our results implicate the role of CXCR4/ NF-κB pathway as a critical event during I3C-induced apoptosis and inhibition of tumor cell proliferation. These preclinical data suggest that I3C could have beneficial effects in patients with breast cancer bone metastasis.

Analysis of CXCR4 and MMP-9 Expression by Immunohistochemistry

Previous studies have shown overexpression of chemokine receptor CXCR4 and/or SDF-1α in metastatic breast cancer cells (6), and these chemokine protein families are also known to activate other metastasis-promoting molecules, such as MMPs, in breast cancer cells (17). Thus, agents that directly block the expression of CXCR4 could also down-regulate MMP-9 expression, which could also be partly due to inactivation of NF-κB, and this could have great therapeutic potential for treating metastatic breast cancer. To verify the alteration of CXCR4 and MMP-9 by I3C treatment, we conducted immunohistochemical analysis for CXCR4 and
MMP-9 protein. The expression of CXCR4 (Fig. 6, top) and MMP-9 (Fig. 6, bottom), two important molecules of tumor cell survival and metastasis that are downstream of NF-κB, was significantly decreased in MDA-MB-231 bone tumors in SCID-hu mice receiving the I3C (Fig. 6B and D) compared with control (Fig. 6A and C). Overall, our results suggest that the inactivation of NF-κB may indeed reduce the levels of CXCR4 and MMP-9 in the tumor microenvironment resulting in antitumor activity of I3C in our experimental model of breast cancer bone metastasis.

Regulation of the Expression and Activity of MMP-9 by I3C

Treatment with I3C showed down-regulation of MMP-9 by Western blot analysis. Furthermore, we found that I3C significantly inhibited the activity of MMP-9 in conditioned medium in MDA-MB-231 cell culture (Fig. 7A). Together, these results clearly suggest that I3C down-regulates MMP-9; thus, I3C could enhance the antitumor and antimetastatic activity in MDA-MB-231 breast cancer cells. To further support the role of MMP in breast cancer metastasis, we conducted cell invasion assay.

I3C Inhibits Cancer Cell Invasion

It has been well known that MMP-9 is an important molecule involved in cancer cell invasion and metastasis. Because I3C inhibited the expression and activity of MMP-9, we tested the effects of I3C on cancer cell invasion. We found that I3C inhibited invasion of MDA-MB-231 cells through Matrigel matrix membrane compared with control (Fig. 7B and C).

Discussion

The importance of this study lies in the use of a SCID-hu mouse model system that resembles human disease and may also be more relevant to clinical breast cancer than other animal models. Typical osteolytic bone metastasis of MDA-MB-231 cells in a SCID-hu model showed continuous osteolytic and invasive processes resulting in the loss of the bone structure and increased tumor growth, which are believed to be associated with activation of CXCR4/NF-κB signaling pathways (6, 17), similar to those observed in many human breast cancers (6, 17, 59). Our present observations are also in direct agreement with reports showing a significant elevation of CXCR4 in models of metastatic breast cancer with immunodeficient mice (60). Thus, our SCID-hu animal model of breast cancer bone metastasis has offered us an experimental model, in which we have tested the effects of I3C as a chemopreventive or therapeutic agent against breast cancer.

I3C has been shown to target multiple pathways of tumorigenesis, including proliferation, apoptosis, angiogenesis, invasion, and tumor-induced immunosuppression in various breast tumor cell lines (23–27, 29, 38–43, 61–64). Several studies have suggested that chemokine receptor CXCR4 is overexpressed in metastatic breast cancer cells (6). However, no reports exist in the literature elaborating how I3C inhibits CXCR4, a metastatic promoting molecule in vivo model of breast cancer cells. In the current report, we show, for the first time, that I3C is an effective agent in the inhibition of cellular growth of breast

Mol Cancer Ther 2006;5(11). November 2006
cancer in a bone environment using an animal model of experimental breast cancer bone metastasis. The antitumor activity of I3C was regulated by the inhibition of CXCR4, which is known to regulate the organ-specific trafficking and invasion of metastatic tumor cells mediated by inactivation of NF-κB.

Chemokines and chemokine receptors are believed to play important roles in metastatic breast cancer (6, 59). The most common sites of breast cancer metastases include the lung, liver, lymph node, and bone, in which CXCR4 was found to be highly expressed (6). Moreover, NF-κB, a key transcription factor, may regulate the expression and function of CXCR4, which in turn may activate other metastasis-promoting molecules, such as MMP-9 in breast cancer cells (17). A recent study also showed that the promoter region of CXCR4 has several NF-κB-binding sites, suggesting that there may be a crosstalk between NF-κB and CXCR4 (17). In models of metastatic breast cancer, the administration of neutralizing antibodies or peptide antagonists of CXCR4 substantially reduced lung metastases (6, 65). CXCR4 expression was found to be up-regulated in murine lung metastases in a "conditioned medium of MDA-MB-231 breast cancer cells. B, I3C induced inhibition of MDA-MB-231 cell invasion. Invasion assay showed that I3C significantly inhibited the invasion of MDA-MB-231 cells through Matrigel matrix membrane. C, value of fluorescence from the invaded MDA-MB-231 breast cancer cells. The value indicates the comparative amount of invaded MDA-MB-231 breast cancer cells. *, P < 0.05; **, P < 0.01.

Several other potential mechanism(s) could also explain the regulation of CXCR4 associated with breast cancer metastasis (Fig. 8). One potential mechanism that has been associated with CXCR4-related inhibition of apoptosis is that CXCR4 reduces the apoptotic rate by increasing the level of Bcl-2 expression and decreasing the level of Bax expression (48). In our in vivo and in vitro data support this concept because inhibiting NF-κB production by targeting CXCR4 activity in the SCID-hu tumors led to a decrease in Bcl-2 protein levels, a concomitant increase in the proapoptotic protein Bax, and decreased MMP-9 expression. These results are consistent with our previously published in vitro data on Bax/Bcl-2 expression (24, 25) and provide support for our hypothesis, implying the role of CXCR4 in metastatic tumor cells, suggesting that I3C could be beneficial in patients with breast cancer bone metastasis.

In addition to these mechanism(s), MMP-9 has also been reported to be involved in cancer invasion and metastasis (52, 53, 55). Several studies have shown that MMPs play prominent roles in metastasis (49–53, 55). MMP-9 has been...
implicated in metastasis because of its role in the degradation of basement membrane collagen. In addition, MMP activity is known to play a role in both normal and cancer-induced bone remodeling. It has been reported that NF-κB and MMPs are involved in the processes of tumor invasion and metastasis (67). In this study, we found that I3C inhibited the expression, secretion, and activation of MMP-9, suggesting that I3C could prevent bone matrix degradation and reduce breast cancer cell growth in human bone implanted in SCID mice. The down-regulation of MMP-9 by I3C could be mediated by the down-regulation of NF-κB whose binding site has been found in the promoter of MMP-9 (67, 68). These results suggest that I3C could promote the antitumor and antimetastasis activities in SCID-hu model of breast cancer bone metastasis partly through the down-regulation of MMP expression (Fig. 8). Because we observed that I3C down-regulated MMP-9, we tested the effects of I3C on the invasion of MDA-MB-231 breast cancer cells and found that I3C inhibited the invasion of MDA-MB-231 breast cancer cells. These results corresponded with MMP-9 data, showing that I3C could inhibit cancer cell invasion partly through down-regulation of MMP-9.

In summary, I3C treatment may exert its antiproliferative, antiangiogenic, and proapoptotic effects by decreasing CXCR4 and MMP-9 expression, which was associated via the down-regulation of the NF-κB pathway. In this report, we have shown that reduced expression of CXCR4 by I3C limits cellular growth of breast cancer cells in a bone environment and prevents breast cancer bone metastasis. These results further extend the potential therapeutic application of I3C for metastatic breast cancer.

Acknowledgments

We thank Carrie Koerner for her editorial assistance.

References