### Title and Subtitle

**USE OF HUMIDEX TO SET THERMAL WORK LIMITS FOR EMERGENCY WORKERS IN PROTECTIVE CLOTHING.**

### Authors

W.R. Santee and R.F. Wallace

### Performing Organization

Biophysics and Biomedical Modeling Division  
U.S. Army Research Institute of Environmental Medicine  
Building 42 - Kansas Street  
Natick, MA 01760

### Sponsoring/Monitoring Agency

U.S. Army Medical Research and Materiel Command  
Fort Detrick, MD 21702

### Abstract

Humidex (HD) is a temperature-humidity index used to provide guidance concerning heat hazards based on normal activities and clothing. Personnel responding to security or NBC threats often wear body armor or protective clothing which can impose a greater heat burden. Our proposal was to use HD to provide short-term guidance for specialized clothing. Our Heat Strain Decision Aid model was used to calculate rectal temperature (Tre) values for combinations of temperature and humidity. Corresponding HD values were calculated using Ta, Tdp, and constants for other inputs. Activity levels were light (139 W m⁻²), medium (236 W m⁻²) and heavy (333 W m⁻²). Equations were calculated for the relationship between Tre and HD. The mean R² value for 24 polynomial equations was 0.97. To evaluate the utility of the prediction, the difference between Tre predicted by the equation and the model was calculated. The average maximum difference was 0.71°C. There was a clear relationship between HD and predicted thermal strain, but differences increase as Tre increases, until some differences fall outside of acceptable levels. For general use, the upper limit of the relationship between HD and Tre could be used to set conservative guidelines for a given level of thermal strain (Tre) and activity, but for true emergencies, better guidance is necessary.
USE OF HUMIDEX TO SET THERMAL WORK LIMITS FOR EMERGENCY WORKERS IN PROTECTIVE CLOTHING

William R. Santee* and Robert F. Wallace

U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts 01760, USA
*corresponding author william.santee@na.amedd.army.mil

Introduction
Humidex (HD) is a temperature-humidity index (1) developed and used primarily in Canada. HD and other heat indices, usually obtained from weather services, are widely disseminated by media outlets to provide general guidance to the public concerning comfort and potential heat hazards (2). Although usually not specified, guidance for using heat indices is presumably based on normal activities and clothing. Unfortunately police, military and other emergency personnel, responding to security threats, overt violence, or nuclear, biological, or chemical (NBC) contamination, including accidents, must wear either protective body armor or NBC protective clothing which can impose a greater heat burden than most normal clothing. Although thermal models (3) provide more precise guidance, at present the public does not have ready access to those models, nor the requisite inputs for novel applications. Given the wide availability via the media and simplicity of heat indices, it would be useful to adapt civilian indices to emergency conditions.

In a prior study (3), we compared HD to the Heat Index (HI), the U.S. National Weather Service index for heat exposure, by using body core temperatures predicted with our Institute’s Heat Stress Decision Aid (HSDA). Input limits, including a minimum value for Ta of 26.7°C, were based on guidance for HI. In that study, HI and HD were considered equivalent, but HD was preferred as it used dew-point temperature rather than relative humidity. An additional advantage of HD is that it is not limited by the 26.7°C threshold imposed on HI.

Our proposal was to use HD to provide short-term (30-120 min) heat exposure guidance for emergency workers wearing specialized clothing.

Methods
HSDA (3) was used to calculate core temperatures (Tcore) for different combinations of air temperature and relative humidity (RH). Corresponding HD values were calculated by estimating Tdp from Ta and RH, then using a simplified equation (4) to calculate HD from Ta and Tdp. Constant values were selected for other model inputs. Activity levels used were light (139 W·m⁻²), medium (236 W·m⁻²) and heavy (333 W·m⁻²). When simulating body armor, insulation (Rc) and water vapor permeability (Re) values were 0.27 m²·K·W⁻¹ and 0.43 m²·Pa·W⁻¹. For fully encapsulated NBC clothing (Level A PPE), Rc = 0.27 m²·K·W⁻¹ and Re = 0.41 m²·Pa·W⁻¹. Other constants used in the simulation were subject height 180 cm, weight 80 kg, wind 2.5 m·s⁻¹ and no solar radiation. A second dataset was generated for an indoor wind speed of 0.1 m/s. Second order polynomial equations were then calculated for the relationship between Tcore and HD. To set an upper thermal limit for the derivation of the equations, the maximum value included in the data sets was Tcore ≤ 42. For our evaluation, 2861 sets of activities and environmental conditions were used.

Results
The mean R² value for all forty-eight polynomial equations comparing the HSDA simulations and the HD index was 0.97. Equations for 60 min model simulations are presented in Table 1. To evaluate the utility of these polynomial predictions, the difference between Tcore predicted by the equation and the model was calculated. The upper limit for this evaluation was set at 41°C – when most individuals would be experiencing significant heat injuries. The average maximum difference was 0.36°C. As environmental conditions became more extreme, with a corresponding increase in thermal strain, the predicted Tcore values become less precise due to increased variability in the model output (Figure 1), with predicted values in the upper range exceed ±0.25°C. The data can be used to set HD thresholds for a given level of thermal strain (Tcore) and activity. When predicted Tcore approach 41°C, an under prediction of 0.25°C would not be
acceptable. If the maximum $T_{core}$ value is $\geq 39.5^\circ C$ values, the deviation between the values predicted with the second order equations and the HSDA values are minimized. At 39.5°C most individuals will be heat casualties. Figure 2 compares $T_{core}$ values calculated for the two wind conditions.

**Figure 1.** HSDA predicted core temperature at 60 min, wind=2.5 m s$^{-1}$ versus Humidex at 3 work intensities, Light =139 W m$^{-2}$ ($\bigcirc$), Medium = 236 W m$^{-2}$ (X) and Heavy = 333 W m$^{-2}$($\triangle$), in Chemical Protective (CP) clothing. Solid lines represent second order linear fit to HSDA values. Dashed lines at 39.5°C and 41°C represent critical $T_{core}$ values for heat casualties.

**Figure 2.** HSDA predicted core temperature at 60 min, wind=0.1 m s$^{-1}$ versus Humidex for Light (139 W m$^{-2}$) work in Chemical Protective (CP) clothing. Dashed lines at 39.5°C and 41°C represent critical $T_{core}$ values for heat casualties.

**Discussion**

During an emergency operation, the maximum continuous exposure limit that can be sustained without incurring permanent thermal injury – or which allows a sustained work-rest cycle – is of critical importance. A complete discussion of those limits is beyond the scope of this paper. When the predicted $T_{core}$ values approach critical upper thermal thresholds, there is less tolerance for variability. Deviations from $T_{core}$ values predicted by the equations tend to increase in the upper, more extreme, ranges of HD, $T_{core}$ and activity levels. When these upper limits ($T_{core} \geq 41^\circ C$) are approached, the importance of evaporative cooling, and thus humidity, in determining core temperatures, increases. When $T_s$ is greater than skin temperature, greater clothing insulation, normally a disadvantage, may now afford protection from convective heat gain. The crossover of $T_{core}$ values for 2.5 and 0.1 m s$^{-1}$ wind speeds in Figure 2 indicates that the direction of
convective heat transfer has been reversed. Simple heat indices, which are based on a constant relationship between $T_a$ and humidity, fail to adequately reflect the increasing importance of humidity. There is a distinct preference by government agencies and private industry to present thermal guidance in look-up or survival tables, but the necessity of generating multiple tables to compensate for each significant difference in parameters eventually becomes too unwieldy. Figure 1 clearly illustrates the problem of using HD or other heat indices during emergencies, when personnel may be pushed to perform beyond normal thermal limits.

**Table 1.** Predictive Equations for core temperature [$T_{core} = \beta_0 + \beta_1 \cdot HD + \beta_2 \cdot HD^2 \,(^\circ C)$] from Humidex (HD) for Body Armor (BA) and Chemical Protective (CP) Clothing for 2 wind speeds

<table>
<thead>
<tr>
<th>GARMENT</th>
<th>WIND m$\cdot$s$^{-1}$</th>
<th>TIME MIN</th>
<th>ACTIVITY W$\cdot$m$^{-2}$</th>
<th>$\beta_0$ ND</th>
<th>$\beta_1$ ND</th>
<th>$\beta_2$ ND</th>
<th>$R^2$ ND</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 2.5</td>
<td>60</td>
<td>139</td>
<td>37.67303</td>
<td>-0.02627</td>
<td>0.00075003</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>CP 2.5</td>
<td>60</td>
<td>139</td>
<td>37.64962</td>
<td>-0.01398</td>
<td>0.00057254</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>BA 2.5</td>
<td>60</td>
<td>236</td>
<td>38.19958</td>
<td>-0.02448</td>
<td>0.00088363</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>CP 2.5</td>
<td>60</td>
<td>236</td>
<td>38.23653</td>
<td>-0.01035</td>
<td>0.0007054</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>BA 2.5</td>
<td>60</td>
<td>333</td>
<td>38.69937</td>
<td>-0.02056</td>
<td>0.00096736</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>CP 2.5</td>
<td>60</td>
<td>333</td>
<td>38.77277</td>
<td>-0.00191</td>
<td>0.00081473</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>BA 0.1</td>
<td>60</td>
<td>139</td>
<td>37.75628</td>
<td>-0.00360</td>
<td>0.00041062</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>CP 0.1</td>
<td>60</td>
<td>139</td>
<td>37.73435</td>
<td>0.00268</td>
<td>0.0003148</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>BA 0.1</td>
<td>60</td>
<td>236</td>
<td>38.41555</td>
<td>-0.01711</td>
<td>0.00083443</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>CP 0.1</td>
<td>60</td>
<td>236</td>
<td>38.34544</td>
<td>0.00269</td>
<td>0.00054633</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>BA 0.1</td>
<td>60</td>
<td>333</td>
<td>38.87185</td>
<td>-0.01407</td>
<td>0.0010400</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>CP 0.1</td>
<td>60</td>
<td>333</td>
<td>38.95729</td>
<td>0.00682</td>
<td>0.00078602</td>
<td>0.99</td>
<td></td>
</tr>
</tbody>
</table>

**Conclusion**

There was a clear relationship between HD and predicted thermal strain. For less extreme thermal limits ($T_{core} \leq 39.5^\circ C$), the polynomial equations relating HD to $T_{core}$ may be useful. However, at the upper limit for human tolerance ($T_{core} \geq 41^\circ C$) under extreme conditions, differences between the HSDA model and HD predictions for the polynomial equations are too large to provide adequate guidance for personnel management during emergency situations.

**References**


**Disclaimer**

Approved for public release; distribution is unlimited. The opinions or assertions contained herein are the private views of the author(s) and are not to be construed as official or reflecting the views of the Army or the Department of Defense. Any citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement of approval of the products or services of these organizations.