Award Number: W81XWH-05-2-0086

TITLE: Airport, Academia, Industry, Military, State (AAIMS) Consortium to Test Military/Civilian Communications and FDDMTF Deployment for OCONUS Mass Casualties

PRINCIPAL INVESTIGATOR: Colin Mackenzie, M.D.

CONTRACTING ORGANIZATION: University of Maryland
 Baltimore, MD 21201

REPORT DATE: October 2006

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
 Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
 Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Title: Airport, Academia, Industry, Military, State (AAIMS) Consortium to Test Military/Civilian Communications and FDDMTF Deployment for OCONUS Mass Casualties

Dates Covered: 15 Sep 2005 - 14 Sep 2006

Author(s): Colin Mackenzie, M.D.

Performing Organization: University of Maryland

Abstract:

Military/Civilian Medical Mutual Agreements are rarely tested but would be needed for outside Continental US (OCONUS) Mass Casualty (MASCAL) events when military bed capacity was exceeded. This AAIMS project trained Civilian and Military emergency response personnel in NDMS and NIMS for MASCAL during 3 Table top Exercises (TTX) and a Functional Exercise (FX) which:

1. Tested implementation of Mutual Aid Agreement between WRAMC NDMS and Maryland EMS for MASCAL reception at BWI airport and access to civilian surge capacity bed in NDMS Hospitals,
2. Assessed field deployment of the FDDMTF for MASCAL triage,
3. Evaluated military/civilian communications,
4. Tested the usefulness of wireless video communications in promoting EOC Situational Awareness.

AAIMS was the first Maryland NDMS exercises in more than 20 years. Significant levels of military-civilian collaboration were established and Inter Agency cooperation and planning optimized for activation of NDMS. AAIMS facilitated revisions of the Maryland Emergency Operations Plan to Include the NDMS activation plan across all key emergency response State Agencies. Maryland is now set to become the first state to have the NDMS plan incorporated into their Governor’s Emergency Operations Plan. The FX After action Report made task specific recommendations and suggested three working groups to implement these recommendations. A future full scale NDMS exercise is planned, centered in Maryland. Task specific recommendations from the AAIMS NDMS FX are shown in Appendix 1.
Table of Contents

Cover .. 1
SF 298 ... 2
Table of Contents ... 3
Abstract ... 4
Introduction ... 5
Executive Summaries (Statement of Work: Task 3, Task 6) 6
Body .. 9
Key Research Accomplishments ... 24
Reportable Outcomes ... 25
Conclusions .. 26
Appendices ...
 Appendix 1 (Task Specific Recommendations from FX) 28
 Appendix 2 (Acronyms) ... 34
 Appendix 3 (Agencies) ... 35
 Appendix 4 (AAIMS Planning Meeting Attendees) 36
 Appendix 5 (VIP List) ... 37
 Appendix 6 (TTX 1 AAR) .. 39
 Appendix 7 (TTX 2 AAR) .. 49
 Appendix 8 (FX AAR) .. 61
 Appendix 9 (VA-DoD AAR) ... 73
 Appendix 10 (Web EOC) ... 76
 Appendix 11 (Incident Action Plan) .. 79
 Appendix 12 (Publications Listed in Reportable Outcomes) 102
 Appendix 13 (Supporting Data—Photos) .. 125
Abstract

Military/Civilian Medical Mutual Agreements are rarely tested but would be needed for outside Continental US (OCONUS) Mass Casualty (MASCAL) events when military bed capacity was exceeded. This AAIMS project trained Civilian and Military emergency response personnel in NDMS and NIMS for MASCAL during 3 Table Top Exercises (TTX) and a Functional Exercise (FX) which a) Tested implementation of Mutual Aid Agreement between WRAMC NDMS and Maryland EMS for MASCAL reception at BWI Airport and access to civilian surge capacity bed in NDMS Hospitals, b) Assessed field deployment of the FDDMTF for MASCAL triage, c) Evaluated military/civilian communications d) Tested the usefulness of wireless video communications in promoting EOC Situational Awareness. AAIMS was the first Maryland NDMS exercises in more than 20 years. Significant levels of military-civilian collaboration were established and Inter Agency cooperation and planning optimized for activation of NDMS. AAIMS facilitated revisions of the Maryland Emergency Operations Plan to include the NDMS activation plan across all key emergency response State Agencies. Maryland is now set to become the first state to have the NDMS plan incorporated into their Governor's Emergency Operations Plan. The FX After Action Report made task specific recommendations and suggested three working groups to implement these recommendations. A future full scale NDMS exercise is planned, centered in Maryland. Task specific recommendations from the AAIMS NDMS FX are shown in Appendix 1.
Introduction

Medical mutual aid is the redistribution of personnel, facilities, equipment or supplies to those in need in times of crisis (National Defense Research Institute and Rand Health Triage for Civil Support -- Using Military Medical Assets to Respond to Terrorist Attacks). Medical mutual aid provides surge capacity and capability that is immediately operational, reliable, and cost effective; but requires coordination of military/civilian physical and personnel resources among several agencies. The purpose of this research was to evaluate military/civilian communications, assess deployment of the Forward Deployable Digital Medical Treatment Facility (FDDMTF), and test implementation of the Mutual Aid Agreement between the Walter Reed Army Medical Center (WRAMC), the National Disaster Medical System (NDMS) and the civilian Maryland Emergency Medical Services System (MIEMSS), to access civilian NDMS hospitals in Maryland to accommodate ‘surge capacity’ for hospital beds. The Airport, Academia, Industry, Military, State (AAIMS) project was to exercise notification to the Maryland EMS of an outside of the continental U.S. (OCONUS) Mass Casualty (MASCAL) event that required coordination of military/civilian bed surge capacity. In addition, the AAIMS project evaluated whether fixed and mobile video images could improve Emergency Operation Center (EOC) situational awareness.

This Final Report is presented with the After Action Report from the first Table Top Exercise (TTX 1) (Task 3) and the After Action Report from the Functional Exercise (FX) (Task 6) as the primary deliverables. The recommendations and improvement actions needed for a future large scale NDMS activation exercise are shown in Appendix 1.

The Final Report recognizes the important input into earlier drafts of the After Action Reports for TTX 1 and the FX by members of the AAIMS planning group. Particular mention should be made for the valuable input from John Donohue (MIEMSS), LTC Philip Wasylina (WRAMC-NDMS), George Mitchell (MEMA), and Chief ‘Woody’ Cullum and colleagues from BWI Fire and Rescue.
Executive Summaries

Executive Summary of TTX 1 (Statement of Work: Task 3)

This executive summary reports on the Airport, Academia, Industry, Military, State (AAIMS) Consortium Table Top Exercise (TTX), a one-day exercise held on Tuesday, July 12, 2005 in preparation for a functional exercise in May 2006. The exercise was co-sponsored by: The National Study Center for Trauma and EMS, the Maryland Institute for Emergency Medical Services Systems (MIEMSS) and the Maryland Emergency Management Agency (MEMA)

The TTX applied incident command structure and resources for Mass Casualty (MASCAL) reception, activation of the National Disaster Management System (NDMS) reception plan, and exercising of the Mutual Aid Agreement between Walter Reed Army Medical Center (WRAMC) and MIEMSS to access civilian surge capacity beds.

The TTX provided an excellent introduction to NDMS and face to face interactions with military partners for participants who had little or no previous experience in NDMS activation. The TTX identified several weaknesses in coordination among the agencies, personnel and facilities responding to the MASCAL scenario. In a real event these shortcomings could have seriously impaired the expeditious emergency management and distribution of military casualties to civilian hospital surge capacity.

Ten recommendations were made in response to five major findings (see summary findings on pages 10 to 12 from the evaluations of the TTX) and from self evaluations by the participants. The recommendations included review of existing NDMS MOU’s, increased training and NDMS exercises, development of operational protocols for MASCAL reception, triage, transportation and staging. It was further recommended that military and civilian NDMS partners should meet to establish the NDMS reception plan, both for military casualty access to civilian hospitals and vice versa. NDMS hospitals should have a reception team and performance measures for timely acceptance of MASCAL, and they should exercise their individual Emergency Operation Centers. NDMS hospitals should jointly develop procedures for common tasks related to NDMS activation, sharing of resources and assets for likely MASCAL scenarios. Maryland NDMS should have a medical reception team responsive in less than twelve hours. Communication capability should be enhanced between NDMS hospitals and a single state agency and all TTX participants should be trained in command and control structure and communication procedures. Future NDMS TTX should include organizational and exercise control changes to improve information flow and learning.
Executive Summary of FX (Statement of Work: Task 6)

The exercise was co-sponsored by: The National Study Center for Trauma and EMS, the Maryland Institute for Emergency Medical Services Systems (MIEMSS), Walter Reed Army Medical Center (WRAMC/NDMS) and the Maryland Emergency Management Agency (MEMA).

The FX applied National Incident Management System (NIMS) Incident Command Structure (ICS) and resources for Mass Casualty (MASCAL) reception, activation of the National Disaster Management System (NDMS) reception plan, and exercising of the revised Mutual Aid Agreement between Walter Reed Army Medical Center (WRAMC) and MIEMSS to access civilian surge capacity beds through the MOA with BWI Fire and Rescue.

The FX provided a test of the excellent face to face interactions with military partners during the prior 12 months of planning and an introduction to field application of NIMS, ICS, NDMS and MASCAL reception for participants who had little or no previous experience in NDMS activation. The FX identified several issues that in a real event could have affected the expeditious emergency management and distribution of military casualties to civilian hospital surge capacity.

Key Overall Achievements AAIMS/NDMS

1. First Maryland National Disaster Medical System (NDMS) exercises in more than 20 years.
2. Established significant levels of military- civilian collaboration during more than 20 two hour long meetings.
3. Optimized State Inter Agency cooperation and planning for activation of NDMS in response to natural or man-made mass casualty incidents either in the U.S. or abroad.
4. Exercised the NDMS and National Incident Management System (NIMS) and Incident Command System (ICS) with multiple state agencies and military medical systems (including VAMS) participation and involvement of the majority of civilian NDMS hospitals in Maryland.
5. Facilitated revisions of the Maryland Emergency Operations Plan to include the NDMS activation plan across all key emergency response State Agencies.
6. As a result of the AAIMS/NDMS collaboration and interagency, civilian and military cooperation, Maryland is set to become the first state to have the NDMS plan incorporated into their Governor’s Emergency Operations Plan.
7. Baltimore – Washington Thurgood Marshall International Airport (BWI) has established and exercised procedures for use of a specific site on the airfield to conduct reception and triage of multiple patients and allow transportation to NDMS hospitals that can be activated without impeding normal civilian activities for this busy international airport.
The task specific recommendations and actions needed resulting from the AAIMS Consortium NDMS FX of May 20th, 2006 are shown in Appendix 1.
Statement of Work Tasks:

Task 1: Organize planning meetings between AAIMS Consortium members to train Emergency Management Responders in the Consortium Agencies and in Local and Regional hospitals in NIMS and NDMS template methodologies.

Task 2: Convene a Table Top Exercise (TTX) of AAIMS Consortium members to apply National Incident Management System (NIMS) and NDMS methodologies in responding to Mass Casualties (MASCAL) arriving at Baltimore Washington International Thurgood Marshall Airport from an OCONUS event, and to allow transport and distribution to civilian NDMS hospital surge capacity beds in Maryland.

Task 3: Prepare an After Action Report of the TTX and incorporate the recommendations into the planning process for a Functional Command and Control Exercise with the AAIMS Consortium partners.

Task 4: Conduct a Functional Command and Control Exercise (FX) in conjunction with deployment of the FDDMTF from Ft. Detrick to Baltimore Washington International Thurgood Marshall Airport. Evaluate communications between AAIMS Consortium participants to access surge capacity bed and personnel status in local and regional NDMS hospitals.

Task 5: Assess remote tele-triage and audio-video communications between the field exercise and Emergency Operations Centers (EOCs), and complete a report on the expert opinion of the utility of remote tele-triage.

Accomplishments for each Statement of Work Task:

TASK 1:

NDMS training was carried out for more than 120 EMS/Military personnel. Additionally, through a series of more than 20 two hour-long meetings, significant levels of military-civilian collaboration were established.

TASK 2:

A total of three TTXs were performed in this project. These were the first Maryland NDMS exercises in more than 20 yrs.

The first one-day TTX (TTX 1) was held on July 12, 2005. The TTX applied incident command structure and resources for Mass Casualty (MASCAL) reception, activation of the National Disaster Medical System (NDMS) reception plan, and exercising of the Mutual Aid Agreement between Walter Reed Army Medical Center (WRAMC) and MIEPSS to access civilian surge capacity beds.

TTX 1 provided an excellent introduction to NDMS and face to face interactions with military partners for participants who had little or no previous experience in NDMS activation. It also identified several weaknesses in coordination among the agencies, personnel and facilities responding to the MASCAL scenario. In a real event these shortcomings could have seriously impaired the expeditious emergency management and distribution of military casualties to civilian hospital surge capacity. Ten recommendations were made in response to five major findings, in an effort to improve the response to the future FX.

The second one-day TTX (TTX 2) was performed on February 21, 2006. The goals of the exercise were to test and evaluate the revised NDMS activation plan and MOU jointly developed by MIEPSS/WRAMC & BWI Fire and Rescue; apply the NIMS ICS principles to evaluate communication information resources for CONUS reception of mass casualties; and test the process of activation of the NDMS using voice, data, and other information management systems. Improvements from the first TTX were seen, and four recommendations were made from five findings from TTX 2.

The third TTX (TTX 3) was an information session involving only NDMS hospitals in Maryland, at which an overview of the NDMS plan and of NDMS patient flow and accountability was presented.

TASK 3:

After Action Report—TTX 1

Finding 1: Activation of NDMS in Maryland has never occurred (the only other exercise was in the 1980’s) so that most of the TTX participants had no experience of NDMS response or in interacting with the U.S. Military, our partners in the TTX.

Recommendation 1a

The NDMS operational plan of state agencies should be reviewed and the Memorandum of Understanding (MOU) among all state agencies standardized and updated.
Recommendation 1b

The State, County and Local emergency response personnel should be regularly trained and exercised on the NDMS plan.

Recommendation 1c

Operational protocols are required that identify procedures for mass casualty reception, triage, transportation and staging.

- Conformity between civilian and military NDMS procedures for reception, treatment, on scene command, transportation/staging
- Standardized public information statements for official use
- Identification of airport exit routes to NDMS hospitals recommended access

Finding 2: There was a lack of understanding of the Mutual Aid Agreement and the Incident Action Plan between military and civilian Emergency Management personnel and agencies.

Recommendation 2a

For military contingency operations, NDMS partners should establish which parts of the Mass Casualty reception the military controls, and the procedures and situations in which sharing with civilian authorities will occur. Conversely, procedures for civilian mass casualties accessing military hospital bed surge capacity should be developed.

- Federal, military, state, local, industry, healthcare, and academia NDMS partners should meet to improve their mutual role understanding for NDMS activation, unified command performance and information flow.
- NDMS Incident Command training is required to improve liaison with functional response units and promote situational awareness among the civilian and military NDMS responders.

Finding 3: NDMS Hospitals have no plan for receiving the MOU agreed upon number of casualties within a finite time window.

Recommendation 3a

NDMS Hospitals should have a reception team and should define performance measures for admission of their designated number of NDMS Mass casualties.

Recommendation 3b

Each NDMS Hospital should regularly exercise their Emergency Operation Centers, activate and evaluate the NDMS plans to open military and civilian liaisons, find NDMS beds, and transport and practice preparations to receive mass casualties.
Recommendation 3c

NDMS hospitals should jointly develop procedures for common tasks related to NDMS activation, and determine resource and asset sharing for likely "what if" NDMS scenarios.

Recommendation 3d

The Maryland NDMS should have a “medical reception team” that can respond in less than 12 hours for mass casualty triage, treatment, transport and to take on Incident Command responsibilities.

Finding 4: Communication failures between the Incident Site and both military and civilian, city and state agencies and hospitals, prevented NDMS partners from receiving accurate and timely notice of NDMS mass casualty status and transports, to prepare for their coordinated response.

Recommendation 4a

There should be duplex voice, data and image communication capabilities between NDMS hospitals, and unified command patched through a single state agency.

Recommendation 4b

All exercise participants should be trained in medical management, command and control structure and communication procedures.

- Improve coordination and liaison between Military, Airport and MIEMSS
- Refine and communicate policies and procedures for NDMS Reception Center
- Unified Command should brief all sections, and develop and communicate the Incident Action Plan.

The Functional exercise in May 2006 should test specific improvements instituted as a result of this exercise and should include a focus on establishing Incident Command, communications between all agencies and public information measures.

Finding 5: Future TTX need organizational changes:

- All participants in a single room to improve information flow
- Easier access to computers/Web EOC
- Tighter control of TTX by exercise controllers/facilitators
- Mentoring by NDMS expert during TTX
- 100 patients were insufficient to “stress” the NDMS system
After Action Report—TIX 2

Summary Findings & Recommendations:

A. Mission Execution

Finding 1: Each entity understood their roles in relation to the incident at hand. Command and control was quickly established with minimal disruption. Requisite reporting procedures were followed according to established guidelines, and memorandums of understanding were immediately implemented.

Recommendation 1

Continue to update and exercise activation plans and cooperative agreements established by state and local agencies.

B. Policies and Operating Procedures

Finding 2: All participants were intimately familiar with their organization’s standard operating procedures with respect to disaster preparedness. Bed status reporting, along with logistics requirements, were communicated to the Incident Command Structure (ICS). The identification of local resources and admission policies was applied to the exercise play.

Recommendation 2

None.

C. On-site Coordination

Finding 3: During a MASCAL event, the incident site will be the most challenging area. Logistics coordination, along with identifying assets, interaction with the media and various levels of command and control issues will enhance the confusion. Security measures will also require constant vigilance as the MASCAL event is at a busy commercial International Airport.

Recommendation 3

Ensure the Incident Command Structure is established immediately and is staffed with the requisite personnel representing the organizations responsible for supporting the incident site. Review policies and procedures to determine if all aspects in relation to supporting the incident site are covered i.e. Public Information Officers (PIO), graves registration, escort issues, security, triage, and identification of assets.

D. Military Support

Finding 4: Activation of NDMS is under the auspices of the Walter Reed Army Medical Center; however, the use of these assets along with other Department of Defense (DoD) units requires an execution authorization from the Military Command Authority and/or a mission request number.
Recommendation 4

Ensure standard operating procedures outline chain of command procedures and points of contact for possible use of electronic means (i.e. voice, fax, email) which may facilitate receipt of mission orders.

E. Communications Compatibility

Finding 5: One aspect of the TTX which was not fully realized was that of the communications requirements with respect to the various coordinating organizations and their communications equipment. It’s assumed that the local hospitals along with its corresponding emergency medical services transmit on the same frequencies, however, how will communications be handled with the military units operating in support? What will be the primary source for communicating—land lines, cell phones, or satellite phones, and where will these efforts be located? Also, are these devices approved for use in an airport flight zone of operation?

Recommendation 5

As part of activation plans and MOU development, participating NDMS agencies should provide a list of approved communications devices and frequencies that will be used to support an incident.

TASK 4:

On May 20, 2006, in a field Functional Exercise (FX), the Airport, Academia, Industry, Military, State (AAIMM) Consortium members used new video technology to test the revised National Defense Medical System (NDMS) plan of response to mass military casualty reception.

The FX applied National Incident Management System (NIMS) Incident Command Structure (ICS) and resources for Mass Casualty (MASCAL) reception, activation of the NDMS reception plan, and exercising of the revised Mutual Aid Agreement between Walter Reed Army Medical Center (WRAMC) and the Maryland Institute for Emergency Medical Services Systems (MIEMSS), to access civilian surge capacity beds through the MOA with BWI Fire and Rescue.

During the FX, patients arrived en masse by a C-130 aircraft to a designated location at the BWI airport, were triaged and stabilized while still in the aircraft or after transport to the DECON or triage tents, were then transported to the appropriate hospital, and finally the hospital was contacted to confirm patient receipt. The activities of the day were recorded using a real-time video capture and distribution system (VCDS) and relayed to an incident command (IC) site.

The FX provided a field test of the excellent face to face interactions with military partners during the prior 12 months of planning, and an introduction to field application of NIMS, ICS, NDMS and MASCAL reception, for participants who had little or no previous experience in NDMS activation. Use of the VCDS enabled IC site staff to track the triage status of patients and other developments of the FX. The exercise also identified some weaknesses in the current response to MASCAL reception, based upon which 21 recommendations were made to the appropriate agencies to improve the current NDMS activation plan.

The achievements of the FX include that it was part of the first Maryland National Disaster Medical System (NDMS) exercises in more than 20 years, and that it established
significant levels of military-civilian collaboration during more than 20 two hour long meetings. State Inter Agency cooperation and planning for activation of NDMS in response to natural or man-made mass casualty (MASCAL) incidents either in the U.S. (CONUS) or outside of the U.S. (OCONUS) was optimized. The FX exercised the NDMS and National Incident Management System (NIMS) and Incident Command System (ICS) with multiple state agencies and military medical systems (including VAMS) participation and with involvement of the majority of civilian NDMS hospitals in Maryland. The exercise facilitated revisions of the Maryland Emergency Operations Plan to include the NDMS activation plan across all key emergency response State Agencies. As a result of the AA/IMS/NDMS collaboration and interagency civilian and military cooperation, Maryland is set to become the first state to have the NDMS plan incorporated into its Governor’s Emergency Operations Plan. Additionally, the Baltimore Washington Thurgood Marshall International Airport (BWI) has established and exercised procedures for use of a specific site on the airfield to conduct reception and triage of MASCAL and allow transportation to NDMS hospitals that can be activated without impeding normal civilian activities for this busy international airport.

TASK 5:
A major challenge for disaster management is real-time situational awareness. Timely and reliable aggregate data is necessary for resource assessment and planning. New technology allows for information gathering and collaboration across information networks that would be of benefit to emergency response. We evaluated the utility of multiple fixed and mobile video image displays in increasing situational awareness in EOCs during the aforementioned NDMS FX.

The Video Capture and Distribution System (VCDS) consisted of 16 video cameras connected with a digital video recorder (DVR) and a DVR viewer for real-time display of the 16 video images, and a wireless relay station for the remote viewing station at the EOC. The VCDS-DVR could be configured at a rate of 1, 2, 4, 8, 15, 30 frames per second per video feed. The viewer providing from 1 to 16 images per screen, was projected onto an 8 foot by 6 foot display in the EOC. Six experts (three physicians, one military, and two EMS personnel) completed image evaluations scoring them on a 1-5 (worst to best) Likert Scale. During the FX the cameras were strategically focused on all aspects of the FX, including MASCAL reception, triage tents, staging and transportation. VCDS captured 16 images per second for all 16 video feeds and displayed 4, 9 or 16 images at the remote EOC. A total of 2 hours and 10 minutes of real-time video (130 min*60 sec per min*1 image per channel*16 videos = 124800 images) were captured. End-to-end delay was less than 4 seconds, mainly due to the wireless transfer.

Video imagery from mobile devices covering the entire FX site and from fixed locations improved EOC situational awareness. The developments in the FX could be tracked, and the triage status of MASCAL could be immediately determined. The images also provided a useful training and debriefing record of the FX. It was found that imaging networks and technical support for EOCs and Incident Command Posts are needed to support both, planned coordination of EOC image access from Emergency Response sites by various approved agencies, and a mechanism to support this action where prior planning is not feasible or additional entities need access.
A challenge we ran into was that firewalls around the EOC could not be opened because of administrative barriers, and thus wireless (slower) transmission was used.

TASK 6:

The three TTXs and one FX that were performed have optimized state interagency cooperation and planning for activation of NDMS in response to natural or man-made mass casualty (MASCAL) incidents either in the continental U.S. (CONUS) or outside of the continental U.S. (OCONUS). The exercises have facilitated revisions of the Maryland Emergency Operations Plan to include the NDMS activation plan across all key emergency response state agencies.

Task specific recommendations and actions were made in the After Action Report for the FX (see summary in Appendix 1). It was further recommended that three working groups (WG 1-3) be activated: WG1:-To ensure 100% compliance with triage tags, patient accountability and return of equipment used in MASCAL events and exercises. WG2:-To make available Information technology, imaging networks and technical support for NDMS MASCAL, for EOC’s and Incident Command Posts. WG2 will determine both a mechanism to support a planned coordination of access by various approved agencies and a mechanism to support this action where prior planning is not feasible or additional entities need access. WG3:- To establish a Training, Education and Evaluation working group to recommend training, education, and development of evaluation data collection instruments in conjunction with the exercise planning group.

As a result of the AAIMS/NDMS collaboration and interagency civilian and military cooperation, Maryland is set to become the first state to have the NDMS plan incorporated into its Governor’s Emergency Operations Plan. Also through this effort, the Baltimore-Washington International Thurgood Marshall Airport has established and exercised procedures for use of a specific site on the airfield to conduct reception and triage of MASCAL and allow transportation to NDMS hospitals, which can be activated without impeding normal civilian activities for this busy international airport.

After Action Report—FX

Summary Exercise Findings by Task:

TASK 1. Exercise Planning, Coordination and Evaluation

Conduct the exercise in concert with the DHS Homeland Security Exercise and Evaluation Program (HSEEP). Methodically plan the events and scenario based on the objectives and desired outcomes. Evaluation should be objective and aimed at judging the success of the exercise as a measure of achievement of the stated objectives.

Observations

- Designate evaluation lead (and committee)
- Provide opportunity to recruit subject matter experts
• Train and develop data collection instruments in conjunction with planning committee
• Instruments should follow HSEEP protocol

Recommendations

1.1 Training and Education should occur among NDMS participants: Joint training opportunities should be conducted on key topics such as ICS basics, civilian/military terminology and nomenclature, COP (Common Operating Picture).

1.2 Establish a joint training team to conduct educational opportunities, Certifications and equipment familiarity

1.3 Establish a Training, Education and Evaluation Working Group that would recommend training, education and development of evaluation data collection instruments (following HSEEP protocols) and recruit subject matter experts in conjunction and in parallel with the Planning Committee for future NDMS Exercises.

Task 2 Communication

Effectively communicate information about each patient and for coordination of activities

Observations
• No communication with the Command Post
• Red Tent personnel confused about what was going on
• Red Tent had no way of communicating with other tents ()
• Difficulty sorting out various radio frequencies
• EMS unaware that patients in the OASIS tent were ready for transport(UMMC patients waiting on floor of OASIS – entire exercise)
• Scenario confusion (HAZMAT team were told they were receiving hurricane patients with exposure to fecal matter)
• Triage nomenclature, terminology different use by civilian and military
• Radios: Better coordination is required to identify various agencies radio and frequency capabilities and limitations.
• Networking/Automation: Prior coordination for Network administrators to support various disaster agencies. Develop mechanism to support this action where prior planning is not feasible.
• EMS could not get information that FDDMTF patients were ready for transport

Recommendations

2.1 The ICS Communications plan (ICS Form 205) should be completed to define radio type, frequencies and interoperability and to whom (Role) each of these radios is allocated. This should be disseminated with the Incident briefing (ICS201),
organizational chart (ICS207) and incident maps (ICS 202)

2.2 Inter Operability of communications between military and civilian entities is essential and should be immediately obtained e.g., by technology or sharing of a common radio frequency.

2.3 Personnel in the triage tents must be able to communicate with the Incident Command Post, each other, and with Staging, Transport and NDMS receiving Hospitals.

2.4 Information technology, imaging networks and technical support should be made available for EOC’s and Incident Command Posts by preplanning system architecture to support disasters. The recommendation includes establishment of a Working Group (WG2) to determine both a mechanism to support a planned coordination of access by various approved agencies and a mechanism to support this action where prior planning is not feasible or additional entities need access.

Task 3 - Patient Triage & Treatment

Working with medical attendants on the aircraft, quickly remove the patients and transport them to the Triage group location for cursory evaluations and sorting to treatment areas. Three methods of removing patients and transporting them to the Triage Group. (Hand Carry, Ambulance, Bus) Time motion studies are to be conducted to evaluate the most efficient means.

Observations
- Took 30 min. to take 12 patients off plane
- Information in medical records were inadequate
- No triage tags or improper tagging
- Tagging was done on plane as well as in triage tents
- Medical record for dog in cage
- Patient administrator (PAD) & triage person need to coordinate to avoid reduplication of effort
- One patient not accounted for
- OASIS provide excellent care and treatment of patients (2 min per pt)
- Contaminated patients improperly deplaned
- No hazard evaluation of plane prior to approach
- There were no medical personnel traveling on the aircraft with the patients
- Patients should have tags

Recommendations
3.1 For NDMS Patients arriving at BWI, the patients/casualties should be immediately de-planed, then triaged, tagged, and treated with coordination of activities between the Patient Administrator (PAD) and Triage personnel.
3.2 From information gathered from video documentation, conduct time/motion studies and consider with patient/provider safety to determine safest/most efficient method to move patients.

Task 4 - Patient Transportation and Tracking

Upon stabilization, transport patients to designated facilities as planned by the State EMS Medical Director and Chief Military Medical Authority and adequately track the transporting units, destination and assigned medical care devices for later follow-up or retrieval.

Observations
- Patient Gurney Civilian v. litter (military stretcher) Small wheels v. big wheels.
- Litters/Backboards: Joint civilian/military familiarization training needs to occur. Military Litters do not fit into civilian ambulances. Both parties need training.
- PMI Accountability: Patient Movement Items need to be tracked. There is usually an inverse relationship built over more patients to less equipment accountability and hence availability. Establish a working group to solve this issue.

Recommendations
- Joint civilian/military familiarization training is recommended to transfer patients from military litters, that do not fit into civilian ambulances. Additional purchases of litter backboards and stretcher innovations should be considered to facilitate this transfer and allow faster movement of patients.
- Triage tagging, Patient Movement Item (PMI) and Equipment tracking and accountability should be improved to ensure 100% compliance with Triage tags, 100% PMI accountability and 100% return of equipment used in MASCAL to source of distribution. This recommendation includes establishment of a Working Group (WG1) to solve these issues.

Task 5 Command Post

Establish a command post with adequate resources to be able to conduct operations over an extended period.

Observations
- Too many people made it difficult to hear and or keep up with information flow
- Video was useful
- Minimal technical support available
- Provide name plates
- Headsets to minimize noise

Recommendations

5.1 The new NIMS Organizational Chart developed for the exercise should be backed-up by a standard operating guideline (SOG) for the positions identified. This guideline should briefly identify the position’s responsibility.
5.2 The NIMS Chart, SOG and IAP should be incorporated into one document to provide guidance for future tabletops, field exercises or actual events.

5.3 Incident Command should receive real-time information from BWI flight control (as was done in July 2006 for the repatriation of over 3,000 evacuees from Lebanon).

Task 6 - Decontamination
Although it is unlikely that there would be any contaminated patients loaded on the aircraft, crews were to decontaminate one patient to determine how the contingency would affect the flow of operations.

Observations
- Have additional fuel on hand for the water heater
- Consider a bladder for larger operations
- Funding for full gear in order to receive full training value from exercises
- Better communication regarding scenario in order to plan appropriate response
- Use another EMS team for medical surveillance to ensure safety
- PPE should be standardized
- Stretchers should be used to transport patients to decontamination tent
- Remove contaminated clothing to protect medical personnel

Recommendations
6.1 BWI Fire and Rescue Service should have Decontamination (DECON) and Isolation facilities and the resources to provide PPE and training to manage decontamination of large numbers of patients.

Task 7 FDDMTF
Erect and test the utility of the Forward Deployable Digital Medical Treatment Facility (FDDMTF)

Observations
- Should establish isolation tent for patients with amputation
- FDDMTF functioned well and triage was efficient, the FDDMTF asset was invaluable for MASCAL reception
- Civilian EMS could use FDDMTF when other resources were unavailable

Recommendations
7.1 Establish the correct procedures and approval process for civilian MASCAL use of FDDMTF
Task 8 - Veterinarian
As with decontamination, NDMS reception should not include animals. In order to investigate the impact of this contingency one "dog" was included in the patient list and veterinarians and representatives from the Department of Agriculture were to evaluate the patient and make arrangements for disposition.

Observations
- List of veterinary hospitals needed in vicinity of BWI
- List of military veterinary hospitals
- List of supplies needed to transport animals to hospitals
- List of animal transporters to move animals from BWI to respective vet hospitals in quarantined facilities
- List of medical veterinary equipment needed
- Designated animal exercise area at BWI

Recommendations
8.1 There should be a listing of veterinary hospitals in vicinity of BWI and of military veterinary hospitals with contact information.

8.2 There should be supplies, equipment and transport to move animals from BWI to respective vet hospitals in quarantined facilities.

8.3 Designated animal exercise areas are needed at BWI.

Task 9 - Assure Safety
Ensure that all exercise participants, observers, and evaluators can complete their tasks in an environment free from the risk of injury. Adequately monitor the activities and personnel to prevent an action that could be deemed unsafe.

Observations
- Red, Yellow and Green tents not staked down adequately for wind
- Patients not properly secured to backboards
- Triage of patient potential "real life" problem
- No gloves in tent for triage personnel
- Personnel Accountability Report (PAR): We need to do a better job of incorporating PAR into our exercises.
- No one available to "spot" ambulances while backing up
- Disposable ear plugs for all participants
- Provide hearing protection for safety of participants
- Secure tents for potentially windy conditions
- Hazard evaluation should occur prior to off-loading
Recommendations

9.1 Safety specialists should be gathered to re-evaluate all the hazards of operating within the confines of an active airfield and develop a safety plan for future exercises or operations.

Task 10 - Supplies & Equipment

Provide for adequate equipment, shelter and supplies to care for the expected number of patients and providers.

Observations

- Tents: BWIFRS should receive additional triage tents to support contingency operations outside of normal response stock.
- Soft goods/Class VIII Medical Supplies: There needs to be an on-scene medical supply cache necessary to support first responder and initial re-supply that is housed in readily deployable plastic containers.

Recommendation

10.1 BWI Fire and Rescue Service should obtain additional Triage tents that are more substantial than those used in the exercise, modeled on the FDDMTF, that can be adequately stacked down and have protection in austere conditions.

10.2 A Soft Goods/Class VIII Medical Supplies Cache should be on-scene, housed in readily deployable plastic containers at the triage site to support first responders and provide initial re-supply.

Task 11 - Reception at NDMS Hospital

Transport the patients to 4 hospitals and make initial contact with the hospitals to confirm receipt of specific patients and begin to establish individual care plans.

Observations

- Difficulty with Army bus off-loading and unfamiliar with Army litters at civilian hospitals
- No contact was made with the hospitals to arrange the monitoring of care
- All exercise activity was halted before the contact could be made to the hospitals.

Recommendations

11.1 Prepare a patient follow-up plan with input from the hospitals and WRAMC FCC, educate all involved personnel and design next exercise to ensure that patient follow-up does not get negated.
Task 12 - Media and VIPs

Observations
- Develop protocol for working with group to keep from impeding exercise flow
- To avoid confusion, during an exercise, information should be disseminated through the same agencies that would be the lead PIO in the ‘real-world’ incident
- Difficult to access the patient due to photographers and VIPs

Recommendation
12.1 Gather the associated PIOs to review and familiarize themselves with the current Media Plan for BWI and research the best method to allow media additional access during an exercise without interference with exercise flow.
Key Research Accomplishments

- First Maryland National Disaster Medical System (NDMS) exercises in more than 20 years
- Established significant levels of military-civilian collaboration during more than 20 two-hour long meetings
- Optimized State Inter-agency cooperation and planning for activation of NDMS in response to natural or man-made mass casualty (MASCAL) incidents either in the continental U.S. (CONUS) or outside of the continental U.S. (OCONUS)
- Exercised the NDMS and National Incident Management System (NIMS) and Incident Command System (ICS) with multiple state agencies and military medical systems (including VAMS) with participation and involvement of the majority of civilian NDMS hospitals in Maryland.
- Facilitated revisions of the Maryland Emergency Operations Plan to include the NDMS activation plan across all key emergency response State Agencies
- As a result of the AAIMS/NDMS collaboration and interagency civilian and military cooperation, Maryland is set to become the first state to have the NDMS plan incorporated into its Governor’s Emergency Operations Plan.
- Baltimore – Washington International Thurgood Marshall Airport has established and exercised procedures for use of a specific site on the airfield to conduct reception and triage of MASCAL and allow transportation to NDMS hospitals, that can be activated without impeding normal civilian activities for this busy international airport.
- Twenty-one recommendations were made and three working groups (WG 1-3) were suggested to implement these recommendations: WG1: To ensure 100% compliance with triage tags, patient accountability and return of equipment used in MASCAL events and exercises. WG2: To establish methods to make available information technology, imaging networks and technical support for NDMS MASCAL, for EOCs and Incident Command Posts. WG2 will determine both a mechanism to support a planned coordination of access by various approved agencies and a mechanism to support this action where prior planning is not feasible or additional entities need access. WG3: To establish a Training, Education and Evaluation working group to recommend training, education, and development of evaluation data collection instruments in conjunction with future large scale exercise planning groups.
Reportable Outcomes

*See Appendix 12 for complete publications
Conclusions

The Table Top (TTX) and Functional (FX) exercises performed for this research have allowed for a better understanding of the current state of military/civilian communications. The exercises tested the interoperability of communications between the civilian and military partners by evaluating the deployment of the Forward Digital Deployment Medical Treatment Facility (FDDMTF) as a triage platform for mass casualties. Communications were evaluated during access to civilian surge capacity, and during wireless transfer of video from the field FX operations to the remote emergency operations center (EOC), and by testing the implementation of the Medical Mutual Aid Agreement between the Walter Reed Army Medical Center (WRAMC) and the Maryland EMS. The FX field tested MASCAL reception in the continental U.S. (CONUS) and civilian bed surge capacity access by transporting MASCAL to Maryland NDMS hospitals. Recommendations made from the results of the first TTX were used to improve the planning of the second TTX and the FX. TTX 1 was attended by over 100 individuals, including representatives from 25 of the 37 National Disaster Medical System (NDMS) hospitals in Maryland. The third TTX involved only NDMS hospitals.

The exercises allowed for identification of strengths and weaknesses in coordinating deployment of the FDDMTF and enabling remote triage and tele-links to Emergency Operations Centers. From the findings of the field FX, recommendations and actions, expected to improve response to MASCAL reception, were made to the appropriate agencies. Three working groups (WG 1-3) were also suggested to implement these recommendations (see Appendix 1).

In the FX, in addition to assessing the deployment of the FDDMTF, we evaluated the utility of fixed and mobile video images on remote Emergency Operations Center (EOC) situational awareness. Developments in the FX could be tracked and the triage status of MASCAL could be immediately determined from the video imagery from the fixed and mobile cameras, thus improving EOC situational awareness.

Through the course of this project we have held more than 20 inter-agency meetings of the Airport, Academia, Industry, Military and State (AAIMS)/NDMS Consortium. These meetings have enabled the establishment of significant military-civilian collaboration. Since activation of NDMS in Maryland has never occurred, and the only other exercise was in the 1980s, most of the exercise participants had no experience of NDMS response or in interacting with the U.S. Military, our partners in the TTXs. NDMS training was carried out for more than 120 EMS/Military personnel during the course of this research.

This research has optimized state inter-agency cooperation and planning for activation of NDMS in response to natural or man-made MASCAL incidents either CONUS or OCONUS. It has also facilitated revisions of the Maryland Emergency Operations Plan to include the NDMS activation plan across all key emergency response state agencies. The Baltimore-Washington International Thurgood Marshall Airport (BWIA) has established and exercised procedures for use of a specific site on the airfield
to conduct reception and triage of MASCAL and allow transportation to NDMS hospitals, which can be activated without impeding normal civilian activities at this busy international airport. Additionally, as a result of the AAIMS/NDMS collaboration and inter-agency civilian and military cooperation, Maryland is set to become the first state to have the NDMS plan incorporated into its Governor’s Emergency Operations Plan. The AAIMS Consortium funding has provided the preliminary plans and recommendations necessary to conduct a future full scale NDMS exercise centered in Maryland. Appendix 1 (pp 28-33) outlines task specific recommendations and actions resulting from the AAIMS NDMS After Action Report that would be helpful for a future full scale NDMS exercise.
Appendix 1: Task Specific Recommendations and Actions Needed Resulting from the AAIMS Consortium NDMS Exercise of May 20, 2006

<table>
<thead>
<tr>
<th>Task</th>
<th>Recommendation</th>
<th>Improvement Action</th>
<th>Responsible Person / Organization</th>
<th>Completion Date</th>
</tr>
</thead>
</table>
| 1.1 | Training and Education should occur among NDMS participants: Joint training opportunities should be conducted on key topics such as ICS basics, civilian/military terminology and nomenclature, COP (Common Operating Picture). | 1.1.1 Determine courses that would be helpful
1.1.2 Establish regular schedule of classes
1.1.3 Assign personnel to classes so that disciplines are mixed for each class | | |
| 1.2 | Establish a joint training team to conduct educational opportunities, Certifications and equipment familiarity | 1.2.1 Determine what equipment is not common to both disciplines
1.2.2 Prepare familiarization curricula and training aids
1.2.3 Conduct familiarization sessions during classes in 1.1.2 | | |
| 1.3 | Establish a Training, Education and Evaluation Working Group that would recommend training, education and development of evaluation data collection instruments (following HSEEP protocols) and recruit subject matter experts in conjunction and in parallel with the Planning | 1.3.1 Determine which classes would be appropriate
1.3.2 Establish a cadre of personnel that would be available for evaluation
1.3.3 Follow HSEEP Planning process from the beginning of planning for next exercises.
1.3.4 Establish an evaluation committee for future exercises | | |
Appendix 1: Task Specific Recommendations and Actions Needed Resulting from the AAIMS Consortium NDMS Exercise of May 20, 2006

<table>
<thead>
<tr>
<th>Task 2 Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 The ICS Communications plan (ICS Form 205) should be completed to define radio type, frequencies and interoperability and to whom (Role) each of these radios is allocated. This should be disseminated with the Incident briefing (ICS201), organizational chart (ICS207) and incident maps (ICS 202)</td>
</tr>
<tr>
<td>2.1.1 Catalog frequencies of all agencies that may be involved in an exercise or Operation</td>
</tr>
<tr>
<td>2.1.2 Complete ICS 205</td>
</tr>
<tr>
<td>2.1.3 Review/Revise ICS 201, 202, and 207</td>
</tr>
<tr>
<td>2.1.4 Prepare individual Job Action Sheets for each position which includes reporting lines and operating frequencies</td>
</tr>
<tr>
<td>2.2 Inter Operability of communications between military and civilian entities is essential and should be immediately obtained e.g., by technology or sharing of a common radio frequency.</td>
</tr>
<tr>
<td>2.2.1 With information gathered in 2.1.1 determine the most efficient means to distribute / link frequencies for optimum performance</td>
</tr>
<tr>
<td>2.3 Personnel in the triage tents must be able to communicate with the Incident Command Post, each other, and with Staging, Transport and NDMS receiving Hospitals.</td>
</tr>
<tr>
<td>(Should be addressed in 2.1)</td>
</tr>
<tr>
<td>2.4 Information technology, imaging networks and technical support should be made available for EOC’s and Incident Command Posts by preplanning system architecture to support disasters. The recommendation includes establishment of a Working Group(WG2) to determine both a mechanism to support a planned coordination of access by various approved agencies and a mechanism to support this action where prior planning is not feasible or additional entities need access.</td>
</tr>
<tr>
<td>2.4.1 Gather Commanders and IT Specialist to determine tools that would be helpful</td>
</tr>
<tr>
<td>2.4.2 IT specialist to determine most efficient means of delivering tools</td>
</tr>
<tr>
<td>2.4.3 Implementation Plan prepared for Administrations</td>
</tr>
<tr>
<td>2.4.4 Administrations balance cost versus benefit</td>
</tr>
<tr>
<td>2.4.5 IT specialists implement approved portions of plan</td>
</tr>
</tbody>
</table>
Task 3 - Patient Triage & Treatment

3.1 For NDMS Patients arriving at BWI, the patients/casualties should be immediately deplaned, then triaged, tagged, and treated with coordination of activities between the Patient Administrator (PAD)) and Triage personnel.

3.2 From information gathered from video documentation, conduct time/motion studies and consider with patient/provider safety to determine safest/most efficient method to move patients.

Task 4 - Patient Transportation and Tracking

4.1 Joint civilian/military familiarization training is recommended to transfer patients from military litters, that do not fit into civilian ambulances. Additional purchases of litter backboards and stretcher innovations should be considered to facilitate this transfer and allow faster movement of patients.

4.2 Triage tagging, Patient Movement Item (PMI) and Equipment tracking and accountability should be improved to ensure 100% compliance with Triage tags, 100% PMI accountability and 100% return of equipment used in MASCAL to source of distribution. This recommendation includes establishment of a working group to solve these issues.
Appendix 1: Task Specific Recommendations and Actions Needed Resulting from the AAIMS Consortium NDMS Exercise of May 20, 2006

<table>
<thead>
<tr>
<th>Task 5 Command Post</th>
<th>5.1 The new NIMS Organizational Chart developed for the EXERCISE should be backed-up by a standard operating guideline (SOG) for the positions identified. This guideline should briefly identify the position's responsibility.</th>
<th>(See 2.1.4 and 3.1.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.1.1 Gather all forms and sheets developed to date</td>
<td>5.1.2 Determine what information is missing</td>
</tr>
<tr>
<td></td>
<td>5.1.3 Specialists to prepare documentation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.2 The NIMS Chart, SOG and IAP should be incorporated into one document to provide guidance for future tabletops, field exercises or actual events.</td>
<td>(See 2.1.4 and 3.1.2)</td>
</tr>
<tr>
<td></td>
<td>5.2.1 From information gathered in 5.1 Prepare full incident action plan</td>
<td>5.2.2 Duplicate plan for all potential Command and General Staff</td>
</tr>
<tr>
<td></td>
<td>5.2.3 Test full IAP during Future Exercises</td>
<td>5.2.5 Post documents in WebEOC</td>
</tr>
<tr>
<td></td>
<td>5.3 Incident Command should receive real-time information from BWI flight control (as was done in July 2006 for the repatriation of over 3,000 evacuees from Lebanon).</td>
<td>No Action Required</td>
</tr>
<tr>
<td>Task 6 Decontamination</td>
<td>6.1 BWI Fire and Rescue Service should have Decontamination (DECON) and Isolation facilities and the resources to provide PPE and training to manage decontamination of large numbers of patients</td>
<td>6.1.2 Assess current adequacy of Decontamination Facilities</td>
</tr>
<tr>
<td></td>
<td>6.1.2 Purchase additional equipment as required and as funds are available</td>
<td></td>
</tr>
<tr>
<td>Task 7 FDDMTF</td>
<td>7.1 The means of accessing the FDDMTF resource should be identified to civilian NDMS partners for use in MASCAL reception when other resources are unavailable.</td>
<td>7.1 Establish the correct procedures and approval process for civilian MASCAL use of FDDMTF</td>
</tr>
<tr>
<td>Task</td>
<td>Recommendation</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>There should be a listing of veterinary hospitals in vicinity of BWI and of military veterinary hospitals with contact information.</td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>There should be supplies, equipment and transport to move animals from BWI to respective vet hospitals in quarantined facilities.</td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>Designated animal exercise area are needed at BWI.</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Safety specialists should be gathered to re-evaluate all the hazards of operating within the confines of an active airfield and develop a safety plan for future exercises or operations.</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>BWI Fire and Rescue Service should obtain additional Triage tents that are more substantial than those used in the EXERCISE, modeled on the FDDMTF, that can be adequately staked down and have protection in austere conditions.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 1: Task Specific Recommendations and Actions Needed Resulting from the AAIMS Consortium NDMS Exercise of May 20, 2006

<table>
<thead>
<tr>
<th>Task 11</th>
<th>Reception at NDMS Hospital</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Prepare a patient follow-up plan with input form the hospitals and WRAMC FCC, educate all involved personnel and design next exercise to ensure that patient follow-up does not get negated.</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Prepare follow-up plan</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Educate all personnel on use of plan</td>
</tr>
<tr>
<td>11.1.3</td>
<td>Design subsequent exercises to force the use of the plan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task 12</th>
<th>Media and VIPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Gather the associated PIOs to review and familiarize themselves with the current Media Plan for BWI and research the best method to allow media additional access during an exercise without interference with exercise flow.</td>
</tr>
<tr>
<td>12.1.1</td>
<td>Gather PIOs</td>
</tr>
<tr>
<td>12.1.2</td>
<td>Review BWI media /VIP plans</td>
</tr>
<tr>
<td>12.1.3</td>
<td>Research exercise media plans</td>
</tr>
<tr>
<td>12.1.4</td>
<td>Prepare Public Information plan for incorporation into IAP</td>
</tr>
<tr>
<td>12.1.5</td>
<td>Evaluate plan during subsequent exercises</td>
</tr>
</tbody>
</table>
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/7/365</td>
<td>24 hours a day, 7 days a week, 365 days a year</td>
</tr>
<tr>
<td>BCHD</td>
<td>Baltimore City Health Department</td>
</tr>
<tr>
<td>BWI-FR</td>
<td>Baltimore-Washington International Airport Fire & Rescue</td>
</tr>
<tr>
<td>CBRNE</td>
<td>Chemical, Biological, Radiological, Nuclear, Explosive</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>CHHS</td>
<td>University of Maryland Center for Health and Homeland Security</td>
</tr>
<tr>
<td>C-Stars</td>
<td>Center for Sustained Trauma and Readiness Skills</td>
</tr>
<tr>
<td>DHMH</td>
<td>Department of Health and Mental Hygiene</td>
</tr>
<tr>
<td>DHS</td>
<td>Department of Homeland Security</td>
</tr>
<tr>
<td>DHHS</td>
<td>Department of Health and Human Services</td>
</tr>
<tr>
<td>DMAT</td>
<td>Disaster Medical Assistance Team</td>
</tr>
<tr>
<td>DMORT</td>
<td>Disaster Mortuary Operations Procedures</td>
</tr>
<tr>
<td>DOD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>EM</td>
<td>Emergency Medicine</td>
</tr>
<tr>
<td>EMS</td>
<td>Emergency Medical Services</td>
</tr>
<tr>
<td>EOC</td>
<td>Emergency Operations Center</td>
</tr>
<tr>
<td>EOD</td>
<td>Explosive Ordinance Disposal</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>FRED</td>
<td>Facilities Resource Emergency Database</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning Satellite</td>
</tr>
<tr>
<td>HEICS</td>
<td>Hospital Incident Command System</td>
</tr>
<tr>
<td>ICS</td>
<td>Incident Command System</td>
</tr>
<tr>
<td>ICU</td>
<td>Intensive Care Unit</td>
</tr>
<tr>
<td>MEMA</td>
<td>Maryland Emergency Management Agency</td>
</tr>
<tr>
<td>MFR M</td>
<td>Maryland Fire and Rescue Institute</td>
</tr>
<tr>
<td>MIE M S S</td>
<td>Maryland Institute for Emergency Medical Services System</td>
</tr>
<tr>
<td>MPCC</td>
<td>Maryland Poison Control Center</td>
</tr>
<tr>
<td>MSI</td>
<td>Minority Serving Institution</td>
</tr>
<tr>
<td>NDMS</td>
<td>National Disaster Medical System</td>
</tr>
<tr>
<td>NIMS</td>
<td>National Incident Management System</td>
</tr>
<tr>
<td>NRP</td>
<td>National Response Plan</td>
</tr>
<tr>
<td>NSC</td>
<td>National Study Center for Trauma and EMS</td>
</tr>
<tr>
<td>OPH PR</td>
<td>Office of Public Health Preparedness and Response</td>
</tr>
<tr>
<td>SOP</td>
<td>standard operating procedure</td>
</tr>
<tr>
<td>STC</td>
<td>University of Maryland R Adams Cowley Shock Trauma Center</td>
</tr>
<tr>
<td>UMB</td>
<td>University of Maryland, Baltimore</td>
</tr>
<tr>
<td>UMBC</td>
<td>University of Maryland, Baltimore County</td>
</tr>
<tr>
<td>UMCC</td>
<td>University of Maryland Medical Center</td>
</tr>
<tr>
<td>UMMS</td>
<td>University of Maryland Medical System</td>
</tr>
<tr>
<td>UMSOM</td>
<td>University of Maryland School of Medicine</td>
</tr>
<tr>
<td>WMD</td>
<td>Weapons of Mass Destruction</td>
</tr>
<tr>
<td>WR AMC</td>
<td>Walter Reed Army Medical Center</td>
</tr>
</tbody>
</table>
Agencies, Institutions & Entities
Attending NDMS Training & AAIMS TTX July 12th

Academia
Center for Health & Homeland Security (CHHS)
Critical Event Preparedness & Response (CEPAR)
International Association for Healthcare Security & Safety (IAHSS)
JHU
National Study Center (NSC)
UMBC
UM-Office External Affairs

Airport
BWI Fire & Rescue
Delaware Air National Guard
Maryland State Police Aviation Command
Maryland Transport Authority Police-BWI Administration
MD Air National Guard

Industry
Northrop Grumman

Military
48th Combat Support – Hospital
Maryland National Guard
Telemedicine Advanced Technology Research Center (TATRC) Ft. Detrick
US Air Force/C-STAR/Shock Trauma Center
VA Maryland Health System
Walter Reed Army Medical Center

State / City
Baltimore City Health Department & Office of Health Preparedness and Response
DHMH
Governors Office for Homeland Security
Maryland Defense Force
Maryland State Police

MEMA
MIEMSS
UMB Police

EMS Providers/Fire Department
Baltimore City Fire Department
Baltimore County
BWI Fire & Rescue
Caroline County
Howard County Fire Department
MIEMSS Region II & III
Potomac Heights Vol.

Hospitals
Anne Arundel Med Center
Bon Secours
Calvert Memorial
Caroline County
Doctors Community
Franklin Square
Greater Baltimore Med Center
Howard County
Maryland General
Memorial Hospital Easton
Mercy
Mt. Washington Pediatric
North Arundel
Northwest
Shady Grove
Shore Health System
Southern Maryland
Union Memorial
University of Maryland
VA Hospital
Washington County
WRAMC
Acknowledgement

Thanks are due to those who attended the AAIMS Planning Meetings from March 2005 onwards and developed the AAIMS scenario and evaluation tools.

AAIMS Planning Meeting

Christa Singleton
Jake R. West, Jr.
Chief Woody Cullum
Col. (Rtd) Tony Story
Col. Jim Grove
Maj. Jim Hock
Sgt. W. Patrick King
John Donohue
Colin Mackenzie
Jon Mark Hirshon
Linda Pelletier
James Jaeger
Ed Fishel
Chief Edward Ballard
Capt. John Christian
Jeff Gilberg
Deborah Silver
Capt. Jeffrey Ball
Col. Edward Griffin
LTC Philip Wasylna
Sharon Kellogg
Alfred Cardona
Ruth Vogel
Richard Strickland
Col. William Farthing
LTC Michael O’Guinn

Baltimore City Health Commissioner’s Office
Director, Martin State Airport
BWI Airport Fire Rescue
Jackson Foundation
Maryland National Guard
Maryland State Police
Maryland State Police
MIEMSS
NSC
NSC
UMMC
UMB Environmental Health & Safety
UMB Media Relations
UMB Police
UMB Police
Center for Health & Homeland Security
Center for Health & Homeland Security
USAF/C-STARS MD
WRAMC
WRAMC
VAMHC
MIEMSS
MEMA
MEMA
48th Combat Support Hospital
48th Combat Support Hospital
<table>
<thead>
<tr>
<th>Last Name</th>
<th>First Name</th>
<th>Organization</th>
<th>Loc.</th>
<th>Rank</th>
<th>VIP</th>
<th>Duty Position/Title</th>
<th>EMAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austin</td>
<td>Brad</td>
<td>HHS</td>
<td>DC</td>
<td></td>
<td>√</td>
<td>HHS</td>
<td>Brad.Austin@hhs.gov</td>
</tr>
<tr>
<td>Bass</td>
<td>Robert</td>
<td>MIEMSS</td>
<td>MD</td>
<td></td>
<td>√</td>
<td>Executive Director, MIEMSS</td>
<td>rbass@miemss.org</td>
</tr>
<tr>
<td>Beall</td>
<td>Jack</td>
<td>DHS</td>
<td>MD</td>
<td></td>
<td>√</td>
<td>DHS</td>
<td>Jack.beall@dhs.gov</td>
</tr>
<tr>
<td>Bochichio</td>
<td>Daniel</td>
<td></td>
<td>DC</td>
<td>LTC</td>
<td>√</td>
<td></td>
<td>Daniel.bochichio@nbg snag af mil</td>
</tr>
<tr>
<td>Callahan</td>
<td>Charles</td>
<td>WRAMC</td>
<td>DC</td>
<td>COL</td>
<td>√</td>
<td>Deputy Commander for Clinical Services</td>
<td>Charles.callahan@na amadeli army mil</td>
</tr>
<tr>
<td>Carlton</td>
<td>P</td>
<td></td>
<td>TX</td>
<td>LTGE</td>
<td>√</td>
<td></td>
<td>Carlton@temhc.edu</td>
</tr>
<tr>
<td>Ceraul</td>
<td>Rebecca</td>
<td>PIO</td>
<td>MD</td>
<td></td>
<td>√</td>
<td>PIO UM</td>
<td>Rceraul@som umaryland edu</td>
</tr>
<tr>
<td>Cohen</td>
<td>Stuart</td>
<td>WRAMC FCC</td>
<td>DC</td>
<td>MAJ</td>
<td>√</td>
<td>NDMS FCC Res Spc</td>
<td>Stuart.Cohen@na ameddi army mil</td>
</tr>
<tr>
<td>Droneburg</td>
<td>John</td>
<td>MEMA</td>
<td>DC</td>
<td></td>
<td>√</td>
<td>Director, MEMA</td>
<td>IJdroneburg@memu mema state md us</td>
</tr>
<tr>
<td>Emmer</td>
<td>Casey</td>
<td>U.S Dept of Human Health Services</td>
<td>DC</td>
<td>Mrs</td>
<td>√</td>
<td>Planning and Emergency Response Coordination</td>
<td>Casey.Emmer@hhs.gov</td>
</tr>
<tr>
<td>Fishel</td>
<td>Ed</td>
<td>UMB</td>
<td>MD</td>
<td></td>
<td>√</td>
<td>PIO UM</td>
<td>Efishel@umaryland edu</td>
</tr>
<tr>
<td>Gagliano</td>
<td>David</td>
<td>NGC</td>
<td>VA</td>
<td>NGC</td>
<td>√</td>
<td>NGC</td>
<td>David.gagliano@ncc .com</td>
</tr>
<tr>
<td>Geregon</td>
<td>Cheryl</td>
<td>NORAD-NORTHCOM/SG</td>
<td>CO</td>
<td>COL</td>
<td>√</td>
<td>Director, Current Operations</td>
<td>Cheryl.geregon@northcom .mil</td>
</tr>
<tr>
<td>Gilbert</td>
<td>Gary</td>
<td>TATRC</td>
<td>MD</td>
<td>COL</td>
<td></td>
<td>TATRC</td>
<td>Gilbert@tatrc.org</td>
</tr>
<tr>
<td>Granger</td>
<td>Elder</td>
<td></td>
<td>MG</td>
<td></td>
<td>√</td>
<td>Major General</td>
<td>Elder.granger@ina osd .mil</td>
</tr>
<tr>
<td>Griffin</td>
<td>Edward</td>
<td>WRAMC</td>
<td>DC</td>
<td>COL</td>
<td>√</td>
<td>Chief, WRAMC NDMS FCC</td>
<td>Edward.griffin@na ameddi army mil</td>
</tr>
<tr>
<td>Grove</td>
<td>James</td>
<td>MDNG</td>
<td>MD</td>
<td>COL</td>
<td>√</td>
<td>MDNG</td>
<td>James.grove@na mb obs .mil</td>
</tr>
<tr>
<td>Hail</td>
<td>Donald</td>
<td>NARMC</td>
<td>DC</td>
<td>COL</td>
<td>√</td>
<td>Chief of Staff, Operations</td>
<td>Donald.hail@na ameddi army mil</td>
</tr>
<tr>
<td>Handley</td>
<td>Chris</td>
<td>NSC</td>
<td>MD</td>
<td></td>
<td>√</td>
<td>NSC</td>
<td>Chancley@umaryland edu</td>
</tr>
<tr>
<td>Hu</td>
<td>Peter</td>
<td>NSC</td>
<td>MD</td>
<td></td>
<td>√</td>
<td>NSC</td>
<td>Phu@umm edu</td>
</tr>
<tr>
<td>Johnson</td>
<td>Steve</td>
<td>Shock Trauma</td>
<td>MD</td>
<td></td>
<td>√</td>
<td>Surgeon</td>
<td>Sjohnson@ummm edu</td>
</tr>
<tr>
<td>Jones</td>
<td>Jim</td>
<td>WRAMC</td>
<td>DC</td>
<td>LTC</td>
<td>√</td>
<td>NDMS Patient Administration Officer</td>
<td>Jim.jones@na ameddi army mil</td>
</tr>
<tr>
<td>Kornos</td>
<td>William</td>
<td>OASD(HA)</td>
<td>DC</td>
<td>LTC</td>
<td>√</td>
<td>Department of Defense Health Affairs</td>
<td>William.kornos@ha obs .mil</td>
</tr>
<tr>
<td>Lap</td>
<td>Truong</td>
<td>NSG</td>
<td>VA</td>
<td></td>
<td>√</td>
<td>Mission Systems</td>
<td>Lap.truong@ncc .com</td>
</tr>
<tr>
<td>Matthews</td>
<td>Larry</td>
<td>U.S Army Medical Command Medical</td>
<td>TX</td>
<td>COL</td>
<td>√</td>
<td>US Army DHS, NDMS FCC Director</td>
<td>Larry.matthews@amadeli army mil</td>
</tr>
<tr>
<td>Mayer</td>
<td>Harry</td>
<td>U.S Dept of Human Health Srvce, Reg. III</td>
<td>PA</td>
<td>MR</td>
<td>√</td>
<td>Senior Regional Emergency Coordinator</td>
<td>Harry.mayer@irs .gov</td>
</tr>
<tr>
<td>McGowan</td>
<td>Merrily</td>
<td>WRAMC</td>
<td>DC</td>
<td>COL</td>
<td>√</td>
<td>Director, Patient Administration Division</td>
<td>Merrily.mccowan@na ameddi army mil</td>
</tr>
<tr>
<td>Montminy</td>
<td>Diane</td>
<td>Mobile Medical</td>
<td>MD</td>
<td></td>
<td></td>
<td></td>
<td>Merrily.mccowan@na ameddi army mil</td>
</tr>
<tr>
<td>Olson</td>
<td>Jim</td>
<td>TATRC</td>
<td>MD</td>
<td>COL</td>
<td>√</td>
<td>Chief of Staff, TATRC</td>
<td>Olson@tatrc.org</td>
</tr>
<tr>
<td>Pak</td>
<td>Hon</td>
<td>TATRC</td>
<td>MD</td>
<td>LTC</td>
<td>√</td>
<td></td>
<td>Pak@tatrc.org</td>
</tr>
<tr>
<td>Pemberton</td>
<td>Philip</td>
<td>WRAMC</td>
<td>DC</td>
<td>LTC</td>
<td>√</td>
<td>Chief Operations Officer</td>
<td>Philip.pemberton@na ameddi army mil</td>
</tr>
<tr>
<td>Poropatch</td>
<td>Ron</td>
<td>TATRC</td>
<td>MD</td>
<td>COL</td>
<td>√</td>
<td></td>
<td>Ron.poropatch@det ameddi army mil</td>
</tr>
<tr>
<td>Portals</td>
<td>Francisco</td>
<td>TATRC</td>
<td>MD</td>
<td>MAJ</td>
<td>√</td>
<td></td>
<td>Portals@tatrc.org</td>
</tr>
<tr>
<td>Post</td>
<td>James</td>
<td>2290th USAH</td>
<td>DC</td>
<td>COL</td>
<td>√</td>
<td>Commander, 2290th USAH</td>
<td>James.post@us army mil</td>
</tr>
</tbody>
</table>
After Action Report
Airport, Academia, Industry, Military, State (AAIMS) Consortium Table Top Exercise

(TTX) July 12, 2005

Acknowledgements:

The TTX would not have been conducted without the support of the AAIMS Planning Group (see Appendix 5 for listing) and funding from the Telemedicine and Advanced Technology Center at Fort Detrick (contract # W81XWH-05-2-0086) and the collaboration of MIEMSS, MEMA and the National Study Center for Trauma and EMS.
TTX 1 AFTER ACTION REPORT

Airport, Academia, Industry, Military, State (AAIMS) Consortium Table Top Exercise (TTX 1)

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>41</td>
</tr>
<tr>
<td>EXERCISE OBJECTIVES</td>
<td>42</td>
</tr>
<tr>
<td>EXERCISE DESIGN</td>
<td>42</td>
</tr>
<tr>
<td>EXERCISE SCENARIO</td>
<td>43</td>
</tr>
<tr>
<td>EVALUATION METHODOLOGY</td>
<td>43</td>
</tr>
<tr>
<td>SUMMARY “HOTWASH” FINDINGS FROM EACH GROUP</td>
<td>43</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>46</td>
</tr>
<tr>
<td>FIVE FINDINGS AND TEN RECOMMENDATIONS</td>
<td>46</td>
</tr>
<tr>
<td>ACRONYMS USED IN REPORT</td>
<td>34</td>
</tr>
<tr>
<td>AGENCIES, INSTITUTIONS, ENTITIES ATTENDING TTX</td>
<td>35</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS AAIMS PLANNING</td>
<td>36</td>
</tr>
</tbody>
</table>
Executive Summary

This executive summary reports on the Airport, Academia, Industry, Military, State (AAIMS) Consortium Table Top Exercise (TTX), a one-day exercise held on Tuesday, July 12, 2005 in preparation for a functional exercise in May 2006. The exercise was co-sponsored by: The National Study Center for Trauma and EMS, the Maryland Institute for Emergency Medical Services Systems (MIEMSS) and the Maryland Emergency Management Agency (MEMA).

The TTX applied incident command structure and resources for Mass Casualty (MASCAL) reception, activation of the National Disaster Management System (NDMS) reception plan, and exercising of the Mutual Aid Agreement between Walter Reed Army Medical Center (WRAMC) and MIEMSS to access civilian surge capacity beds.

The TTX provided an excellent introduction to NDMS and face to face interactions with military partners for participants who had little or no previous experience in NDMS activation. The TTX identified several weaknesses in coordination among the agencies, personnel and facilities responding to the MASCAL scenario. In a real event these shortcomings could have seriously impaired the expeditious emergency management and distribution of military casualties to civilian hospital surge capacity.

Ten recommendations were made in response to five major findings (see summary findings on pages 10 to 12 from the evaluations of the TTX) and from self evaluations by the participants. The recommendations included review of existing NDMS MOU’s, increased training and NDMS exercises, development of operational protocols for MASCAL reception, triage, transportation and staging. It was further recommended that military and civilian NDMS partners should meet to establish the NDMS reception plan, both for military casualty access to civilian hospitals and vice versa. NDMS hospitals should have a reception team and performance measures for timely acceptance of MASCAL, and they should exercise their individual Emergency Operation Centers. NDMS hospitals should jointly develop procedures for common tasks related to NDMS activation, sharing of resources and assets for likely MASCAL scenarios. Maryland NDMS should have a medical reception team responsive in less than twelve hours. Communication capability should be enhanced between NDMS hospitals and a single state agency and all TTX participants should be trained in command and control structure and communication procedures. Future NDMS TTX should include organizational and exercise control changes to improve information flow and learning.

The suggested actions in this report should be viewed as recommendations only. It is the “Agency’s” responsibility to identify and implement the solution(s). Each agency should review the recommendations and determine the most appropriate action and the time needed to implement the recommendation.
Exercise Objectives

2. Apply the NIMS ICS to evaluate Communication Information, and Resources for Continental US (CONUS) reception of mass casualties (MASCAL)
3. Test the process of activation of the National Disaster Medical System (NDMS) using voice, data, and information management systems in response to an OCONUS mass causality incident
4. Review then apply web-based training programs for NIMS ICS (http://training.fema.gov/EMIWeb/)

Exercise Design

The exercise was designed to address the three exercise objectives. The morning portion of the exercise was spent on educating the participants in Incident Command and Unified Command Systems utilizing Subject Matter Experts (SME). The second portion of the morning was spent in an introduction of the NDMS and a walk through of events leading to NDMS activation. The afternoon portion of the day was spent on the actual table-top.

The exercise focused on simulating the reception of patients through the National Disaster Medical System. The TTX simulated the receipt of 100 patients at Baltimore/Washington International Airport within a 24 hour period. The table-top exercise was intended to develop initial procedures to receive, evaluate, treat, and transport patients to NDMS Hospitals in Maryland.

Logistics

The TTX took place at the Maritime Institute of Technology (MITAGS) Linthicum, MD 21090. Two operational level personnel were invited to attend from agencies and facilities involved in activation of the National Disaster Medical System (NDMS).

Prior to attending the TTX all participants were requested to complete the two free online Emergency Management Institutes (EMI) Independent Study ICS courses. (ISO-700 National Incident Management System (NIMS) and IS-195 Basic Incident Command System (at http://training.fema.gov/EMIWEB/)

The morning consisted of plenary presentations by Walter Reed Army Medical Center (WRAMC) and Maryland Emergency Management Agency (MEMA) on NDMS training and ICS training. The NDMS Reception plan and the background to the scenario for the TTX were presented before the lunch break. After lunch the more than 100 participants chose their room assignments from Auditorium: Incident Site, Reception/Treatment Area, On Scene Command; Registration Table (Outside Auditorium), Transport/Staging; Room 300, NDMS Hospitals; Room 303, Table Top Control Room; Room 304, Civilian Communication; Room 305, Military Communications; Public Information Officers (PIO’s) acted as messengers and Public Health Representatives moved about all NDMS rooms.
TTX 1 AFTER ACTION REPORT
Airport, Academia, Industry, Military, State (AAIMS) Consortium Table Top Exercise (TTX 1)

Exercise Scenario

Casualty rates in an Outside Continental United States (OCONUS) mission climb and an overwhelming number of soldiers are sent to Walter Reed Army Medical Center (WRAMC) and Bethesda Naval Hospital. Several hundred casualties occurred due to severe food poisoning. Walter Reed Army Medical Center (WRAMC) and all local Veterans Administration (VA) hospitals surge to capacity. FEMA/DOD tasks the 48th Combat Support Hospital to establish and support the WRAMC Patient Reception Center (PRC). The National Disaster Medical System (NDMS) is implemented and the Mutual Aid Agreement between WRAMC and the Maryland EMS is activated to provide beds for military casualties in civilian hospitals. WRAMC notifies and requests MIEMSS for Bed Availability. MIEMSS is notified to prepare to accept 100 patients within a 24-hour period.

The “players” in the exercise were tasked to simulate communications and information exchange, the unloading, triage, treatment, and transportation of patients through out Maryland hospitals. The simulation involved the landing of a military Air Transport Aircraft; with the US Military’s 48th Combat Support Hospital (CSH) personnel tasked with the initial triage of patients. The hospital coordination and medical transportation component was coordinated by MIEMSS using local hospitals, and transport providers to distribute patients through out Maryland.

Evaluation Methodology

The evaluation team agreed that the Homeland Security Exercise Evaluation Guidelines (EEG) would serve as the basis for the evaluation tools. The team pulled the applicable EEG’s and created several data collection tools in MS Excel. The tools were distributed to the applicable functional groups for functionality and usability. Data Collectors/Evaluators were recruited from each of the functional disciplines. The data collectors were briefed of the exercise and asked to comment and recommend any changes to the evaluation tools. On the day of the exercise the data collectors were given instructions, a radio, clip board, and the data collection instrument that applied to the function they were to evaluate. The data collectors documented their findings and the data collection instruments were returned upon completion of the exercise. The data collectors were then instructed to submit a brief narrative of their observations and any recommendations on which to improve the data collection instrument.

Summary “Hotwash” Findings from Each Group

Incident Command

- 1st interaction as team players. Not involved in pre-planning
- Plans already in place
- Need military, BWI, MIEMSS (Dr. Alcorta) meeting
- Dealt with safety issues
- Issue joint information center.
TTX 1 AFTER ACTION REPORT
Airport, Academia, Industry, Military, State (AAIMS) Consortium Table Top Exercise (TTX 1)

- Liaison issues back and forth between agencies.
- NIMS/ICS used a majority of the time
- Issues
 - The policies, procedures and plans need to be determined prior to the exercise – had the foundation but needed to move forward from it.
 - Interaction between key players should occur prior, in order to establish a working rapport.
 - How to get together with military and shared resources. Mission: work with military, VA to see that soldiers are taken care of and transported to proper facility

Transportation & Staging

- Drawback- geographically separated from scene, command staff, triage, and other activities.
- Didn’t know when scenario started. Discussed plans, i.e. what we would do if they were a transportation sector.
- Notified about conference call from EMRC.
- Specialists designated. Decided that Air transport would be needed.
- Established early liaison with 48 CSH
- Liaison between triage and transportation center needed.
- Had ground and air operations officers.
- Arranged for MD Aviation to supply fuel truck.
- Issues
 - Needed to know if Dr. Alcorta or a representative was going to come to assist with triage.
 - Sent reps to clarify any issues with communication, lack of co-location.
 - We were never asked how many helicopters needed, where they would go, how soon they would be needed. Those 3-5 minutes for a request are critical.
 - Weren’t cognizant of true incident command structure

Hospitals

- Spent a lot of time waiting; during wait time, each did internal assessment (i.e. bed status, what resources were available)
- 100 patients total did not seem to overwhelm them. No more than 10 per hospital.
- Look at OR schedule to see what OR s could be freed up.
- In real situation MIEMSS would have been bombarded with us asking for information from them instead of them giving information to us. Kept asking for info.
- When found out information they would be receiving, activated internal command system, activate PIOs.
TTX 1 AFTER ACTION REPORT
Airport, Academia, Industry, Military, State (AAMS) Consortium Table Top Exercise (TTX 1)

- Command Structure: Where would city/county EOC fit in? In biological incident, hospitals would look to these.

Civilian Communications- MEMA

- Stress: Utilize WebEOC. We would like information to come through that. MEMA would probably bring in 5-6 agencies, not entire SEOC. MIEMSS, DHMH, military to get them down to BWI airport.
- Would MEMA activate? MJOC staffed 24/7 by MEMA and MDNG
- Civilian Communications- MIEMSS
 - Disconnections:
 - Many communications DHMH, MEMA and lead agencies define the magnitude of the event.
 - Finite or ongoing incident?
 - Impact on incident command, hospitals and on medical communications.
 - Until we had done several things, we would not have moved anything on site- that was a disconnect
- Some hospitals could have received as many as 20 patients.
- Notification process: Broader for alerting. In this particular scenario, BWI, hospitals, military, MEMA, DHMH, MIEMSS, transports. Ground vs. air and EMS vs. private ambulances – need to make policy decisions on what to use. Should we have a component in standby
- Identification to patients themselves and their special needs. Ventilators, traction splints, medications, etc. Can EMT handle those patients? Are there enough EMTs?
- Destination: Hospitals need to know how many patients they are getting, what in particular their problems are. TRACES form- making sure it has all pertinent information.
- Personnel networking is key in this disaster.
- Loading process – Most stable loaded in first, least loaded in last. Reverse true on disembark. Does this change our destinations?
- Planned Improvement * Adapt and apply to exercise. Please give feedback! ralcoria@miemss.org
- Improves our communications links between organizations from PIOs.
- PIOs need to be involved. Contact Efischel@umaryland.edu

48th CSH

- Patient Reception
- 2 Issues
 - De-conflict task of every major group here
 - Identify who does what
 - Improve information flow.
 - Reduce Overlap of roles.
TTX 1 AFTER ACTION REPORT
Airport, Academia, Industry, Military, State (AAIMS) Consortium Table Top Exercise (TTX 1)

• Positive Points:
 o Great variety of organizations
 o Everyone was involved, ready to do their work.

WRAMC/NDMS

• Breakdown of situational awareness. Didn’t know who we were. Kept getting messages from WR.
• Missing key parties from exercise. Would ask questions but party was not there to respond.
• No manifest for awhile. When did, MIEMSS was behind. Delay in distribution of info to hospitals.
• Had to delegate someone else to come over and help.
• Communication problems – cut off from plane site, did not get 48th CSH request for space at BWI until plane was 15 minutes out, no communication with military whatsoever.
• Positive:
 o VA joined WR staff. Gave added support. Had extra runner. Teamwork.
 o WR/VAMHCS relationship improved.
 o Developed VA/DOD
• Need improvement:
 o Communications,
 o WR vs. NDMS
 o IC identification

SUMMARY: Five Findings and Ten Recommendations

Finding 1: Activation of NDMS in Maryland has never occurred (the only other exercise was in the 1980’s) so that most of the TTX participants had no experience of NDMS response or in interacting with the U.S. Military, our partners in the TTX.

Recommendation 1a

The NDMS operational plan of state agencies should be reviewed and Memorandum of Understanding (MOU’s) among all state agencies standardized and updated.

Recommendation 1b

The State, County and Local emergency response personnel should be regularly trained and exercised on the NDMS plan.

Recommendation 1c

Operational protocols are required that identify procedures for mass casualty reception, triage, transportation and staging
TTX 1 AFTER ACTION REPORT
Airport, Academia, Industry, Military, State (AAIMS) Consortium Table Top Exercise (TTX 1)

- Conformity between civilian and military NDMS procedures for reception, treatment, on scene command, transportation/staging.
- Standardized public information statements for official use.
- Identification of airport exit routes to NDMS hospitals recommended access.

Finding 2: There was a lack of understanding of the Mutual Aid Agreement and the Incident Action Plan between military and civilian Emergency Management personnel and agencies.

Recommendation 2a

For military contingency operations NDMS partners should establish which parts of the Mass Casualty reception the military controls, the procedures and situations in which sharing with civilian authorities will occur. Conversely procedures for civilian mass casualties accessing military hospital bed surge capacity should be developed.

- Federal, military, state, local, industry, healthcare, and academia NDMS partners should meet to improve their mutual role understanding for NDMS activation, unified command performance and information flow.
- NDMS Incident Command training is required to improve liaison with functional response units and promote situational awareness among the civilian and military NDMS responders.

Finding 3: NDMS Hospitals have no plan for receiving the MOU agreed upon number of casualties within a finite time window.

Recommendation 3a

NDMS Hospitals should have a reception team and should define performance measures for admission of their designated number of NDMS Mass casualties.

Recommendation 3b

Each NDMS Hospital should regularly exercise their Emergency Operation Centers, activate and evaluate the NDMS plans to open military and civilian liaisons, find NDMS beds, transport and practice preparations to receive mass casualties.

Recommendation 3c

NDMS hospitals should jointly develop procedures for common tasks related to NDMS activation, determine resource and asset sharing for likely “what if” NDMS scenarios.

Recommendation 3d

The Maryland NDMS should have a “medical reception team” that can respond in less than 12 hours for mass casualty triage, treatment, transport and to take on Incident Command responsibilities.
TTX 1 AFTER ACTION REPORT
Airport, Academia, Industry, Military, State (AAIMS) Consortium Table Top Exercise (TTX 1)

Finding 4: Communication failures between the Incident Site and both military, civilian, city, state agencies and hospitals prevented NDMS partners from receiving accurate and timely notice of NDMS mass casualty status and transports to prepare for their coordinated response.

Recommendation 4a

There should be duplex voice, data and image communication capabilities between NDMS hospitals and unified command patched through a single state agency.

Recommendation 4b

All exercise participants should be trained in medical management, command and control structure and communication procedures.

- Improve coordination and liaison between Military, Airport and MIEMSS.
- Refine and communicate policies and procedures for NDMS Reception Center.
- Unified Command should brief all sections, develop and communicate the Incident Action Plan.

The Functional exercise in May 2006 should test specific improvements instituted as a result of this exercise and should include a focus on establishing Incident Command, Communications between all agencies and public information measures.

Finding 5: Future TTX need organizational changes:

- All participants in a single room to improve information flow
- Easier access to computers/Web EOC
- Tighter control of TTX by exercise controllers/facilitators
- Mentoring by NDMS expert during TTX
- 100 patients were insufficient to “stress” the NDMS system.
Acknowledgements:

The TTX would not have been conducted without the support of the AAIMS Planning Group (see Appendix 5 for listing) and funding from the Telemedicine and Advanced Technology Center at Fort Detrick (contract # W81XWH-05-2-0086) and the collaboration of MIESS, MEMA and the National Study Center for Trauma and EMS.
TTX 2 After Action Report

Airport, Academia, Industry, Military, State (AAIMS) Consortium

Table Top Exercise 2 (TTX 2)

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>51</td>
</tr>
<tr>
<td>Exercise Objectives</td>
<td>51</td>
</tr>
<tr>
<td>Exercise Design</td>
<td>52</td>
</tr>
<tr>
<td>Exercise Scenario</td>
<td>52</td>
</tr>
<tr>
<td>Evaluation Methodology</td>
<td>53</td>
</tr>
<tr>
<td>Summary “Hotwash” Findings from Each Group</td>
<td>53</td>
</tr>
<tr>
<td>Summary</td>
<td>57</td>
</tr>
<tr>
<td>Five Findings and Five Recommendations</td>
<td>57</td>
</tr>
<tr>
<td>Agencies, Institutions, Entities Attending TTX</td>
<td>60</td>
</tr>
</tbody>
</table>
Executive Summary

This executive summary reports on the Airport, Academy, Industry, Military, State (AAIMS) Consortium Table Top Exercise 2 (TTX 2), a one-day exercise held on February 21, 2006 in preparation for a functional exercise in May 2006. The exercise was co-sponsored by the Maryland Institute for Emergency Medical Services Systems (MIEMSS), Walter Reed Army Medical Center (WRAMC), National Disaster Medical System (NDMS), and BWI Fire and Rescue.

The TTX applied incident command structure and resources for Mass Casualty (MASCAL) reception, activation of the National Disaster Management System (NDMS) reception plan, and exercising of the Mutual Aid Agreement between Walter Reed Army Medical Center (WRAMC) and MIEMSS to access civilian surge capacity beds.

The TTX 2 identified several weaknesses that in a real event could have seriously impaired the expeditious emergency management and distribution of military casualties to civilian hospital surge capacity.

Four recommendations were made in response to five major findings (see summary findings on pages 8 to 9 from the evaluations of the TTX and from self evaluations by the participants. The recommendations include continued update and exercise of activation plans and cooperative agreements established by state and local agencies. It should also be ensured that the Incident Command Structure is promptly established and staffed with personnel from the appropriate organizations. Standard operating procedures should outline the chain of command and points of contact for possible use of electronic means which may help streamline receipt of mission orders (i.e. voice, fax, and e-mail). MOU development and activation plans should include that participating NDMS agencies provide a list of approved communications devices and frequencies that will be used to support an incident.

Exercise Objectives

1. Test and evaluate the revised NDMS activation plan and MOU jointly developed by MIEMSS/WRAMC & BWI Fire and Rescue
2. Apply the NIMS ICS principles to evaluate communication information, resources for CONUS reception of mass casualties
3. Test the process of activation of the NDMS using voice, data, and other information management systems
Exercise Design

The exercise was designed to address the three exercise objectives. Findings from TTX 1 were used to improve the planning and organization of TTX 2. One room was used for TTX 2, and all attendees sat at one table, facilitating discussion and actions, improving the flow of information in comparison to TTX 1 held in July 2005. The subject matter experts were in the same area as the TTX participants, aiding in providing guidance and coordination of efforts required within their areas of responsibility. Working relationships and lines of communication had already been established as a result of TTX 1 and the AAIMS planning meetings covering the previous 10 months; therefore, most requirements to support the MASCAL incident were already understood between the parties involved. Many of the aspects of the TTX were worked through as a paper drill; however, the actual actions which were necessary were discussed and annotated for future reference. All finding and recommendations from the previous TTX were reiterated and encompassed to ensure optimum support to the incident. A ‘Hotwash’ debrief followed the conclusion of TTX 2 and included reporting by the TTX evaluators and all section leaders in the TTX.

Logistics

The TTX 2 was held at the Maritime Institute of Technology and Science (MITAGS). This environment and the facilities had been favorably evaluated by attendees at the July 2005 TTX. A smaller number of invitees attended the TTX2 and fewer VIPs participated, making the proceedings less formal and more like a Working Group meeting.

Exercise Scenario

CONUS/OCONUS MTF’s and U.S. Based VA hospital systems are at 90% occupancy rate, with minimal bed expansion capability remaining. Andrews Air Force Base Reception Center has limited patient reception operations and NNMC cannot receive anymore patients. Notification has been sent through military channels that an OCONUS MASCAL occurred in Baghdad, Iraq as a result of a suicide bomber attack. There are no contaminated casualties.

To prepare for the reception of the OCONUS MASCAL, the WRAMC Commander/FCC Director initiated the DOD/VA sharing agreement to shift WRAMC patients to VISN-5 VA hospitals in order to support incoming patients.

Evaluation Methodology

There were five evaluators who were trained by MEMA (George Mitchell). Each evaluator was assigned to record details of the roles of the participants in TTX 2. They prepared their reports and submitted them to Colin Mackenzie for synthesis and completion of a Draft After Action Report for distribution and comment. There was a Self – Evaluation completed by the TTX 2 participants.

Summary “Hotwash” Findings from Each Group

WRMC

- Important for all to know
 - Mission assignment #
 - Execute order North Com

Figure 1: Disaster Response

- Patient reception team / litters
- Military patient administration staff / hospital interface Diagram process

VA

- Include transporters (EMS) in early notification
- Consider transport surge capacity and its effects later in the exercise
- Inter-operational communications / minimize jargon

53
MIESS

- Hospital communications process/FRED changes

Figure 2: Communications and Information Flow Needed to Assess MASCAL Bed Availability Status

- Checklist for hospitals
- NDMS hospital coordination
- 3 separate command structures:
 - Pre
 - Patient arrival
 - Post – all patients allocated to hospitals
- Checklist for coordination call

MEMA

- Open communication with hospitals (Fig. 2)
- ICS chart
 - Pre
 - Patient arrival
 - Post
TTX 2 AFTER ACTION REPORT
Airport, Academia, Industry, Military, State (AAIMS) Consortium Table Top Exercise (TTX 2)

Figure 3: Maryland NDMS Reception Plan Command Structure

- Importance of checklists
- Contingency plans/Plan B’s

BWI

- Appreciation airport operations / security issues
- Several possible site locations

55
Figure 4: Proposed Patient Reception Area at BWI Airport for Functional Exercise

- Reception area logistics
- Security plan
- Appreciation of ability to do job when needed

Hospitals

- Communication (Fig. 2)
- Hospital checklist
- Liaison with hospitals for preplanning
Figure 5: Patient Disposition and Records

- Protocol for military patients in civilian hospitals (Reference tri-care system)

NSC

- Need task lists for likely scenarios
- MD NDMS medical reception team
- Communications systems – no details about how this will be achieved

SUMMARY: Five Findings & Five Recommendations

A. Mission Execution

Finding 1: In TTX 2, each entity understood their roles in relation to the incident at hand. Command and control was quickly established with minimal disruption.
TTX 2 AFTER ACTION REPORT

Airport, Academia, Industry, Military, State (AAIMS) Consortium Table Top Exercise (TTX 2)

Requisite reporting procedures were followed according to established guidelines and memorandums of understanding were immediately implemented.

Recommendation 1

Continue to update and exercise activation plans and cooperative agreements established by state and local agencies.

B. Policies and Operating Procedures

Finding 2: All participants were intimately familiar with their organizations’ standard operating procedures with respect to disaster preparedness. Bed status reporting along with logistics requirements were communicated to the ICS. The identification of local resources and admission policies was applied to the exercise play.

Recommendation 2

None

C. On-site Coordination

Finding 3: During a MASCAL event, the incident site will be the most challenging area. Logistics coordination, along with identifying assets, interaction with the media and various levels of command and control issues will likely be problematic and enhance the confusion. Security measures will also require constant vigilance as the MASCAL event is at a busy commercial International Airport.

Recommendation 3

Ensure the Incident Command Structure is established immediately and is staffed with the requisite personnel representing the organizations responsible for supporting the incident site. Review policies and procedures to determine if all aspects in relation to supporting the incident site are covered i.e. PIO, graves registration, escort issues, security, triage, and identification of assets.

D. Military Support

Finding 4: Activation of NDMS is under the auspices of the Walter Reed Army Medical Center; use of these assets along with other DOD units requires an execution authorization from the Military Command Authority and/or a mission request number (Fig. 1).
TTX 2 AFTER ACTION REPORT
Airport, Academia, Industry, Military, State (AAIMS) Consortium Table Top
Exercise (TTX 2)

Recommendation 4

Ensure standard operating procedures outline chain of command
procedures and points of contact for possible use of electronic means i.e.
voice, fax, email which may facilitate receipt of mission orders.

E. Communications Compatibility

Finding 5: One aspect of TTX 1 which was not fully realized was that of the
communications requirements with respect to the various coordinating
organizations and their communications equipment. This needs to be addressed
for the FX. It’s assumed that the local hospitals along with its corresponding
emergency medical services transmit on the same frequencies however, how will
communications be handled with the military units operating in support. What
will be the primary source for communicating, land lines, cell phones, or satellite
phones and where will these efforts be located? Also are these devices approved
for use in an airport flight zone of operation?

Recommendation 5

As part of activation plans and MOU development, participating NDMS
agencies provide a list of approved communications devices and
frequencies that will be used to support an incident.
TTX 2 AFTER ACTION REPORT
Airport, Academia, Industry, Military, State (AAIMS) Consortium Table Top
Exercise (TTX 2)

Agencies, Institutions & Entities
Attending AAIMS TTX 2 February 21, 2006

BWI Airport Administration
BWI Fire & Rescue
Maryland National Disaster Medical System (NDMS) Hospitals
Maryland National Guard
Maryland Institute for Emergency Medical Services System (MIEMSS)
NDMS
National Study Center (NSC)
University of Maryland Medical Center (UMMC)
Walter Reed Army Medical Center (WRAMC)
AFTER ACTION REPORT
Airport, Academia, Industry, Military, State (AAIMS) Consortium NDMS
Functional Exercise (FX)

Functional Exercise (FX), May 20th, 2006

Acknowledgements:

The FX would not have been conducted without the support of the AAIMS Planning Group (see Appendix 4 for listing) and funding from the Telemedicine and Advanced Technology Center at Fort Detrick (contract # W81XWH-05-2-0086) and the collaboration of BWI Fire and Rescue, BWI Airport Administration, MTA, WRAMC, TATRC, MIEMSS, MEMA and the National Study Center for Trauma and EMS as well as the support of EMS mutual aid ambulances and NDMS Hospitals in Maryland.
Table of Contents

EXECUTIVE SUMMARY ... 63
EXERCISE OBJECTIVES ... 64
EXERCISE DESIGN .. 64
EXERCISE SCENARIO ... 65
EVALUATION METHODOLOGY ... 65
SUMMARY EXERCISE FINDINGS BY TASK 66
Executive Summary

This executive summary reports on the Airport, Academia, Industry, Military, State (AAIMS) Consortium NDMS Functional Exercise (FX), a one-day exercise held on Saturday May 20th, 2006 to test the revised Maryland EMS National Disaster Medical System (NDMS) Patient Reception plan resulting from three earlier Table Top Exercises (TTX) held in preparation for this limited FX in May 2006. The exercise was co-sponsored by: The National Study Center for Trauma and EMS, the Maryland Institute for Emergency Medical Services Systems (MIEMSS), Walter Reed Army Medical Center (WRAMC/NDMS) and the Maryland Emergency Management Agency (MEMA).

The FX applied National Incident Management System (NIMS) Incident Command Structure (ICS) and resources for Mass Casualty (MASCAL) reception, activation of the National Disaster Management System (NDMS) reception plan, and exercising of the revised Mutual Aid Agreement between Walter Reed Army Medical Center (WRAMC) and MIEMSS to access civilian surge capacity beds through the MOA with BWI Fire and Rescue.

The FX provided a test of the excellent face to face interactions with military partners during the prior 12 months of planning and an introduction to field application of NIMS, ICS, NDMS and MASCAL reception for participants who had little or no previous experience in NDMS activation. The FX identified several issues that in a real event could have affected the expeditious emergency management and distribution of military casualties to civilian hospital surge capacity.

Key Overall Achievements AAIMS/NDMS
1. First Maryland National Disaster Medical System (NDMS) exercises in more than 20 years.
2. Established significant levels of military-civilian collaboration during more than 20 two hour long meetings.
3. Optimized State Inter Agency cooperation and planning for activation of NDMS in response to natural or man-made mass casualty incidents either in the U.S. or abroad.
4. Exercised the NDMS and National Incident Management System (NIMS) and Incident Command System (ICS) with multiple state agencies and military medical systems (including VAMS) participation and involvement of the majority of civilian NDMS hospitals in Maryland.
5. Facilitated revisions of the Maryland Emergency Operations Plan to include the NDMS activation plan across all key emergency response State Agencies.
6. As a result of the AAIMS/NDMS collaboration and interagency, civilian and military cooperation, Maryland is set to become the first state to have the NDMS plan incorporated into their Governor’s Emergency Operations Plan.
FX AFTER ACTION REPORT
Airport, Academia, Industry, Military, State (AAIMS) Consortium NDMS
Functional Exercise (FX)

has established and exercised procedures for use of a specific site on the
airfield to conduct reception and triage of multiple patients and allow
transportation to NDMS hospitals that can be activated without impeding
normal civilian activities for this busy international airport.

The task specific recommendations and actions needed resulting from the AAIMS
Consortium NDMS FX of May 20th, 2006 are shown in Appendix 1.

Exercise Objectives

1. Test and Evaluate the Revised NDMS activation Plan and MOU jointly
developed by WRAMC NDMS, MIECSSS, BWI Fire & Rescue Service
(BWIFRS).
2. Apply the NIMS ICS principles to evaluate Communication, Information, and
Resources for reception of mass casualties from a distant conflict or disaster in
Maryland.
3. Test the process of activation of the NDMS using voice, data (TRAC2ES)
(FRED), (WEBEOC) and information management systems and Field
Forward Deployable Medical Treatment Facility (FFDMTF) (TATRC) in
response to an OCONUS MASCAL incident.
4. Meet Annual MEDCOM NDMS and External JCAHO Exercise
Requirements.

Exercise Design

The exercise was designed to address the four exercise objectives. The functional field
exercise focused on the reception, triage, and transport of 160 notional patients and one
notional dog, by activation of the NDMS system and application of NIMS ICS. Among
these 160 patients were 20 moulaged live patients who were run through flight transport
to BWI, reception, triage, staging and transport to Maryland NDMS hospitals. Triage
tested both the Forward Deployable Digital Treatment Facility (FDDMTF) supported by
TATRC and WRAMC and BWIFRS tents and an Air beam tent. After de-planing of 10
live MASCAL, a break in the FX was used for a debriefing, before re-starting of the FX
and de-planing the remaining 10 live MASCAL. A ‘Hotwash’ debrief followed
conclusion of the FX and included reporting by the FX evaluators and all section leaders
in the FX.

Logistics

- O/A 20 May, 2006 a 1 day limited scale NDMS Functional Exercise was
conducted at BWI Thurgood-Marshall Airport with The State of Maryland
Emergency Management Agencies, BWI Administration, VISN-5, TATRC and
WRAMC FCC to test NDMS PRA Establishment, Operations and medical
regulation to NDMS hospitals. A Key task was to establish a Unified Command
FX AFTER ACTION REPORT
Airport, Academia, Industry, Military, State (AAIMS) Consortium NDMS
Functional Exercise (FX)
Patient Reception Area at BWI with Maryland Agencies, VISN-5, TATRC,
WRAMC and WRAMC FCC personnel.

- The overarching goal was successful NDMS patient reception, triage, regulate and
accountability for 160 (140 notional patients, 20 moulaged “live” patients)
through BWI PRA Site to WRAMC, VA and State of Maryland NDMS Hospitals.
Goal: 100% patient accountability and In-transit patient visibility.

Exercise Scenario

- Military Treatment Facilities and US Based Veteran’s Administration (VA)
hospital systems are at 100% occupancy rate with minimal bed expansion
capability remaining. TOPOFF OPNS restricts further Andrews Air Force Base
Patient Reception Center use. An OCONUS MASCAL incident occurs in
Baghdad, IRAQ as a result of a DFAC suicide bomber attack - resulting in 160
non-CBRN casualties. GPMRC and LARMC Command indicates patients are
expected to arrive WRAMC within 24 hrs.

- WRAMC Commander/FCC Director initiates DOD/VA sharing agreement to
shift 20 patients to VA hospitals in order to receive 40 incoming patients. Further
patient cross-leveling and over flight permission is restricted per MEDCOM and
OTSG. OASD(HA) is approving authority. CONUS PI restricts in-bound patient
movement.

- WRAMC Commander/FCC director requests through channels that WRAMC
NDMS FCC and TATRC FFDMTF be activated to support Military Contingency
International Airport.

- Activate NDMS MOU with BWI Thurgood-Marshall Airport and State of
Maryland Agencies, VISN-5, TATRC and WRAMC FCC to test NDMS PRA
Establishment, Operations and medical regulation to NDMS hospitals in
Maryland.

Evaluation Methodology

Data Collectors/Evaluators were recruited from those involved in the FX planning
process. The data collectors were briefed on the exercise and asked to comment and
recommend any changes to the evaluation tools. On the day of the exercise the data
collectors were given instructions, a radio, clip board, audio recorder to record debriefing
comments and the data collection instrument that applied to the function they were to
evaluate. The data collectors documented their findings and the data collection
instruments were returned upon completion of the exercise. The data collectors gave a
summary of their findings at the “Hotwash” immediately after the FX finished and were
then instructed to submit a brief narrative of their observations and any
FX AFTER ACTION REPORT
Airport, Academia, Industry, Military, State (AAIMS) Consortium NDMS
Functional Exercise (FX)

recommendations. WEB EOC was completed in real-time during the FX. Multiple sites
were video recorded using a mobile wireless device that provided coverage of the entire
FX and these images were displayed and their usefulness evaluated in the BWI Fire and
Rescue EOC.

Summary Exercise Findings by Task

TASK 1. Exercise Planning, Coordination and Evaluation
Conduct the exercise in concert with the DHS Homeland Security Exercise and
Evaluation Program (HSEEP). Methodically plan the events and scenario based on the
objectives and desired outcomes. Evaluation should be objective and aimed at judging
the success of the exercise as a measure of achievement of the stated objectives.

Observations
- Designate evaluation lead (and committee)
- Provide opportunity to recruit subject matter experts
- Train and develop data collection instruments in conjunction with planning
 committee
- Instruments should follow HSEEP protocol

Recommendations

1.4 Training and Education should occur among NDMS participants: Joint training
opportunities should be conducted on key topics such as ICS basics,
civilian/military terminology and nomenclature, COP (Common Operating
Picture).

1.5 Establish a joint training team to conduct educational opportunities,
Certifications and equipment familiarity

1.6 Establish a Training, Education and Evaluation Working Group that would
recommend training, education and development of evaluation data collection
instruments (following HSEEP protocols) and recruit subject matter experts in
conjunction and in parallel with the Planning Committee for future NDMS
Exercises.

Task 2 Communication
Effectively communicate information about each patient and for coordination of activities

Observations
- No communication with the Command Post
- Red Tent personnel confused about what was going on
FX AFTER ACTION REPORT
Airport, Academia, Industry, Military, State (AAIMS) Consortium NDMS Functional Exercise (FX)

- Red Tent had no way of communicating with other tents
- Difficulty sorting out various radio frequencies
- EMS unaware that patients in the OASIS tent were ready for transport (UMMC patients waiting on floor of OASIS ~ entire exercise)
- Scenario confusion (HAZMAT team were told they were receiving hurricane patients with exposure to fecal matter)
- Triage nomenclature, terminology different use by civilian and military
- Radios: Better coordination is required to identify various agencies radio and frequency capabilities and limitations.
- Networking/Automation: Prior coordination for Network administrators to support various disaster agencies. Develop mechanism to support this action where prior planning is not feasible.
- EMS could not get information that FDDMTF patients were ready for transport

Recommendations
2.5 The ICS Communications plan (ICS Form 205) should be completed to define radio type, frequencies and interoperability and to whom (Role) each of these radios is allocated. This should be disseminated with the Incident briefing (ICS201), organizational chart (ICS207) and incident maps (ICS 202)

2.6 Inter Operability of communications between military and civilian entities is essential and should be immediately obtained e.g., by technology or sharing of a common radio frequency.

2.7 Personnel in the triage tents must be able to communicate with the Incident Command Post, each other, and with Staging, Transport and NDMS receiving Hospitals.

2.8 Information technology, imaging networks and technical support should be made available for EOC’s and Incident Command Posts by preplanning system architecture to support disasters. The recommendation includes establishment of a Working Group (WG2) to determine both a mechanism to support a planned coordination of access by various approved agencies and a mechanism to support this action where prior planning is not feasible or additional entities need access.

Task 3 - Patient Triage & Treatment
Working with medical attendants on the aircraft, quickly remove the patients and transport them to the Triage group location for cursory evaluations and sorting to treatment areas. Three methods of removing patients and transporting them to the Triage Group. (Hand Carry, Ambulance, Bus) Time motion studies are to be conducted to evaluate the most efficient means.

Observations
- Took 30 min. to take 12 patients off plane

67
FX AFTER ACTION REPORT
Airport, Academia, Industry, Military, State (AAIMS) Consortium NDMS
Functional Exercise (FX)

- Information in medical records were inadequate
- No triage tags or improper tagging
- Tagging was done on plane as well as in triage tents
- Medical record for dog in cage
- Patient administrator (PAD) & triage person need to coordinate to avoid reduplication of effort
- One patient not accounted for
- OASIS provide excellent care and treatment of patients (2 min per pt)
- Contaminated patients improperly deplaned
- No hazard evaluation of plane prior to approach
- There were no medical personnel traveling on the aircraft with the patients
- Patients should have tags

Recommendations
3.3 For NDMS Patients arriving at BWI, the patients/casualties should be immediately de-planed, then triaged, tagged, and treated with coordination of activities between the Patient Administrator (PAD) and Triage personnel.

3.4 From information gathered from video documentation, conduct time/motion studies and consider with patient/provider safety to determine safest/most efficient method to move patients.

Task 4 - Patient Transportation and Tracking
Upon stabilization, transport patients to designated facilities as planned by the State EMS Medical Director and Chief Military Medical Authority and adequately track the transporting units, destination and assigned medical care devices for later follow-up or retrieval

Observations
- Patient Gurney Civilian v. litter (military stretcher) Small wheels v. big wheels.
- Litters/Backboards: Joint civilian/military familiarization training needs to occur. Military Litters do not fit into civilian ambulances. Both parties need training.
- PMI Accountability: Patient Movement Items need to be tracked. There is usually an inverse relationship built over more patients to less equipment accountability and hence availability. Establish a working group to solve this issue.

Recommendations
a. Joint civilian/military familiarization training is recommended to transfer patients from military litters, that do not fit into civilian ambulances. Additional purchases of litter backboards and stretcher innovations should be considered to facilitate this transfer and allow faster movement of patients.

b. Triage tagging, Patient Movement Item (PMI) and Equipment tracking and accountability should be improved to ensure 100% compliance with Triage tags, 100% PMI accountability and 100% return of equipment used in
Task 5 Command Post
Establish a command post with adequate resources to be able to conduct operations over an extended period

Observations
• Too many people made it difficult to hear and or keep up with information flow
• Video was useful
• Minimal technical support available
• Provide name plates
• Headsets to minimize noise

Recommendations
5.4 The new NIMS Organizational Chart developed for the exercise should be backed-up by a standard operating guideline (SOG) for the positions identified. This guideline should briefly identify the position’s responsibility.
5.5 The NIMS Chart, SOG and IAP should be incorporated into one document to provide guidance for future tabletops, field exercises or actual events.
5.6 Incident Command should receive real-time information from BWI flight control (as was done in July 2006 for the repatriation of over 3,000 evacuees from Lebanon).

Task 6 - Decontamination
Although it is unlikely that there would be any contaminated patients loaded on the aircraft from crews were to decontaminate one patient to determine how the contingency would affect the flow of operations

Observations
• Have additional fuel on hand for the water heater
• Consider a bladder for larger operations
• Funding for full gear in order to receive full training value from exercises
• Better communication regarding scenario in order to plan appropriate response
• Use another EMS team for medical surveillance to ensure safety
• PPE should be standardized
• Stretchers should be used to transport patients to decontamination tent
• Remove contaminated clothing to protect medical personnel

Recommendations
6.1 BWI Fire and Rescue Service should have Decontamination (DECON) and Isolation facilities and the resources to provide PPE and training to manage decontamination of large numbers of patients
FX AFTER ACTION REPORT
Airport, Academia, Industry, Military, State (AAMIS) Consortium NDMS
Functional Exercise (FX)

Task 7 FDDMTF
Erect and test the utility of the Forward Deployable Digital Medical Treatment Facility (FDDMTF)

Observations
- Should establish isolation tent for patients with amputation
- FDDMTF functioned well and triage was efficient, the FDDMTF asset was invaluable for MASCAL reception
- Civilian EMS could use FDDMTF when other resources were unavailable

Recommendations
7.1 Establish the correct procedures and approval process for civilian MASCAL use of FDDMTF

Task 8 - Veterinarian
As with decontamination, NDMS reception should not include animals. In order to investigate the impact of this contingency one “dog” was included in the patient list and veterinarians and representatives from the Department of Agriculture were to evaluate the patient and make arrangements for disposition

Observations
- List of veterinary hospitals needed in vicinity of BWI
- List of military veterinary hospitals
- List of supplies needed to transport animals to hospitals
- List of animal transporters to move animals from BWI to respective vet hospitals in quarantined facilities
- List of medical veterinary equipment needed
- Designated animal exercise area at BWI

Recommendations
8.4 There should be a listing of veterinary hospitals in vicinity of BWI and of military veterinary hospitals with contact information.
8.5 There should be supplies, equipment and transport to move animals from BWI to respective vet hospitals in quarantined facilities.
8.6 Designated animal exercise areas are needed at BWI.

Task 9 - Assure Safety
Ensure that all exercise participants, observers, and evaluators can complete their tasks in a environment free from the risk of injury. Adequately monitor the activities and personnel to prevent an action that could be deemed unsafe.
FX AFTER ACTION REPORT
Airport, Academia, Industry, Military, State (AAIMS) Consortium NDMS
Functional Exercise (FX)

Observations
- Red, Yellow and Green tents not staked down adequately for wind
- Patients not properly secured to backboards
- Triage of patient potential “real life” problem
- No gloves in tent for triage personnel
- Personnel Accountability Report (PAR): We need to do a better job of incorporating PAR into our exercises.
- No one available to “spot” ambulances while backing up
- Disposable ear plugs for all participants
- Provide hearing protection for safety of participants
- Secure tents for potentially windy conditions
- Hazard evaluation should occur prior to off-loading

Recommendations
9.1 Safety specialists should be gathered to re-evaluate all the hazards of operating within the confines of an active airfield and develop a safety plan for future exercises or operations.

Task 10 - Supplies & Equipment
Provide for adequate equipment, shelter and supplies to care for the expected number of patients and providers

Observations
- Tents: BWIFRS should receive additional triage tents to support contingency operations outside of normal response stock.
- Soft goods/Class VIII Medical Supplies: There needs to be an on-scene medical supply cache necessary to support first responder and initial re-supply that is house in ready deployable plastic containers.

Recommendation
10.3 BWI Fire and Rescue Service should obtain additional Triage tents that are more substantial than those used in the exercise, modeled on the FDDMTF, that can be adequately staked down and have protection in austere conditions.
10.4 A Soft Goods/ Class VIII Medical Supplies Cache should be on-scene, housed in readily deployable plastic containers at the triage site to support first-responders and provide initial re-supply

Task 11 - Reception at NDMS Hospital
Transport the patients to 4 hospitals and make initial contact with the hospitals to confirm receipt of specific patients and begin to establish individual care plans
FX AFTER ACTION REPORT
Airport, Academia, Industry, Military, State (AAIMS) Consortium NDMS
Functional Exercise (FX)

Observations
- Difficulty with Army bus off-loading and unfamiliar with Army litters at civilian hospitals
- No contact was made with the hospitals to arrange the monitoring of care
- All exercise activity was halted before the contact could be made to the hospitals.

Recommendations
11.1 Prepare a patient follow-up plan with input form the hospitals and WRAMC FCC, educate all involved personnel and design next exercise to ensure that patient follow-up does not get negated.

Task 12 - Media and VIPs

Observations
- Develop protocol for working with group to keep from impeding exercise flow
- To avoid confusion, during an exercise, information should be disseminated through the same agencies that would be the lead PIO in the ‘real-world’ incident
- Difficult to access the patient due to photographers and VIPs

Recommendation
12.1 Gather the associated PIOs to review and familiarize themselves with the current Media Plan for BWI and research the best method to allow media additional access during an exercise without interference with exercise flow.
Appendix 9

After Action Report (AAR)
Wednesday-Thursday, 5/17-18/2006

Objective: Activation of VA-DOD Contingency including Network-wide participation

Scenario: Military casualties are due from abroad and are too numerous for military resources to accept. Bethesda Naval MC cannot accept patients due to USS Comfort mobilization. VA-DoD Contingency and NDMS is activated to accept patients. VISN coordinates Washington VAMC VA-DoD Contingency support to Walter Reed, in addition to VAMHCS. The VA-DoD portion of this exercise is a small footnote of a larger MD-wide NDMS patient distribution exercise.

Abilities Exercised: The following activities were exercised:
- Use of Trac2es for bed reporting accessing patient manifest.
- VISN Coordination of VISN-Wide exercise
- Medical/Nursing assessment of patients for Discharge/Transfer
- Discharge/Transfer coordination between Case Manager, SWS, Bed Coordinator and Business Office to increase bed availability
- Transportation planning, particularly for our patients that required Critical Care Transportation (CCT).

Benefits: The exercise participants felt it was a realistic drill that had similar functions in other emergencies.

(Mass Evacuation and Mass Casualty emergencies)

AARs are forwarded the Medical Center Director to approve and require the listed actions be implemented. Each action is listed under one of the following Key Functions/Activities:

<table>
<thead>
<tr>
<th>Key Functions/Activities</th>
<th>Priorities (P):</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC Business Community (liaison)</td>
<td>0 Not a priority</td>
</tr>
<tr>
<td>CC Command & Control (& structure)</td>
<td>1 High. Plan will not function properly without addressing problem.</td>
</tr>
<tr>
<td>CM Communication</td>
<td>2 Med. Plan will function but not effectively.</td>
</tr>
<tr>
<td>DR Drill Planning</td>
<td>3 Low. Plan functions OK without the improvement.</td>
</tr>
<tr>
<td>FA Finance & Admin</td>
<td>LG Logistics</td>
</tr>
<tr>
<td>HM Health & Medical (pt. care)</td>
<td>OP Operations (clinical support)</td>
</tr>
<tr>
<td>IT Info. Technology</td>
<td>PA Public Affairs & Information</td>
</tr>
<tr>
<td>KD Kudos / Worked well</td>
<td>PI Planning, Intelligence (& EMOP)</td>
</tr>
<tr>
<td>SS Safety & Security</td>
<td>PU Plant & Utilities</td>
</tr>
<tr>
<td>TR Training</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>Project</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
</tr>
</tbody>
</table>
| PI-01 | 2 | Brief Multidiscipline Checklists: The VA DoD plan lacked detailed guidance for mass transfer/discharge/admission under the DoD scenario, leading exercise participants to develop processes during the response. Such checklists will ensure more efficient process and will be transferable Evacuation Plans as well as VA-DoD Contingency. | 1. **Develop Checklists.** Each primary role (Transportation, Admission Coor., Case Mgr, Attending MD, COS) should develop a complete bullet checklist for their part of the discharge/transfer and incoming planning process.
2. **Update Plans.** Integrate the above checklists into the appropriate emergency plans (ICS, VA-DoD, Evac, others). | Medicine, SWS, Surgical, COS, Admissions, & Nursing | 6/30/06 | | |
| PI-02 | 1 | Discharge-Transfer Coordinator: Discharge and transfer of patients was being planned and implemented throughout the wards by Case Managers and Attending MDs, however, there was not a person coordinating all the patients leaving the facility. Under our ICS Plan, the Patient Tracking Coordinator would have this role. The Admissions Coord/ Pt. Tracking Coord. felt that the tracking and coordinating incoming vs. outgoing patients is sufficiently unique to justify a separate assigned role. Additionally, the exercise team determined that this position, under some circumstances might require clerk/assistants. | 1. **Establish Discharge-Transfer Coordinator Role.** Design a new role entitled “Discharge-Transfer Coordinator”, with responsibility to coordinate with all affected Nursing Case Managers, Social Workers, Transportation, and Admissions and to track patients as they are transported to other facilities.
2. **Update Plans.** Establish and integrate this new role into the appropriate emergency plans. | Nursing & Admissions, | 6/30/06 | | |
| IT-03 | 2 | Patient Transport Record: In emergency transfers an abbreviated patient medical record is needed for transporters and the receiving facility until full patient records are available. | 1. **Establish Patient Transport Record.** Establish the minimum contents needed in a PTR and work with IRMS to define how such a pre-determined medical record could be readily printed as needed during various emergency scenarios.
2. **Update Plans.** Establish and integrate this new feature into the appropriate emergency plans. | Nursing Informatics, IRMS & COS | 7/30/06 | 9/18/06 | |
VA-DoD Contingency Exercise

<table>
<thead>
<tr>
<th>#</th>
<th>Priority</th>
<th>Item & Description</th>
<th>Actions</th>
<th>Responsible</th>
<th>Due Date</th>
<th>Date Done</th>
<th>Approved by Director (initial)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IT-04</td>
<td>Full CPRS Record Access in Emergencies: Critique discussion led to consideration of other emergency transfer/discharge scenarios such as evacuation. During an evacuation, remote access to the full CPRS record would be required. During Katrina, Gulfport and New Orleans VISTA Systems went down. IRMS Teams set up new VISTA servers and using back-up tapes, and restored VISTA records access. VHA it working toward centralizing active back-up patient data. Plans are underway which will provide live mirror sites throughout VHA, and VISN 5 should have this in place in 2008.</td>
<td>Bring VPN-equipped laptops for full patient evacuations to private hospitals. Develop additions to current evacuation plans whereby laptops will be taken to private destination hospitals to allow CPRS access to patient records at the receiving hospital.</td>
<td>Nursing, IRMS</td>
<td>7/30/06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CC-01</td>
<td>Administrative Record of Events: A time line is established during an event and all actions taken are recorded.</td>
<td>Recommend an electronic activity log for use in the ECC as the chronological event log. This will allow easy identification or sharing/transfer of information as needed. Example at T:Emergency Management\EMSHG VISN 5\Programs\Topics\Exercises\AAIMS VA\DOD\ECC Activity Log.xls</td>
<td>Administrative Support Staff for Front Office.</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Prepared by: Robert Carnevale
Emergency Preparedness Coordinator
FMS/ Safety Office

Approved and Ordered:
Sanford M. Garfunkel
Medical Center Director

Date 10/23/06
<table>
<thead>
<tr>
<th>Incident ID</th>
<th>Patient ID</th>
<th>Event</th>
<th>Event Date/Time</th>
<th>Event Description</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>107</td>
<td>226</td>
<td>082</td>
<td>0</td>
<td>00</td>
<td>Routine</td>
</tr>
<tr>
<td>108</td>
<td>226</td>
<td>082</td>
<td>0</td>
<td>00</td>
<td>Routine</td>
</tr>
<tr>
<td>109</td>
<td>226</td>
<td>082</td>
<td>0</td>
<td>00</td>
<td>Routine</td>
</tr>
<tr>
<td>110</td>
<td>226</td>
<td>082</td>
<td>0</td>
<td>00</td>
<td>Routine</td>
</tr>
<tr>
<td>111</td>
<td>226</td>
<td>082</td>
<td>0</td>
<td>00</td>
<td>Routine</td>
</tr>
<tr>
<td>112</td>
<td>226</td>
<td>082</td>
<td>0</td>
<td>00</td>
<td>Routine</td>
</tr>
<tr>
<td>113</td>
<td>226</td>
<td>082</td>
<td>0</td>
<td>00</td>
<td>Routine</td>
</tr>
<tr>
<td>114</td>
<td>226</td>
<td>082</td>
<td>0</td>
<td>00</td>
<td>Routine</td>
</tr>
<tr>
<td>115</td>
<td>226</td>
<td>082</td>
<td>0</td>
<td>00</td>
<td>Routine</td>
</tr>
<tr>
<td>116</td>
<td>226</td>
<td>082</td>
<td>0</td>
<td>00</td>
<td>Routine</td>
</tr>
<tr>
<td>117</td>
<td>226</td>
<td>082</td>
<td>0</td>
<td>00</td>
<td>Critical</td>
</tr>
<tr>
<td>118</td>
<td>226</td>
<td>082</td>
<td>0</td>
<td>00</td>
<td>Routine</td>
</tr>
<tr>
<td>119</td>
<td>226</td>
<td>082</td>
<td>0</td>
<td>00</td>
<td>Routine</td>
</tr>
<tr>
<td>120</td>
<td>226</td>
<td>082</td>
<td>0</td>
<td>00</td>
<td>Routine</td>
</tr>
<tr>
<td>121</td>
<td>226</td>
<td>082</td>
<td>0</td>
<td>00</td>
<td>Routine</td>
</tr>
<tr>
<td>122</td>
<td>226</td>
<td>082</td>
<td>0</td>
<td>00</td>
<td>Routine</td>
</tr>
<tr>
<td>123</td>
<td>226</td>
<td>082</td>
<td>0</td>
<td>00</td>
<td>Routine</td>
</tr>
<tr>
<td>124</td>
<td>226</td>
<td>082</td>
<td>0</td>
<td>00</td>
<td>Routine</td>
</tr>
<tr>
<td>Date</td>
<td>Unit</td>
<td>Time</td>
<td>Location</td>
<td>Name</td>
<td>Mass Casualty</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>----------</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td>2006-05-20 14:53:28</td>
<td>926</td>
<td>0</td>
<td>Thompson</td>
<td>Terry</td>
<td>Mass Casualty</td>
</tr>
<tr>
<td>2006-05-20 15:07:15</td>
<td>926</td>
<td>0</td>
<td>Thompson</td>
<td>Terry</td>
<td>Mass Casualty</td>
</tr>
<tr>
<td>2006-05-20 15:06:45</td>
<td>926</td>
<td>0</td>
<td>Thompson</td>
<td>Terry</td>
<td>Mass Casualty</td>
</tr>
<tr>
<td>2006-05-20 15:16:37</td>
<td>926</td>
<td>0</td>
<td>Thompson</td>
<td>Terry</td>
<td>Mass Casualty</td>
</tr>
<tr>
<td>2006-05-20 15:18:04</td>
<td>926</td>
<td>0</td>
<td>Thompson</td>
<td>Terry</td>
<td>Mass Casualty</td>
</tr>
<tr>
<td>2006-05-20 15:18:24</td>
<td>926</td>
<td>0</td>
<td>Thompson</td>
<td>Terry</td>
<td>Mass Casualty</td>
</tr>
<tr>
<td>2006-05-20 15:18:43</td>
<td>926</td>
<td>0</td>
<td>Thompson</td>
<td>Terry</td>
<td>Mass Casualty</td>
</tr>
<tr>
<td>2006-05-20 15:18:30</td>
<td>926</td>
<td>0</td>
<td>Thompson</td>
<td>Terry</td>
<td>Mass Casualty</td>
</tr>
<tr>
<td>2006-05-20 15:18:32</td>
<td>926</td>
<td>0</td>
<td>Thompson</td>
<td>Terry</td>
<td>Mass Casualty</td>
</tr>
<tr>
<td>2006-05-20 15:18:42</td>
<td>926</td>
<td>0</td>
<td>Thompson</td>
<td>Terry</td>
<td>Mass Casualty</td>
</tr>
<tr>
<td>2006-05-20 15:18:52</td>
<td>926</td>
<td>0</td>
<td>Thompson</td>
<td>Terry</td>
<td>Mass Casualty</td>
</tr>
<tr>
<td>2006-05-20 15:18:02</td>
<td>926</td>
<td>0</td>
<td>Thompson</td>
<td>Terry</td>
<td>Mass Casualty</td>
</tr>
<tr>
<td>2006-05-20 15:18:14</td>
<td>926</td>
<td>0</td>
<td>Thompson</td>
<td>Terry</td>
<td>Mass Casualty</td>
</tr>
<tr>
<td>2006-05-20 15:18:27</td>
<td>926</td>
<td>0</td>
<td>Thompson</td>
<td>Terry</td>
<td>Mass Casualty</td>
</tr>
<tr>
<td>2006-05-20 15:18:37</td>
<td>926</td>
<td>0</td>
<td>Thompson</td>
<td>Terry</td>
<td>Mass Casualty</td>
</tr>
<tr>
<td>INCIDENT OBJECTIVES</td>
<td>1. Incident Name: NDAS Patient Reception</td>
<td>2. Date: 5/20/06</td>
<td>3. Time: 0800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>----------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Operational Period
6 hours

5. General Control Objectives for the Incident (include alternatives)

1. Incident Briefing to explain objectives
2. Establish Patient Reception Area as per plans
3. Safely land Aircraft
4. Identify patient according to patient manifest
5. Identify changes in triage status
6. Delineate and move patients to Reception Area
7. Provide additional stabilization
8. Load patients into Transport Vehicles according to receiving hospital
9. Transport to Agreed upon hospital
10. Contact Hospital to verify Receipt

6. Weather Forecast for Period
Partly Cloudy 73°F Light winds Expected

7. General Safety Message
Watch for rough Terrain
Make sure you have adequate bearers for the litters

8. Attachments (mark if attached)

- [x] Organization List - ICS 203
- [x] Communications Plan - ICS 205
- [] Medical Plan - ICS 204
- [] Incident Map
- [] Traffic Plan
- [] (Other)

9. Prepared by [Planning Section Chief]

10. Approved by [Incident Commander]
INCIDENT BRIEFING

1. Incident Name
 NDMS Patient Reception

2. Date
 20 May 06

3. Time
 0700

4. Map Sketch

 - Hot Line
 - Access
 - Egress
 - Security Line

1. C-130
2. MSP Trooper
3. Triage
4. Immediate- VSI
5. Communication
6. Urgent
7. Delayed
8. Decontamination
9. Operations Section
10. Porta Potties
11. Transportation Unit
12. Gate
13. Stop Point
UNIT LOG

1. INCIDENT NAME
NMDS Drill

2. DATE
PREPARED
My 22, 2005

3. TIME
PREPARED
0935-1400

4. UNIT NAME/DESIGNATORS
Unified Command Post

5. UNIT LEADER (NAME AND POSITION)
D/C Pace

6. OPERATIONAL PERIOD
May 20.

7. PERSONNEL ROSTER ASSIGNED

<table>
<thead>
<tr>
<th>NAME</th>
<th>ICS POSITION</th>
<th>HOME BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D/C Pace</td>
<td>Unified command</td>
<td>BWI FRD</td>
</tr>
<tr>
<td>R. Megan</td>
<td>Unified command</td>
<td>MIEMSS</td>
</tr>
<tr>
<td>Sgt Volz</td>
<td>Unified command</td>
<td>MTAP</td>
</tr>
<tr>
<td>Col Griffin</td>
<td>Unified command</td>
<td>WRMC</td>
</tr>
<tr>
<td>Terry Thompson</td>
<td>Planning</td>
<td>MEMA</td>
</tr>
<tr>
<td>D/C Kirkpatrick</td>
<td>Unified command</td>
<td>BWI FRD</td>
</tr>
</tbody>
</table>

8. ACTIVITY LOG (CONTINUE ON REVERSE)

<table>
<thead>
<tr>
<th>TIME</th>
<th>MAJOR EVENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>Aircraft leaves MTM Airport</td>
</tr>
<tr>
<td>1012</td>
<td>Aircraft on location</td>
</tr>
<tr>
<td>1050</td>
<td>2 patients at decon, 4 patients at triage tent, others being triaged on the aircraft</td>
</tr>
<tr>
<td>1100</td>
<td>Pause for evaluation</td>
</tr>
<tr>
<td>1110</td>
<td>Update from ops: 50% triaged, 2 ready for transport Transportation officer working out of Nat Guard/MEMA trailer</td>
</tr>
<tr>
<td>1110</td>
<td>Resume exercise</td>
</tr>
<tr>
<td>1130</td>
<td>All patients on aircraft triaged, all patients moved to the treatment tent.</td>
</tr>
<tr>
<td>1135</td>
<td>18 patients triaged all in treatment one transported by helo</td>
</tr>
<tr>
<td>1135</td>
<td>Pause for evaluation</td>
</tr>
<tr>
<td>1140</td>
<td>Resume exercise</td>
</tr>
<tr>
<td>1155</td>
<td>Fire dept PAR all accounted for</td>
</tr>
</tbody>
</table>

ICS 214
UNIT LOG

<table>
<thead>
<tr>
<th>NAME</th>
<th>ICS POSITION</th>
<th>HOME BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D/C Pace</td>
<td>Unified command</td>
<td>BWI FRD</td>
</tr>
<tr>
<td>R Megan</td>
<td>Unified command</td>
<td>MIEMSS</td>
</tr>
<tr>
<td>Sgt Voiz</td>
<td>Unified command</td>
<td>MTAP</td>
</tr>
<tr>
<td>Col Griffen</td>
<td>Unified command</td>
<td>WRMC</td>
</tr>
<tr>
<td>Terry Thompson</td>
<td>Planning</td>
<td>MEMA</td>
</tr>
<tr>
<td>D/C Kirkpatrick</td>
<td>Unified command</td>
<td>BWI FRD</td>
</tr>
</tbody>
</table>

8. ACTIVITY LOG (CONTINUOUS ON REVERSE)

<table>
<thead>
<tr>
<th>TIME</th>
<th>MAJOR EVENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1206</td>
<td>Briefing held update 4 patients to St Agnes AACO PM 21 Balto Co PM 5 (3) priority 3 (1) priority 1</td>
</tr>
<tr>
<td>1215</td>
<td>Waldorf Ambo to Southern MD Hospital 4 patients (1) priority 1 (2) priority 2 (1) priority 3</td>
</tr>
<tr>
<td>1220</td>
<td>Grasonville Ambo and Taylor Ambo to Doctors Hospital (4) priority 2 Weather update wind gust 27 MPH out of the west</td>
</tr>
<tr>
<td>1245</td>
<td>Walter Reed bus to University Hospital (5) priority 2 (1) priority 1</td>
</tr>
<tr>
<td>1245</td>
<td>Ops section demobilized Command terminated</td>
</tr>
<tr>
<td>RESOURCE ORDERED</td>
<td>RESOURCES IDENTIFICATION</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>AACO PM 21</td>
<td>0900</td>
</tr>
<tr>
<td>Balto, Co PM 5</td>
<td>0900</td>
</tr>
<tr>
<td>BWI PM 43</td>
<td>0900</td>
</tr>
<tr>
<td>WRMC Bus</td>
<td>0900</td>
</tr>
<tr>
<td>Waldorf Ambo</td>
<td>0900</td>
</tr>
<tr>
<td>Grasonville Ambo</td>
<td>0900</td>
</tr>
<tr>
<td>Private Ambo</td>
<td>0900</td>
</tr>
<tr>
<td>BWI Eng 43</td>
<td>0900</td>
</tr>
<tr>
<td>Balto Co Eng 5</td>
<td>0900</td>
</tr>
<tr>
<td>Balto Co Eng 41</td>
<td>0900</td>
</tr>
<tr>
<td>Balto Co Eng 263</td>
<td>0900</td>
</tr>
<tr>
<td>Tower 43</td>
<td>0900</td>
</tr>
<tr>
<td>BWI PM 43</td>
<td>0900</td>
</tr>
<tr>
<td>SYSTEM / CACHE</td>
<td>CHANNEL</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>BWI/FRD</td>
<td>TAC 1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>MIEMSS</td>
<td>CH 1</td>
</tr>
<tr>
<td>WRMC</td>
<td>Ops</td>
</tr>
<tr>
<td>LEP MTAP</td>
<td>BWI 1</td>
</tr>
</tbody>
</table>

ICS 205
D/C GM Pace
UNIT LOG

<table>
<thead>
<tr>
<th>1. Incident Name</th>
<th>2. Date Prepared</th>
<th>3. Time Prepared</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDMS Drill</td>
<td>05/20/2006</td>
<td>0700</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Unit Name/Designation</th>
<th>5. Unit Leader (Name and Position)</th>
<th>6. Operational Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>Amos E Joiner</td>
<td>0700-1700</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Personnel Roster Assigned</th>
<th>Name</th>
<th>ICS Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amos E Joiner</td>
<td>Operation</td>
<td></td>
</tr>
<tr>
<td>Lisa Chervon</td>
<td>Medical Group</td>
<td></td>
</tr>
<tr>
<td>Doug Brinkley</td>
<td>Safety</td>
<td></td>
</tr>
<tr>
<td>Linas Saurusaitis</td>
<td>Staging</td>
<td></td>
</tr>
<tr>
<td>Robert Stower</td>
<td>Decon</td>
<td></td>
</tr>
<tr>
<td>Col. Lee</td>
<td>Militry</td>
<td></td>
</tr>
<tr>
<td>Ben Martinez</td>
<td>Airport op.</td>
<td></td>
</tr>
<tr>
<td>Srg. Meerkter</td>
<td>Police</td>
<td></td>
</tr>
</tbody>
</table>

Activity Log

<table>
<thead>
<tr>
<th>Time</th>
<th>Major Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>0700</td>
<td>Set up for drill</td>
</tr>
<tr>
<td>0900</td>
<td>Unit in position</td>
</tr>
<tr>
<td>0915</td>
<td>MSP tropperon location</td>
</tr>
<tr>
<td>0955</td>
<td>Decon ready</td>
</tr>
<tr>
<td>1010</td>
<td>C 130 on ground</td>
</tr>
<tr>
<td>1035</td>
<td>All patient decon</td>
</tr>
<tr>
<td>1050</td>
<td>Up date command</td>
</tr>
<tr>
<td>1100</td>
<td>MEMA bus on location</td>
</tr>
<tr>
<td>1130</td>
<td>All patient off plane</td>
</tr>
<tr>
<td>1132</td>
<td>MEMA trailer in operation</td>
</tr>
<tr>
<td>1155</td>
<td>PAR was done</td>
</tr>
<tr>
<td>1300</td>
<td>Drill over</td>
</tr>
</tbody>
</table>

9. Prepared by (Name and Position)
BWI AIRPORT FIRE & RESCUE DEPARTMENT
DUTY ROSTER

DATE: 05-20-2006

A SHIFT

OIC
JOINER HM

ARFF

OFFICER
GRIBBLE

TOWER 43
PLANNER
HIGGS HM
BAMBARY HM

RESCUE 431
STEWART HM
FAULKNER HM

RESCUE 432
O.O.S.

RESCUE 435
FRAZER

RESCUE 436
TENAGLIS
PHILLIPS HM

KP: HOWARD
KP:
Dinner: FAULKNER

STRUCTURAL

OFFICER
POORE
QUINT 43

OFFICER
ENGINE 43
STOWER HM
ALESSI HM
BRINKLEY HM

PM 43
SAURUSAITIS
PYLE

PM 44
HOWARD
BLIZZARD

OFF DUTY

McFARLAND PER
R. SCOTT VAC
McGINNIES VAC
BERG VAC

LEWIS SICK
BLIZZARD FOR SHORT
LOWMAN SICK

87
<table>
<thead>
<tr>
<th>NAME</th>
<th>ICS POSITION</th>
<th>HOME BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas A. Brinkley</td>
<td>Safety Officer (1)</td>
<td>BWI Fire-Rescue</td>
</tr>
<tr>
<td>Mark Dubell</td>
<td>Safety Officer (2)</td>
<td>Anne Arundel Fire department</td>
</tr>
</tbody>
</table>

Activity Log

<table>
<thead>
<tr>
<th>TIME</th>
<th>MAJOR EVENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0830</td>
<td>Safety Plan prepared</td>
</tr>
<tr>
<td>0900</td>
<td>Safety plan reviewed with Incident Command</td>
</tr>
<tr>
<td>0910</td>
<td>Safety plan reviewed with Operations</td>
</tr>
<tr>
<td>0915</td>
<td>B.W.I. Fire Rescue Department "A" Shift briefed (decon / ops. Support)</td>
</tr>
<tr>
<td>0930</td>
<td>Safety briefing for Mutual Aid Fire Rescue</td>
</tr>
<tr>
<td>1000</td>
<td>Haz-Mat situation awareness discussion with Decon team leader</td>
</tr>
<tr>
<td>1015</td>
<td>Aircraft Lands</td>
</tr>
<tr>
<td>1027</td>
<td>Specific Patients taken to decon</td>
</tr>
<tr>
<td>1030</td>
<td>Patients unloaded</td>
</tr>
<tr>
<td>1100</td>
<td>Patients unloaded</td>
</tr>
<tr>
<td>1115</td>
<td>Patients moved about</td>
</tr>
</tbody>
</table>
UNIT LOG

7. PERSONNEL ROSTER ASSIGNED

<table>
<thead>
<tr>
<th>NAME</th>
<th>ICS POSITION</th>
<th>HOME BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas A. Brinkley</td>
<td>Safety Officer (1)</td>
<td>BWI Fire Rescue Department</td>
</tr>
<tr>
<td>Mark Dufell</td>
<td>Safety Officer (2)</td>
<td>Anne Arundel Fire Department</td>
</tr>
</tbody>
</table>

8. ACTIVITY LOG (CONTINUE ON REVERSE)

<table>
<thead>
<tr>
<th>TIME</th>
<th>MAJOR EVENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1130</td>
<td>Patients moved about</td>
</tr>
<tr>
<td>1200</td>
<td>Personal Accountability Report asked for</td>
</tr>
<tr>
<td>1205</td>
<td>Companies / Units report P.A.R.</td>
</tr>
<tr>
<td>1215</td>
<td>Companies reported to Rehab</td>
</tr>
<tr>
<td>1230</td>
<td>Demobilization starts</td>
</tr>
<tr>
<td>1300</td>
<td>Demobilization continued</td>
</tr>
<tr>
<td>1330</td>
<td>Demobilization continued</td>
</tr>
<tr>
<td>1400</td>
<td>Demobilization / Safety briefing and comments at hot wash</td>
</tr>
<tr>
<td>1500</td>
<td>Drill ends</td>
</tr>
</tbody>
</table>

ICS 214

Firefighter Douglas Alan Brinkley, Safety Officer
<table>
<thead>
<tr>
<th>TASK FORCE RESOURCE DESIGNATOR</th>
<th>LEADER</th>
<th>NUMBER PERSONS</th>
<th>TRANS. NEEDED</th>
<th>DROP OFF PT./TIME</th>
<th>PICK UP PT./TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decon</td>
<td>PF Stower</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical</td>
<td>Lt. Poore</td>
<td></td>
<td>Unk.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triage</td>
<td>Lt. Poore</td>
<td></td>
<td>Unk.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>MIE MSS</td>
<td></td>
<td>Unk.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td>MIE MSS</td>
<td></td>
<td>Unk.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Military E.M.S.</td>
<td>Military</td>
<td></td>
<td>Unk.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airfield stand-by</td>
<td>B.W.I. FRD</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. CONTROL OPERATIONS

See Operations Assignment List

8. SPECIAL INSTRUCTIONS

In event of a true emergency, air horn blasts will be given for one minute. You will report to the Command post and a P.A.R. will be conducted. If the patients have a "true" emergency, they will hold up a "Red" card. Treat them accordingly, and notify command.

9. DIVISION/GROUP COMMUNICATIONS SUMMARY

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>FREQ.</th>
<th>SYSTEM</th>
<th>CHAN</th>
<th>FUNCTION</th>
<th>FREQ.</th>
<th>SYSTEM</th>
<th>CHAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMAND LOCAL RPT</td>
<td>800 mgz</td>
<td>Tac 2</td>
<td>LOCAL RPT</td>
<td>800 mgz</td>
<td>Tac 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIV/GROUP TACTICAL</td>
<td>Tac 2</td>
<td>GROUND TO AIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PREPARED BY (RESOURCES UNIT LDR.)
Firefighter Douglas A. Brinkley

APPROVED BY (PLANNING SECTION CHIEF)

DATE 05/20/06
TIME 1500
<table>
<thead>
<tr>
<th>Location of Assigned Work</th>
<th>Probability - Scenario</th>
<th>Core Values</th>
<th>Hazardous Materials</th>
<th>Public Utilities</th>
<th>Contingency Planning</th>
<th>Evacuation Site Location(s)</th>
<th>Infrastructure Assessment</th>
<th>Search Operations</th>
<th>LCES Mitigations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Safety Officers Positioned over field</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aircraft, turbo-prop, loading</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Un-loading patients, lifting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Moving vehicles, wires on the ground for T.V., etc.</td>
</tr>
</tbody>
</table>

Prepared by (Name and Position)
INSTAWEATHER FORECAST FOR BALTIMORE, MD

CURRENT CONDITIONS

Baltimore, Baltimore-Washington International Airport, MD

<table>
<thead>
<tr>
<th>Humidity: 80%</th>
<th>Wind Speed: CALM</th>
<th>Barometer: 29.71 in.</th>
<th>Dewpoint: 48°F</th>
<th>Heat Index: 54°F</th>
<th>Wind Chill: 54°F</th>
</tr>
</thead>
</table>

Sunrise: 5:49 AM EDT

Multiple County Forecast

EXTENDED FORECAST

Baltimore, Baltimore-Washington International Airport, Maryland | Updated: 349 AM EDT SAT MAY 20 2006

<table>
<thead>
<tr>
<th>SATURDAY</th>
<th>SUNDAY</th>
<th>MONDAY</th>
<th>TUESDAY</th>
<th>WEDNESDAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partly Cloudy</td>
<td>Chance Of T-Storm</td>
<td>Mostly Sunny</td>
<td>Mostly Sunny</td>
<td>Partly Cloudy</td>
</tr>
<tr>
<td>Hi: 71°F</td>
<td>Hi: 71°F</td>
<td>Hi: 69°F</td>
<td>Hi: 71°F</td>
<td>Hi: 75°F</td>
</tr>
<tr>
<td>Lo: 49°F</td>
<td>Lo: 45°F</td>
<td>Lo: 49°F</td>
<td>Lo: 49°F</td>
<td>Lo: 55°F</td>
</tr>
<tr>
<td>Precip: 20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FORECAST DETAILS

Updated: 349 AM EDT SAT MAY 20 2006

Includes the Counties: Frederick County MD, Carroll, Northern Baltimore Includes the Cities: Frederick, Westminster

- Saturday...Partly cloudy. Highs in the lower 70s. West winds 10 to 20 mph.
- Sunday...Partly cloudy. A slight chance of showers in the morning... Then slight chance of showers and thunderstorms in the afternoon. Highs in the lower 70s. West winds 15 to 20 mph. Chance of rain 20 percent.
- Monday...Mostly sunny. Highs in the upper 60s. Northwest winds 10 to 15 mph.
B.W.I. Fire Rescue Department Safety Officer Checklist

Box: 43-50 Date: 5/20 Time: 1010 Weather: Sunny 74°.
Incident: ND 1M5 Location: Echo C #4

✓ Protective Clothing in Use: Helmet, Hood, Gloves, Coat / Pants, SCBA, Eye / Ear protection, Pass Alarm (proximity)
✓ Accountability in Place: at level 1 Point of Entry:
✓ P.A.R. for Crews, @ 20 minutes, continuous.

Primary Assessment:
- a. Gas Shut Off @
- b. Electric Off (LOTO) @
- c. Overhead wires
- d. Structure / Collapse!
- e. Exposures (checked)
✓ f. Aircraft Type: C-130

Fire Control:
✓ a. Crew Integrity
- b. Back Up Line
- c. Roof Ops. / Sector
- d. Ventilation / Meter
- e. Overhaul (SCBA)
- f. Ladders / Egress

Hazardous Materials Present:
✓ Hazards: Ice Hoselines Wires Structural Holes

Rehab: [Ambulances] H2O Hydration Station Alarms

Diagram:

EMS dedicated —
P.A.R. —
EMS Task - CO Monitor
Fmrs (hfd)
Running Ambul

93
<table>
<thead>
<tr>
<th>Incident Name:</th>
<th>Date Prepared:</th>
<th>Operational Period:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDM5 Drill</td>
<td>05/20/06</td>
<td>1000 hr - 1300</td>
</tr>
</tbody>
</table>

Section I. Site Information

4. Incident Location: C town E row #4

Section II. Organization

6. HM Group Supervisor:

7. Tech. Specialist - HM Reference:

8. Safety Officer:

9. Entry Leader:

10. Site Access Control Leader:

11. Asst. Safety Officer - HM:

12. Decontamination Leader: FF ShoA

13. Safe Refuge Area Mgr:

14. Environmental Health:

15.

16.

17. Entry Team: (Buddy System)

<table>
<thead>
<tr>
<th>Entry 1</th>
<th>Entry 2</th>
<th>Entry 3</th>
<th>Entry 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name:</td>
<td>PPE Level</td>
<td>Decon 1 Stower</td>
<td>Tyvek</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decon 2 Phillips</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decon 3 Alarri</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decon 4 Fulkiss</td>
<td>III</td>
</tr>
</tbody>
</table>

Section III. Hazard/Risk Analysis

19. Material: Det A

<table>
<thead>
<tr>
<th>Container Type</th>
<th>Qty</th>
<th>Phys. State</th>
<th>pH</th>
<th>IDLH</th>
<th>F.P.</th>
<th>L.T.</th>
<th>V.P.</th>
<th>V.D.</th>
<th>S.G.</th>
<th>LEL</th>
<th>UEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>liquid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comment: off < 130

Section IV. Hazard Monitoring

20. LEL Instrument(s):

21. O₃ instrument(s):

22. Toxicity/PPM instrument(s):

23. Radiological Instrument(s): N/A

Comment: working equipment

Section V. Decontamination Procedures

24. Standard Decontamination Procedures: YES: NO:

Comment: water / soap solution

Section VI. Site Communications

25. Command Frequency: Text 2

26. Tactical Frequency: 2

27. Entry Frequency: NA

Section VII. Medical Assistance

28. Medical Monitoring: YES: NO:

29. Medical Treatment and Transport In-place: YES: NO:

Comment: N/A
Mass Casualty Incident 06-06 05/20/06

Safety Message:

Remain Calm, Training Exercise

Emergency: Air Horn blast for 1 minute, report to the Command Post, a P.A.R. will be conducted at that location.

In the event a Patient has a real Emergency they will hold up a RED card. Act to the emergency accordingly. Notify Incident Command.

Weather: highs in lower 70's, humidity at 80% overcast,

Keep hydrated, if crews need breaks etc., Unit Officers will follow chain of command... ask for them.

General: Orange fencing is perimeter of play, there is NO reason for you to be near the orange fence. Law Enforcement will be positioned at the fence.

Be mindful of jet-blast, keep 200' perimeter from Aircraft. When approaching aircraft, be with a guide.

Safety Equipment:
E.M.S. Gloves
Eye protection
Safety shoes
Helmet

Standard assignment:
Assist in loading, unloading and transporting patients to triage areas and E.M.S. vehicles for proper care.

Haz-Mat: Companies will be conducting decon, follow proper Haz-mat protocols per Haz-Mat OIC.

In the event of an airfield emergency, Mutual Aid equipment will NOT self-dispatch. Wait for our Command to ask you or dispatch you for assistance.
UNIT LOG

1. INCIDENT NAME: NDMS Drill
2. DATE PREPARED: 5/20/2006
3. TIME PREPARED: 10:40
4. UNIT NAME/DESIGNATORS: Decon
5. UNIT LEADER (NAME AND POSITION): Robert Stower
6. OPERATIONAL PERIOD: 0700-1900
7. PERSONNEL ROSTER ASSIGNED:

<table>
<thead>
<tr>
<th>NAME</th>
<th>ICS POSITION</th>
<th>HOME BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heather Phillips Hazmat Tech</td>
<td>Decon</td>
<td>BWI</td>
</tr>
<tr>
<td>Robert Stower Hazmat Tech</td>
<td>Decon</td>
<td>BWI</td>
</tr>
<tr>
<td>Chas Alessi Hazmat Tech</td>
<td>Decon</td>
<td>BWI</td>
</tr>
<tr>
<td>Emmanuel Faulkner Hazmat Tech</td>
<td>Decon</td>
<td>BWI</td>
</tr>
</tbody>
</table>

8. ACTIVITY LOG (CONTINUE ON REVERSE):

<table>
<thead>
<tr>
<th>TIME</th>
<th>MAJOR EVENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0700</td>
<td>Notified of incoming patient.</td>
</tr>
<tr>
<td>0830</td>
<td>Decon area set up</td>
</tr>
<tr>
<td>0950</td>
<td>Decon personnel in suits and ready</td>
</tr>
<tr>
<td>1010</td>
<td>Aircraft arrived at treatment area</td>
</tr>
<tr>
<td>1025</td>
<td>Contaminated patient arrived at decon</td>
</tr>
<tr>
<td>1035</td>
<td>Last patient decon</td>
</tr>
<tr>
<td>1040</td>
<td>Operation notified that decon was secured</td>
</tr>
</tbody>
</table>

ICS 214
<table>
<thead>
<tr>
<th>TIME</th>
<th>MAJOR EVENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0700</td>
<td>Notified of incoming patient.</td>
</tr>
<tr>
<td>0810</td>
<td>PM 44 on scene</td>
</tr>
<tr>
<td>0830</td>
<td>Lt Poore on the scene assuming transportion</td>
</tr>
<tr>
<td>0845</td>
<td>AA co PM -21 ALS</td>
</tr>
<tr>
<td>0850</td>
<td>Balt. Co PM -5 ALS</td>
</tr>
<tr>
<td>0915</td>
<td>Private Ambo Taylor Made BLS</td>
</tr>
<tr>
<td>0930</td>
<td>Grasonville Ambo BLS</td>
</tr>
<tr>
<td>1010</td>
<td>Aircraft arrived</td>
</tr>
<tr>
<td>1120</td>
<td>1 patient loaded on to Balt. Co 5 for St. Agnes</td>
</tr>
<tr>
<td>1155</td>
<td>2 patient loaded on to Balt. Co 5 for St. Agnes 1 Pro 1 and 1 Pro 2</td>
</tr>
<tr>
<td>1156</td>
<td>2 patient loaded on to AA Co PM 21 for St Agnes 2 Pro 2</td>
</tr>
</tbody>
</table>

ICS 214
<table>
<thead>
<tr>
<th>TASK FORCE RESOURCE DESIGNATOR</th>
<th>LEADER</th>
<th>NUMBER OF PERSONS</th>
<th>TRANS. NEEDED</th>
<th>DROP OFF PT./TIME</th>
<th>PICK UP PT./TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM 21</td>
<td>Keith Whalen</td>
<td>2</td>
<td></td>
<td>1156</td>
<td></td>
</tr>
<tr>
<td>Balt. Co 5</td>
<td>Diana Petrusik</td>
<td>2</td>
<td></td>
<td>1154</td>
<td></td>
</tr>
<tr>
<td>QA Co 201</td>
<td>Guy Schelhouse</td>
<td>2</td>
<td></td>
<td>1216</td>
<td></td>
</tr>
<tr>
<td>Taylor Made Ambo</td>
<td>Jocelyn Smith</td>
<td>2</td>
<td></td>
<td>1215</td>
<td></td>
</tr>
<tr>
<td>Waldorf Ambo</td>
<td>Dennis Welsh</td>
<td>4</td>
<td></td>
<td>1220</td>
<td></td>
</tr>
<tr>
<td>Walter Reed Bus</td>
<td></td>
<td>6</td>
<td></td>
<td>1245</td>
<td></td>
</tr>
</tbody>
</table>

7. CONTROL OPERATIONS

8. SPECIAL INSTRUCTIONS

9. DIVISION/GROUP COMMUNICATIONS SUMMARY

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>FREQ.</th>
<th>SYSTEM</th>
<th>CHAN</th>
<th>FUNCTION</th>
<th>FREQ.</th>
<th>SYSTEM</th>
<th>CHAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMAND</td>
<td>LOCAL</td>
<td>RPT</td>
<td></td>
<td>SUPPORT</td>
<td>LOCAL</td>
<td>RPT</td>
<td></td>
</tr>
<tr>
<td>DIV/GROUP TACTICAL</td>
<td></td>
<td></td>
<td></td>
<td>GROUND TO AIR</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PREPARED BY (RESOURCES UNIT LDR.) APPROVED BY (PLANNING SECTION CHIEF)
ICS 204
ASSIGNMENT LIST

1. BRANCH: Medical
2. DIVISION/GROUP: Staging

3. INCIDENT NAME: NDMS Drill

4. OPERATIONAL PERIOD - DATE/TIME: 5/20/2006 0700-1900

5. OPERATIONS PERSONNEL:
 - OPERATIONS CHIEF: AMOS E. JOINER
 - DEPUTY CHIEF: GARRY PACE
 - BRANCH DIRECTOR: LISA CHERVON
 - DIVISION/GROUP SUPERVISOR: Linas Saurusaitis
 - AIR TACTICAL GROUP SUPERVISOR:

6. RESOURCES ASSIGNED THIS PERIOD:

<table>
<thead>
<tr>
<th>TASK FORCE RESOURCE DESIGNATOR</th>
<th>LEADER</th>
<th>NUMBER PERSONS</th>
<th>TRANS. NEEDED</th>
<th>DROP OFF PT./TIME</th>
<th>PICK UP PT./TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM 21</td>
<td>Keith Whalen</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balt. Co 5</td>
<td>Diana Petrusik</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QA Co 201</td>
<td>Guy Schelhouse</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taylor Made Ambo</td>
<td>Jocelyn Smith</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waldorf Ambo</td>
<td>Dennis Welsh</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balt. Co B 41</td>
<td>William Gardner</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balt. Co 5</td>
<td>Davis Cox</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balt. Co 263</td>
<td>Adam Davies</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. CONTROL OPERATIONS: Unit it staging until moved to treatment and transportation

8. SPECIAL INSTRUCTIONS:

9. DIVISION/GROUP COMMUNICATIONS SUMMARY:

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>FREQ. SYSTEM</th>
<th>CHANNEL</th>
<th>FUNCTION</th>
<th>FREQ. SYSTEM</th>
<th>CHANNEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMAND</td>
<td>LOCAL RPT</td>
<td></td>
<td>SUPPORT</td>
<td>LOCAL RPT</td>
<td></td>
</tr>
<tr>
<td>DIV/GROUP TACTICAL</td>
<td></td>
<td></td>
<td>GROUND TO AIR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PREPARED BY (RESOURCES UNIT LDR.):
APPROVED BY (PLANNING SECTION CHIEF):

ICS 204 99
<table>
<thead>
<tr>
<th>RESOURCE ORDERED</th>
<th>RESOURCES IDENTIFICATION</th>
<th>ETA</th>
<th>ON SCENE</th>
<th>LOCATION/ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AACO PM 21</td>
<td></td>
<td>0900</td>
<td></td>
<td>Transportation</td>
</tr>
<tr>
<td>Balto. Co PM 5</td>
<td></td>
<td>0900</td>
<td></td>
<td>Transportation</td>
</tr>
<tr>
<td>BWI PM 43</td>
<td></td>
<td>0900</td>
<td></td>
<td>Transportation</td>
</tr>
<tr>
<td>WRMC Bus</td>
<td></td>
<td>0900</td>
<td></td>
<td>Transportation</td>
</tr>
<tr>
<td>Waldorf Ambo</td>
<td></td>
<td>0900</td>
<td></td>
<td>Transportation</td>
</tr>
<tr>
<td>Grasonville Ambo</td>
<td></td>
<td>0900</td>
<td></td>
<td>Transportation</td>
</tr>
<tr>
<td>Private Ambo</td>
<td></td>
<td>0900</td>
<td></td>
<td>Transportation</td>
</tr>
<tr>
<td>BWI Eng 43</td>
<td></td>
<td>0900</td>
<td></td>
<td>Litter Bearer</td>
</tr>
<tr>
<td>Balto Co Eng 5</td>
<td></td>
<td>0900</td>
<td></td>
<td>Litter Bearer</td>
</tr>
<tr>
<td>Balto Co Eng 41</td>
<td></td>
<td>0900</td>
<td></td>
<td>Litter Bearer</td>
</tr>
<tr>
<td>Balto-Co Eng 263</td>
<td></td>
<td>0900</td>
<td></td>
<td>Litter Bearer</td>
</tr>
<tr>
<td>Tower 43</td>
<td></td>
<td>0900</td>
<td></td>
<td>Hazmat Decon</td>
</tr>
<tr>
<td>BWI PM 43</td>
<td></td>
<td>0900</td>
<td></td>
<td>Standby</td>
</tr>
</tbody>
</table>
UNIT LOG

1. INCIDENT NAME
NDMS Drill

2. DATE PREPARED
5/20/2006

3. TIME PREPARED

4. UNIT NAME/DESIGNATORS
Staging

5. UNIT LEADER (NAME AND POSITION)
Linas Saurusaitis

6. OPERATIONAL PERIOD
0700-1900

7. PERSONNEL ROSTER ASSIGNED

<table>
<thead>
<tr>
<th>NAME</th>
<th>ICS POSITION</th>
<th>HOME BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linas Saurusaitis</td>
<td>Staging</td>
<td>BWI</td>
</tr>
<tr>
<td>Taylor Made Ambulance</td>
<td>BLS</td>
<td>2 Personnel</td>
</tr>
<tr>
<td>Grasonville Ambulance</td>
<td>BLS</td>
<td>3 Personnel</td>
</tr>
<tr>
<td>Waldorf Ambulance</td>
<td>BLS</td>
<td>3 Personnel</td>
</tr>
<tr>
<td>Balt. Co Medic 5</td>
<td>ALS</td>
<td>2 Personnel</td>
</tr>
<tr>
<td>AA Co Medic 21</td>
<td>ALS</td>
<td>2 Personnel</td>
</tr>
<tr>
<td>Balt. Co Engine 41</td>
<td>Engine Co</td>
<td>4 Personnel</td>
</tr>
<tr>
<td>Balt. Co Engine 5</td>
<td>Engine Co</td>
<td>4 Personnel</td>
</tr>
<tr>
<td>Balt. Co Engine 263</td>
<td>Engine Co</td>
<td>4 Personnel</td>
</tr>
</tbody>
</table>

8. ACTIVITY LOG (CONTINUE ON REVERSE)

<table>
<thead>
<tr>
<th>TIME</th>
<th>MAJOR EVENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0700</td>
<td>Briefing at fire station</td>
</tr>
<tr>
<td>0730</td>
<td>Yellow and Green triage tent deployed</td>
</tr>
<tr>
<td>0800</td>
<td>Relocated to staging area Mathison way</td>
</tr>
<tr>
<td>0830</td>
<td>Mutual Aid unit completed roster and information sheet</td>
</tr>
<tr>
<td>0900</td>
<td>Relocated unit to inter roadway</td>
</tr>
<tr>
<td>0915</td>
<td>Mutual Aid briefed by D. /C Warren</td>
</tr>
<tr>
<td>0925</td>
<td>Safety briefing by FF Brinkley</td>
</tr>
<tr>
<td>1015</td>
<td>Medical unit relocated to treatment area</td>
</tr>
<tr>
<td>1025</td>
<td>Escorts Walter Reed bus to Aircraft</td>
</tr>
<tr>
<td>1055</td>
<td>Escorts MEMA communication bus to transportation area</td>
</tr>
<tr>
<td>1115-1130</td>
<td>Assist with vehicle redeployment</td>
</tr>
</tbody>
</table>
Appendix 12
Publications Listed in Reportable Outcomes

Mobile Wireless Video Transfer System (MWVTS) for Disaster Management

Peter F. Hu, MS, CNE 1, David M. Gagliano, MBA 2, Nelson Tang, PhD 2, Lap V. Truong, MS 2, Larry Markins, MS 3, Colin F. Mackenzie, MD 1

1 University of Maryland School of Medicine, Baltimore, MD
2 Northrop Grumman Corporation, Reston, VA
3 United States Army Medical Research & Materiel Command (USAMRMC) Telemedicine & Advanced Technology Research Center (TATRC)

Introduction: A major challenge for disaster management is real-time situational awareness. We tested MWVTS transmission of at scene videos through a wireless WAN to a remote EOC during a National Disaster Medical System Functional Exercise (NDMS-FX).

Methods: Live field video (close-ups and the focused field view) were captured by the MWVTS and transmitted through a secured multi-channel (3G-EV-DO, GPRS) wireless network to a server. Remote viewers at the EOC accessed the live or stored images through secured wireless tablet PCs. Six experts at the EOC (3-physicians, one-military, and two-EMS personnel) completed image evaluations on a 1-5 (worst to best) Likert Scale.

Results: A total of 22,419 real-time mobile video images (320*240) over 247.7 minutes were transferred (1.5 images per second) with average delay of 0.66 second. Mobile video image uses and scores (mean values) were: situational awareness of FX = 4.7, video images usefully for patient triage = 4.3, for Incident Commander = 4.0, in combination with FX radio communication = 4.7, for declaring a patient dead = 2.7

Conclusions: Video imagery from MWVTS improved EOC situational awareness. The images provided a useful training and debriefing record of FX. The institutional firewall configuration was a barrier for rapid system deployment.

Fixed and Mobile Video for MASCAL reception and EOC awareness

BACKGROUND: New technology allows information gathering and collaboration across information networks that would be of benefit to emergency response. In a Homeland Security Exercise we evaluated the utility of fixed and mobile video on remote emergency operations center (EOC) situational awareness. The internet is ubiquitous and camera technology has improved performance, but increasingly there are obstacles and challenges in coordination across information technology networks. We evaluated the utility of multiple fixed and mobile video image displays in increasing situational awareness in EOC during a National Disaster Medical System (NDMS) Functional Exercise (FX) that tested activation of Mutual Aid agreements between the Army and Maryland Emergency Medical Services (MIEMSS) to access civilian hospital surge capacity beds for Mass Casualties (MASCAL).

METHODS: The Video Capture and Distribution System (VCDS) consisted of 16 video cameras connected with a digital video recorder (DVR) and a DVR viewer for real-time display of the 16 video images and a wireless relay station for the remote viewing station at the EOC. The VCDS-DVR could be configured at a rate of 1, 2, 4, 8, 15, 30 frames per second per video feed. The viewer providing from 1 to 16 images per screen was projected onto a 8 foot by 6 foot display in the EOC. Six experts (3 physicians, one military and 2 EMS personnel) completed image evaluations scoring them on a 1-5 (worst to best) Likhert Scale. During the FX the cameras were strategically focused on all aspects of the FX, including reception MASCAL, triage tents, staging and transportation. VCDS captured 16 images per second for all 16 video feed and display 4, 9 or 16 images at the remote EOC.

RESULTS: A total of 2 hours and 10 minutes of real-time video (130min*60sec per min*1image per channel*16videos=124800 images) were captured. End-to-end delay was less than 4 second mainly due to the wireless transfer. **Mobile video image** uses and scores (mean values) were: Situational Awareness of FX = 4.7, MASCAL Triage = 4.3, For Incident Commander = 4.0, In combination with FX Radio Comm= 4.7, for declaring a MASCAL dead = 2.7 **Fixed video images:** Provided additional info= 4.0, combo of fixed and mobile best = 4.5, Click & Enlarge one of many image capability = 3.5, Increased situational awareness of FX = 4.5. **Challenges:** firewalls around EOC could not be opened because of administrative barriers, so wireless (slower) transmission was used.

CONCLUSIONS: Video imagery from mobile devices covering the entire FX site and from fixed locations improved EOC situational awareness. The developments in the FX could be tracked, the triage status of MASCAL could be immediately determined and the images provided a useful training and debriefing record of exactly what occurred. Imaging networks and technical support for EOCs and Incident Command Posts is needed to support both planned coordination of EOC image access from Emergency Response sites by various approved agencies and a mechanism to support this action where prior planning is not feasible or additional entities need access.

Rapid deployable Video Capture and Distribution System (VCDS) for real-time disaster management

Peter Hu, MS, CNE, Steve Seebode, Danny Ho, MS, Colin F. Mackenzie, MD, Tony Story Gary Gilbert, PhD, Christopher Handley, MS, Yan Xiao, PhD.

Introduction:
Effective real-time situation awareness and communication is critical in disaster response. We evaluated a real-time VCDS that delivered multi-channel live video wirelessly to a remote emergency operation center (EOC) during a National Disaster Medical System Functional Exercise (NDMS-FX).

Methods:
The 16-VCDS cameras were directed to provide maximal coverage of the reception, patient triage, staging and transportation areas. VCDS captures 16-video sites transmitting 16 images-per-second to the remote EOC. The viewer at EOC could select any combinations of 16 images based on the field situation. Six experts at the EOC (3-physicians, one-military and 2-EMS personnel) completed image evaluations on a 1-5 (worst to best) Likhert Scale.

RESULTS: A total of 130 minutes of video were captured and wirelessly reviewed in real-time. End-to-end delay was less than 4 second. Video images: Provided additional information = 4.0, Enlarge image helps the viewer = 3.5, Increased situational awareness of FX = 4.5.

CONCLUSIONS: Live video imagery from entire FX site greatly improved EOC situational awareness. The developments in the FX could be tracked, the triage status could be immediately determined. The institutional firewall configuration could be a barrier for rapid deployment.
Supported by W81XWH-05-2-0086 from TATRC

Real-Time Video Review: Data Collection Techniques to Support Situation Awareness

Ho Danny
Hu Peter
Seebode Steve
Mackenzie Colin F, MD
Brooks Tim
Handley Chris
Hirshon Jon M, MD
LTC Wasylina P
Johnson S, MD

* Steve Johnson MD (Director of Critical Care Medicine at STC) Chris Handley -- NSC, Jon Mark Hirshon MD Dept Emergency Medicine UM & NSC, LTC Philip Wasylina Walter Reed Army Medical Center (WRAMC)

Introduction
Real-time field data is vital to situation awareness in mass casualty situations. Timely and reliable aggregate data is necessary for resource assessment and planning. We performed quantitative comparison of two real-time video review techniques for surgical activity assessment by a human operator. Video data from a National Disaster Medical System Functional Exercise (NDMS-FX) was used.

Methods
A two-factorial design was used. The first factor was review method: “freeze frame” (FF) versus “live-video” (LV). The second factor was task load: patient/non-patient count versus patient/non-patient count with simultaneous bed tracking (BT). Four 20-minute video segments were assigned via Latin-squares to four multi-disciplinary investigators. Study measures included patient/non-patient count accuracy and scores from the subjective mental effort questionnaire (SMEQ).

Results
Mental effort score differences were not statistically significant, although FF required slightly less mental effort. Both review methods produced similar average deviations in count accuracy, although FF afforded much less standard deviation (0.933 vs. 2.90). Data further indicated significant main effect of FF on patient count accuracy (p = 0.037) and non-patient count accuracy (p = 0.001).

Conclusions
Findings suggest the freeze frame review method may produce more reliable count accuracy while placing slightly less mental effort demand on the human operator.
Tests of Between-Subjects Effects

Dependent Variable: ptdiff

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>PaLVial Eta Squared</th>
<th>Noncent. Parameter</th>
<th>Observed Power(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>1.338(b)</td>
<td>3</td>
<td>.446</td>
<td>1.926</td>
<td>.125</td>
<td>.018</td>
<td>5.778</td>
<td>.496</td>
</tr>
<tr>
<td>Intercept</td>
<td>1.512</td>
<td>1</td>
<td>1.512</td>
<td>6.534</td>
<td>.011</td>
<td>.020</td>
<td>6.534</td>
<td>.722</td>
</tr>
<tr>
<td>FF</td>
<td>1.013</td>
<td>1</td>
<td>1.013</td>
<td>4.374</td>
<td>.037</td>
<td>.014</td>
<td>4.374</td>
<td>.550</td>
</tr>
<tr>
<td>BT</td>
<td>.313</td>
<td>1</td>
<td>.313</td>
<td>1.350</td>
<td>.246</td>
<td>.004</td>
<td>1.350</td>
<td>.212</td>
</tr>
<tr>
<td>FF * BT</td>
<td>.013</td>
<td>1</td>
<td>.013</td>
<td>.054</td>
<td>.816</td>
<td>.000</td>
<td>.054</td>
<td>.056</td>
</tr>
<tr>
<td>Error</td>
<td>73.150</td>
<td>316</td>
<td>.231</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>76.000</td>
<td>320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>74.487</td>
<td>319</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Computed using alpha = .05
b R Squared = .018 (Adjusted R Squared = .009)

Tests of Between-Subjects Effects

Dependent Variable: nonptdiff

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>PaLVial Eta Squared</th>
<th>Noncent. Parameter</th>
<th>Observed Power(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>81.850(b)</td>
<td>3</td>
<td>27.283</td>
<td>5.961</td>
<td>.001</td>
<td>.054</td>
<td>17.883</td>
<td>.956</td>
</tr>
<tr>
<td>Intercept</td>
<td>1.800</td>
<td>1</td>
<td>1.800</td>
<td>.393</td>
<td>.531</td>
<td>.001</td>
<td>.393</td>
<td>.096</td>
</tr>
<tr>
<td>FF</td>
<td>48.050</td>
<td>1</td>
<td>48.050</td>
<td>10.498</td>
<td>.001</td>
<td>.032</td>
<td>10.498</td>
<td>.898</td>
</tr>
<tr>
<td>BT</td>
<td>5.000</td>
<td>1</td>
<td>5.000</td>
<td>1.002</td>
<td>.297</td>
<td>.003</td>
<td>1.092</td>
<td>.181</td>
</tr>
<tr>
<td>Error</td>
<td>1446.350</td>
<td>316</td>
<td>4.577</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1530.000</td>
<td>320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>1528.200</td>
<td>319</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Computed using alpha = .05
b R Squared = .054 (Adjusted R Squared = .045)

See Following Page.
Challenges to Remote Emergency Decision-Making for Disasters or Homeland Security

Colin Mackenzie
University of Maryland, Baltimore, MD

Peter Fu-Ming Hu
University of Maryland, Baltimore, MD

Carsten Fausboll
NATO, Brussels, Belgium

Michael Netlich
University of Regensburg, Germany

Thomas Benner
University of Regensburg, Germany

David Gagliano
Northrop Grumman Corporation, Reston, VA

Warren Whitlock
Fort Gordon, GA

David Lam
University of Maryland, Baltimore, MD and
United States Army, Telemedicine and Advanced Technology Research Center, Fort Detrick, MD

Yan Xiao
University of Maryland, Baltimore, MD

Abstract
New technology allows information gathering and collaboration across information networks that would be of benefit to emergency response. In a Homeland Security Exercise we compared the utility of fixed and mobile video and high quality still images on remote expert decision-making. Sixteen experts situated in 3 countries viewed and seven evaluated events of the exercise assisted by audio commentary of local knowledge experts. They evaluated the usefulness of black and white (B/W) compared to color images, fixed fast video versus slow video and still images. Technical difficulties interrupted image transmission to one remote site for half the Exercise. However, the images were found useful, color more so than B/W, mobile more so than fixed. The combination of still images and video was best. Playback of recorded images was especially useful for remote evaluation and decision-making. Improved reliability for these imaging technologies could improve shared awareness and large scale coordination for Homeland Security events.
Keywords: Remote Decision-making, Homeland Security, Emergency Response, Video, Large Scale Collaboration, Computer Supported Cooperative Work,

Corresponding author:
Colin Mackenzie, MD
701 W. Pratt Street, 5th Floor
Baltimore, MD 21201
phone: 410-328-8673
fax: 410-328-2841
E-mail: cmack003@umaryland.edu
Challenges to Remote Emergency Decision-Making for Disasters or Homeland Security

INTRODUCTION

Computer supported cooperative work (CSCW) technologies offer a range of methods to enable teams to communicate, share work spaces, exchange ideas, plan, calibrate their situation assessment and work in parallel with great efficiency (Olson et al. 1999). In the context of large scale collaboration, especially when tasks are driven by external events, the strengths and limitations of such CSCW technologies are incompletely understood and this lack of understanding will impact both their future uses and the expectations from implementation. Potentially the ability for remote experts to share relevant parts of their expertise “just-in-time” or for remote experts to provide on-site decision-makers with suggestions to build on ideas or courses of action is attractive. For Emergency Management Responders planning for rare scenarios, such use of real or virtual expert input could allow significant reductions in time to build, review, revise and re-review those plans. Furthermore, real-time responses for such Emergency Management Responders may benefit from both on-site and remote experts to suspect and confirm the presence of confusing factors or uncertainties dynamically as the scenario unfolds, so that situational assessment can be shared and jointly developed. The technology to facilitate such remote collaboration among distributed members includes, voice, data and images, both video and still. The internet has facilitated inexpensive communications of these media and the computers, recorders and cameras have recently become less expensive, more robust and refined. The technology now has improved performance (e.g., mobile and portable communication). However, there are trade-offs in quality and frequency of image transmission that could impact the decision making and situational awareness among distributed collaborators (Wootton et al. 1997; Chapanis et al. 1972; Xiao et al. 1999). There are also challenges for expert decision-making when Emergency Management or Disaster Response recommendations need to be coordinated dynamically with on-site responders from a geographically foreign location.

Disaster response for natural or man-made emergencies requires disparate expertise from multiple widespread forms (e.g., personnel, resources, databases). On-site responders can benefit from remotely situated experts who share the key aspects of their expertise at the point in the proceedings that these aspects are relevant. Such distributed decision-making can provide time-critical information that may be life-saving or protect rescuers or victims from exposure to hazards, and can prevent fixations or failures to consider earlier discarded hypotheses. The remote experts can function almost like a “transactive” memory for the on-site Emergency Management Responders who may be too busy with multiple tasks and rapidly changing events to be able to access databases or to accurately recall past information or communications (Wegner et al. 1991, Xiao et al. 2002). This study proposed to address several of the limitations from prior studies by including: real-time local knowledge audio supplements from on-site, a team of remote emergency management experts to counteract the varying background and expertise of individual remote experts, training pre-event to enhance coordination, the same low bandwidth black and white video enhanced with high bandwidth color video and still images.
transmitted to all facilities to minimize diagnostic biases and differences in decision-making from different remote locations.

We examined evidence to support three hypotheses of relevance to Homeland Security or Disaster Response during an exercise at the University of Maryland, Baltimore Campus: 1) Remote experts can identify real-time emergency events by viewing mobile, slow color video (1-2 frames/sec. (fps)) and the currently used fixed black and white (B/W) public safety video surveillance camera (20fps) images of events; 2) High quality still images sent to remote experts convey details not recognized in video; 3) Still color images promote situational awareness in geographically foreign locations.

We also assessed obstacles and challenges in coordination across organizational boundaries and routine information technology networks using subjective utility judged by remote experts. The Homeland Security exercise had the objective to improve emergency response coordination and called for responses from a collection of organizations (North Atlantic Treaty Organization (NATO) civil defense, European and United States (US.) Emergency Management Responders, Police, Physicians, University Public Safety personnel and both State and Federal Agencies), who under normal circumstances, did not work together. We expect that such modes of collaboration would be prevalent in responses to world-wide disasters and other high consequence events.

METHODS

The University of Maryland (UM) Homeland Security Exercise was viewed and evaluated remotely by experts in Emergency Operations Centers (EOC) in Regensburg, Germany, Brussels, Belgium and Baltimore, US. These EOC were connected with three Integrated Digital Services Network (ISDN) lines routed through Fort Gordon, Georgia, US. One ISDN line each to UM, UR, and NATO with two Cameras C1, the Public Safety surveillance B & W camera and C2, a mobile wireless camera. A secure web server and video-cassette recorder (VCR) allowed duplex video-teleconference (VTC) communications and recording of the ISDN connections. Locations (L) in UM, UR, and NATO for video communication of the Exercise through three real-time video Integrated Digital Services Networks (ISDN) are shown in Fig 1.
Exercise Scenario: A “Dirty Bomb” (a real radiation source in a black briefcase) activated radiation sensors in a kiosk on the UM Campus outside the hospital (Fig 2. shows the kiosk with the briefcase). The sensors automatically dialed a telephone alert to the Environmental Health and Safety Offices, which sent a team to examine the alarming sensor and both confirmed radiation and activated the emergency response process. The bomber contacted a local television station to tell them about both the Dirty Bomb and a second conventional bomb set to explode in 45 min in the Emergency Medical Services (EMS) headquarters building. The exercise involved 7 Local (UM and City), 7 State and 7 Federal agencies (Fig 3. Panels show...
UM–UR and UM-NATO through Fort Gordon in the week before the Exercise. However the UM-Fort Gordon-NATO-UR 4-way link could not be tested due to scheduling conflicts. The general purpose (but not details of the simulated event) of the Homeland Security Exercise was distributed by e-mail to all participants in the EOC’s 2 days before the exercise. During the actual live video transmission of exercise activities, background audio information (only when requested) was provided and questions were answered by two on-site (UM) experts who were viewing the same images as were transmitted to the EOC’s. Evaluations were completed or partially completed by 7 (3 at UR and UM, 1 at NATO) of the 16 remote EOC experts. Images for remote EOC evaluation included a) mobile slow color video taken from a lapel mounted camera carried by study participant who followed events on foot (Fig 4 mobile imaging system covered both bomb sites, worked well inside buildings/elevators, etc.), b) B/W surveillance camera images from a fixed location, providing a view of where the “Dirty Bomb” was planted and the radiation sensors were triggered. Evaluation forms (Table 1) were completed serially at specific times (shown at end of Table 1) identified on the Master Event Synchronization List (MESL) for the exercise. Still, high quality (3.0 Megapixels) images of the Exercise taken with a digital camera by a second study participant were evaluated.

Table 1: Remote Observation LAD Demo, March 26, 2004

Answer Sheet Number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
Time Completed: ____ hours ____ minutes

I am: ☐ Medical ☐ Police ☐ Fire Department ☐ Military
☐ Civil Defense ☐ Other

1. I would predict this event will be physically affecting a population of
2. List the most recent decisions made by those seen on the images displayed. (List up to three most important decisions, in order of decreasing importance.)

3. At the moment, the following is unclear to me (List up to three most important, specific areas in the order of decreasing important.):

4. How I would describe the Emergency Team Activities. (List up to three most important, descriptors, in order of decreasing important.):

5. I anticipate the following immediate problems (List up to three most important, specific problems, in order of decreasing important.):

6. List in priority the three current most important objectives of the Emergency Management Team. List your instructions to achieve objectives.

7. List in priority three most important pieces of information you would like to obtain and why.

8. **Circle** your response to the following statements:

 I am comfortable giving instructions to the team
 Given the opportunity, I would obtain more information
 I know the tasks being carried out by the team

 Disagree 1 2 3 4 5
 Agree 1 2 3 4 5

 Lowest 1 2 3 4 5
 Highest 1 2 3 4 5

9. Circle your probability estimate of a major clean-up.

10. Other comments.

Points where answer sheets 1-12 to be completed.
1) Radiation sensor alarms
2) Video surveillance camera review
3) Significant source of radiation in abandoned briefcase found
4) 911 called
5) Police securing 300-foot perimeter
6) Mini disaster: ED & STC fly-by
7) Evacuate vs. shelter in place
8) News media conveys 2 bomb messages
9) Knowledge that MIEMSS bomb set to explode 11:45 am
10) MIEMSS evacuation
11) Syscon relocates
12) Order to set up decon facility
13) Bomb squad defuses dirty bomb

Table 2: Comparison of Still Images with Live Slow Video Transmissions

1. The images (like those shown in the LAD Demo) would be useful for:

Please circle the appropriate number 1-5 (where 1 = Strongly Disagrees, 5 = Strongly Agrees) for your response to the questions below.

1. Disasters where a knowledgeable person provided audio commentary.
2. Incident Commander for Emergency Response coordination in Terrorist threat agent release in local area.

3. Trauma patient extrication guidance to pre-hospital personnel.

4. The surveillance camera (B&W) video was useful.
5. The mobile slow video image review capability was best.

II. The still images of the LAD Demo (https://example.com):

1. Provide me with additional information not noted during slow video.

2. Clarity of the still images increased my understanding of slow video events.
3. The combination of still images and slow video would be best.
4. The size of the thumb-nail images on the website is ok.

5. I would prefer all the images to be larger.

6. I would like to be able to click on and enlarge selected images.
7. Images in color conveyed more than black and white (B&W).

Table 3: Evaluation Question Kit
Please circle the number that corresponds to your agreement to the following statements.
(1= Strongly Disagree, 5= Strongly Agree)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>no answer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strongly disagree</td>
<td>Disagree</td>
<td>Don't agree or disagree</td>
<td>Agree</td>
<td>Strongly Agree</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

115
<table>
<thead>
<tr>
<th>Statement</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Guiding field emergency procedures</td>
<td>1</td>
</tr>
<tr>
<td>c. Coordination</td>
<td>3</td>
</tr>
<tr>
<td>9. The views provided met my needs.</td>
<td>3</td>
</tr>
<tr>
<td>10. The transmission of the video images poses intrusion to terrorist</td>
<td>3</td>
</tr>
<tr>
<td>victims’ privacy.</td>
<td>2</td>
</tr>
<tr>
<td>11. The transmission of the video images ofEMS activities poses an</td>
<td>3</td>
</tr>
<tr>
<td>intrusion in my privacy.</td>
<td>1</td>
</tr>
<tr>
<td>12. I am uncomfortable having my performance available to an off-site</td>
<td>4</td>
</tr>
<tr>
<td>observer.</td>
<td>3</td>
</tr>
<tr>
<td>13. Operation of a telemedicine system distracts the crew’s attention to</td>
<td>1</td>
</tr>
<tr>
<td>such a degree that the safety is compromised.</td>
<td>2</td>
</tr>
<tr>
<td>14. Operation of a telemedicine system delays regular essential steps in</td>
<td>1</td>
</tr>
<tr>
<td>emergency/disaster management.</td>
<td>1</td>
</tr>
<tr>
<td>15. The terrorist victim would feel comfortable with the presence of a</td>
<td>2</td>
</tr>
<tr>
<td>telemedicine system.</td>
<td>3</td>
</tr>
<tr>
<td>16. Acquiring and transmitting video images lengthens the emergency</td>
<td>1</td>
</tr>
<tr>
<td>management time.</td>
<td>3</td>
</tr>
<tr>
<td>17. Using a telemedicine system poses an additional workload on the</td>
<td>2</td>
</tr>
<tr>
<td>emergency care providers.</td>
<td>4</td>
</tr>
<tr>
<td>18. Transmissions of the video images provide remote decision makers</td>
<td>1</td>
</tr>
</tbody>
</table>
| information that is otherwise impossible for me to convey yet critical for their decision making. | 3 | 3
| 19. Availability of video images to off-site observers would enable me to | 1 |
| communicate better and easier. | 6 |

Data Collection: Table 1: 10 statement evaluation completed serially, in real-time, during the exercise identifying decisions made, uncertainty, activities occurring, problems identified, priorities, information needed, outcomes and comments; Table 2: 20 question form completed one month after the participants had viewed video images and made remote assessments of the Homeland Security Exercise. Table 3: the exercise Evaluation Questionnaire Kit included 19 statements in relation to the telecommunications, completed at the end of the exercise, on use of video in decision-making and use of images for remote EOC; Table 4: Post-evaluation questions including strengths, weaknesses, opportunities, threats (SWOT) analysis revealed by the exercise. All statements were scored on a Likert scale of 1=strongly disagree to 5=strongly agree. Qualitative data were requested by including free comments sections.
RESULTS

Technical and Interoperability Issues: Transmission gaps occurred due to the service provider’s interoperability problems that interrupted image transmission to NATO for 1.5 hours of the 3 hour Exercise. In addition during attempted simultaneous connection to NATO and UR, audio linked with the ISDN was lost, and a land-line connection was required to maintain audio communication with UR.

Remote Decision-Making (Table 1): UR and NATO identified on-site decisions including detection and recognition of “Dirty Bomb”, bomb location, EMS building evacuation, bomb squad defusing, emergency team activities, evacuation, shielding, readiness for casualties, Incident Command (IC) set-up. Unclear issues were why the hospital was not evacuated. Problems were noted in the limited perimeter cordoned off around the bomb and the proximity of the IC Post to the bomb site (both the lack of hospital evacuation and exercise perimeter were limitations intended to minimize the impact on the hospital clinical operations). These results support the hypothesis 1 that remote experts can identify real-time emergency events.

Evaluation of still image and video usefulness (Table 2): Mean scores for Disaster Management 4.7; incident commander 3.8; trauma patient extrication 4.3; slow color video better than fixed B/W video 4.2; still images identified information missed on video 4.7; clarity of still images increased understanding of video events 4.4; combination of video and still images best 4.8. The latter four scores support hypotheses 2 and 3, that high quality color images promote situational awareness and convey details not recognized in video. Image size: 6 x 5cm images compared to 23 x 29cm, small images OK 4.8; larger image necessary 1.4. While the larger bandwidth of color video scored highly over B & W video, a still high quality color image of low bandwidth appeared useful for remote decision-makers to provide context for their questions and clarify uncertainties (e.g. see Fig 2, still 3.0 megapixel image (upper left Panel) and frame from slow video image (upper right Panel) of the radiation source in the black briefcase, alongside the kiosk housing the radiation sensor; Lower left and right Panels – the same images in B & W).

Value of Video for Decision making and Situational Awareness (Table 3). Image Comparison: Technical issues included: B/W images from public safety surveillance cameras were inadequate as their field of view was degraded by sunlight/darkness and limited by being at a fixed location. The mobile imaging platform was able to record details of both bombs and gave greater and more flexible incident coverage, less affected by changing lighting conditions.

Specific Issues: The following organizational issues were recognized: potential for international and wide area distribution links for command and control; different culture and tactics for emergency response; significant language barriers. It was noted that insider knowledge from on-site commentary and local background material and overview maps are essential for remote decision-maker understanding.

Post Evaluation Comments and Answers: The results shown in Table 4 can be summarized as indicating that the remote experts saw the importance of coordination of UM with outside agencies and were able to appreciate how rapidly events changed, the need for a communication strategy, crowd control and an integrated emergency response. Highlights of the SWOT analysis shown in Table 5 included: benefit of duplex audio communication with field mobile camera; need for communication with an on-site Command and Control; remote control of fixed camera; helicopter (aerial) overview image would be helpful; infra-red camera capability would be needed for night use; commentary from different domain experts would be useful (e.g. police, fire, EMS, medical). Translation into native language (this occurred briefly to UR)
improved understanding of emergency events and generated multiple questions from other members of the remote EOC in UR in comparison to those who had asked the earlier questions. Remote control/zoom/tilt/pan of cameras would be useful. It was difficult to distinguish between exercise responders and observer/evaluators. Problems in data and workflow in international collaboration were shown, but it is important to share information about different strategies and response tactics. Telecommunications are needed and must be improved.

Table 4: Post Evaluation of Remote Observation LAD Demonstration Exercise

Please circle the appropriate number 1-5 for your response to the questions below.

<table>
<thead>
<tr>
<th></th>
<th>1: Strongly disagree</th>
<th>2: Disagree</th>
<th>3: Don't agree or disagree</th>
<th>4: Agree</th>
<th>5: Strongly Agree</th>
<th>no answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The Demonstration seen by Telemedicine was realistic.</td>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. The Exercise helped me prepare for a similar real event.</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. The Campus/City emergency coordination was increased by the Exercise.</td>
<td></td>
<td></td>
<td>2</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4. For me, the Exercise revealed the following about the Emergency Management Plan (EMP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Increase my knowledge of the University of Maryland (UM) Campus EMP</td>
<td></td>
<td></td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b. Ease of Inter-Campus Communications</td>
<td></td>
<td></td>
<td>2</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c. Importance of coordination of Campus EMP with outside agencies.</td>
<td></td>
<td></td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>d. Need for early involvement of City in Campus EMP.</td>
<td></td>
<td></td>
<td>1</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>e. Confidence in my decision about how to manage a similar scenario.</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>f. Identified how I can help the UM Campus EMP</td>
<td></td>
<td></td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. Improved my understanding of how events change rapidly.</td>
<td></td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. Showed me the need for media communication strategy.</td>
<td></td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Revealed a requirement for a single spokesperson.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>j. Importance of control of the "Walking Worried"</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k. Showed an integrated response between Campus /City /State Emergency Responders</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l. Maximum use of Campus Resources</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

List strengths, weaknesses, opportunities and threats (3 each) of using Telemedicine for the Emergency Response Demonstration Exercise:

Table 5 Remote Observation LAD Exercise

Post Evaluation Strengths, Weaknesses, Opportunities and Threats Analysis of Remote Observation LAD Exercise

List 3 strengths of using telemedicine for the Demonstration Exercise:
1. Images / Video combined with audio / text makes understanding of incident much better
2. Different tactics of rescue people on site vs. our tactics (e.g. missing marked barriers of Hot Zone)
3. Knowledge of such an event increases
4. See the difference between your and our procedure
5. Evaluate from around the world
6. Able to get some real time photos
7. Better understanding
8. Visual cues to response patterns
9. Increase participation and thereby information sharing
10. Transmission out of areas which are blocked for rescue workers
11. Supplement to spoken situation reports

List 3 weaknesses of using telemedicine for the Demonstration exercise:
1. There should be changing speakers depending on the specialty (Police, Fire Dept. EMS etc.), also information from Incident Commander / On-site Commander necessary
2. Live images are meaningful, recorded images important for review
3. Broadcast wasn't very good
4. Improve picture quality
5. Technical difficulties
6. Unclear pictures
7. Cannot cover the whole incident area
8. No communication with sector commanders

119
What opportunities did you see for an improved use of telemedicine in emergency response?

1. Real-time interpreter should be involved to make real-time decisions.
2. Papers about the exercise/incident should be in German because the basic "school English" is long ago
3. We need improved techniques and before the happening a better "programme" and a better description of who is taking part in
4. Picture quality
5. Evaluation from around the world
6. Distribute information to a wider audience to include city / state / county EMS / systems
7. Depending on size of incident increased number of transmission capabilities

What threats did you see to using telemedicine to coordinate emergency response?

1. Audio/Video transmission can provide facts about an incident which is geographically limited; but with 2 incident sites the images are no more that up-to-date to provide real-time decisions
2. "I don't think that there are huge risks"
3. All disasters / catastrophes
4. Policy "On-site Command" cannot be replaced by telemedicine
5. Telemedicine depends on weather and light (night). Preparation time for telemedicine not known.

DISCUSSION

The need to provide remote and just-in-time expertise is ubiquitous in many domains, but in Emergency Management Response it could save many lives. Following the Sarin attack in the Tokyo subway in 1996, emergency responders initially believed a bomb had exploded (Okumura et al 1998), but an emergency physician seeing the news video clips of choking and tearing victims made the clinical diagnosis remotely and called Tokyo authorities. The issue of how information gathering from multimedia is impacted by bandwidth was a question addressed by the design of the Homeland Security Exercise reported here. However, the full answer to such a question was not obtained, due to many limitations including the small sample size of remote experts completing evaluations, the communication breakdown with NATO, the hindsight bias in completing the evaluation of the still image usefulness after the end of the exercise and the incomplete answers to some evaluation questions that could not be filled in because the dynamic events of the exercise prevented such timely actions by evaluators. The findings although not immune to such biases and technical limitations do appear have a face validity in representing what strengths and limitations might be present in deciding bandwidth requirements in a real Emergency Management Response situation, in which remote experts were part of the distributed response team. Where bandwidth needs to be conserved, 6 x 5 cm still 3.0 megapixel color images appear to have merit in conveying information and allowing remote experts to see details not appreciated in video. Mobile slow (1-2 fps) color video has less bandwidth and more flexibility in coverage over fixed location 20 fps B & W video. New information technologies provide the impetus to explore alternative operating procedures and command structures (Rasmussen, et al 1991), especially when chemical, biologic or radiation threats can make physical presence hazardous.

Several important conclusions can be drawn from this preliminary study examining technology impact on remote decision-making in emergencies, all of which support our original hypotheses.

1) Intermittent high quality still images can augment understanding and information extraction from slow low bandwidth color and fast B/W video for remote EOC. For example, in
Fig 2 the red motorbike is easily recognized in the still image and could be used as a reference point for the remote decision makers to provide the context of their comments. In the B/W images the motorbike is difficult to distinguish from the background, and in a frame from the low bandwidth (and low quality) color video image (right panel Fig 2) it is difficult to be certain that the red object is a motorbike. In many circumstances public safety surveillance cameras may have dual use as shown in this demonstration. Including such existing infrastructure into emergency management response could be a cost effective way to monitor potential targets of terrorist activities. It is concluded that color not B & W cameras, whose field of view and contrast can be remotely controlled in varying light conditions, should be used.

2) The increased number of questions from a greater number of the remote audience at UR when German was spoken, suggests that the conveyance by on-site experts of local knowledge and clarification of remote decision-making interpretation is increased by use of native language of the remote experts.

3) Face-to-face meetings with UR, but not NATO, which occurred before the exercise improved collaboration and communications during the exercise. The prior socialization resulted in higher quality, more complete and greater number of free comments completed in the evaluations received from UR. However, there were significant technological problems with the connection to NATO and the NATO experts were clearly frustrated by the long duration gap in communication which left them unable to follow many of the events of the Exercise.

4) One feature that salvaged the lack of information during the NATO communication break was the ability to play-back the previously recorded images from the mobile slow video acquisition. This playback had significant application in allowing the 3 members of the NATO EOC to develop awareness of what had transpired during the time interval when communications were interrupted. In addition the playback allowed all remote observers to identify events surrounding the “Dirty Bomber” planting a real radioactive source that triggered a radiation sensor. The timing of the triggered alarm was precisely known and time-coded video data enabled this video segment to be precisely located and reviewed.

5) Local domain expertise and duplex communication with the incident commander would improve remote expert decision-making. In dangerous environments (chemical, biologic, radiation, explosive) remote monitoring with video could be very helpful to safe entry and activities of EMS personnel and in coordination of the emergency management plan and health care facility readiness. Interfaces with sensors (e.g., the robot radiation detector and analyzer used in this exercise) would allow remote experts to interpret the sensor data in real-time, so expediting the appropriate emergency response.

There is a future potential, when reliability is improved, for the imaging technologies to improve shared awareness and remote distributed team collaboration. Mobile wireless color images with duplex audio and interfaces with peripheral devices used in the field would enhance the coordination of expert decision-makers as part of a distributed team. Embedded technology in the video camera (e.g., Global Positioning System with coordinates linked to Google world display) would allow mapping and other situational awareness artifacts to facilitate remote decision-making. The findings from this preliminary study have profound implications for the development and design of information and communication technologies necessary for large scale collaboration for local and international disasters and emergency response.

ACKNOWLEDGEMENT
Supported by the Telemedicine and Advanced Technology Research Center, Ft. Detrick, Maryland, Grant DAMD-17-03-01-0159. The collaboration of Fort Gordon, NATO and University of Regensburg and Northrop Grumman Corporation and the multiple State, Federal, University of Maryland and Baltimore City agencies and personnel is appreciated.
REFERENCES

Mackenzie, et. al.

Legends Figures 1-4

Figure 1: Connections with Emergency Operations Centers during exercise.

Figure 2: Comparison of bandwidth effects of video and still imagery.

Figure 3: Images from Exercise show field and telecommunication events.

Figure 4: Mobile wireless imaging system.
Functional Exercise (FX)

Aerial view of FX set-up
Fixed video camera blow-ups projected onto EOC wall during FX

Displays in real-time of mobile images (left screen) and 9 cameras simultaneously displayed (right screen)
EOC showing 4 video cameras (right screen) and full screen mobile video camera (left screen)

EOC during FX (from left to right: P.I., Fire Chief (seated), Director BWI Administration, BWI Fire and Rescue)
Staging at FX

BWI Fire and Rescue trucks on standby for FX

Communications satellite (TATRC supported) and ambulance staging area for FX
Arrival of MDNG C-130 with MASCAL at BWI

MASCAL for DECON separated on deplaning
Methods of MASCAL Transport

Military large-wheeled stretcher for MASCAL

Civilian small-wheeled stretcher moving MASCAL
Four stretcher bearers with MASCAL

WRAMC Military stretcher bus
One MASCAL military dog at BWI

Triage

Civilian triage ‘Red’ Tent
Civilian priority 2 ‘Yellow’ Tent

‘Yellow’ Tent priority 2 MASCAL
Testing remote MASCAL triage

FDDMTF Activity

FDDMTF during FX
FDDMTF during FX

Communications

BWI Fire Department Communications
Mobile camera (on cap of man in bottom right of photo)
Mobile video camera system

FDDMTF civilian/military providers and mobile video images
Fixed cameras set up for FX

Deteriorating Patients

Rapid evacuation of deteriorating MASCAL to MSPAC helicopter
Evacuation of deteriorating MASCAL by MSPAC medivac to NDMS hospital

Hospital Transport

Staging and transportation to NDMS hospitals
“Hot wash” debrief at BWI EOC
“Hot wash” debrief at BWI EOC