Hybrid Electric Vehicle Experimentation and Assessment (HEVEA)

No industry or SAE standards for measuring fuel economy of hybrid vehicles in military environments.

Objectives

- Develop Hybrid Electric Vehicle (HEV) Fuel Economy and performance Test Operating Procedures (TOP)
- Determine the fuel economy benefits of HEV using quantifiable test data
- Develop and validate TARDEC M&S models
- Provide a tool to predict hybrid electric drive cycle performance and fuel economy

Programmatic Intent

- Enhance future Tactical Wheeled Vehicles (TWV) mobility thru experimentation and performance analyses using hybrid vehicle capabilities.
- Support JLTV Acquisition Strategy with sufficient and relevant HEV test data and lessons learned

Testing

9 conventional and 7 hybrid electric vehicles are being tested

A. Conventional:
 - 2 - HMMWVs
 - 2 - 1/2T LMTVs
 - 1 - 5T MTV
 - 1 - MTV CVT
 - 2 - HEMTTS
 - 1 - AM GEN UV

B. Hybrid Electric
 - 1 – HMMWV
 - 1 – RSTV
 - 1 - IMG UV
 - 1 – LM UV
 - 1 – AH/SS MSV
 - 1 – BAE FMTV
 - 1 – OSHKOSH HEMTT A3
Title: Hybrid Electric Vehicle Experimentation and Assessment

Author: MAJ Allen

Performing Organization: RDECOM TARDEC 6501 E 11 Mile Road Warren, MI 48397-5000

Report Number: 17522

Availability: Approved for public release, distribution unlimited

Notes: Presented at the Power & Energy Conference, The original document contains color images.
Major Accomplishments

<table>
<thead>
<tr>
<th>Accomplishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft TOP developed for Fuel Economy testing on Hybrid Electric Vehicles</td>
</tr>
<tr>
<td>Analysis of system level trades for cost and payload on Hybrid Electric Vehicles vs Mechanical vehicles</td>
</tr>
<tr>
<td>Initial ballistic impact on Li-Ion and NiMH batteries</td>
</tr>
<tr>
<td>Extreme Temperature Testing (Arctic and Desert)</td>
</tr>
<tr>
<td>Modeling and Simulations: VPSET, HMMWV models</td>
</tr>
</tbody>
</table>
Hybrid Electric Vehicle Experimentation and Assessment (HEVEA)

Emerging Results

Fuel Economy on Churchville (Hilly Terrain)

- Standard HMMVV: -11,500 lbs -6.5L turbo 190hp
- Hybrid HMMVV: -11,500 lbs -2.2L turbo 139hp
- Uparmored HMMVV: -15,200 lbs -6.5L turbo 190hp

Based on the given statistical models of the test data, over the range of speeds, the Hybrid HMMVV showed a 9.4% improvement in Mean Fuel Economy over the Standard HMMVV.

Fuel Economy on Munson (Flat Paved Terrain)

- Hybrid HMMVV: -11,500 lbs -2.2L turbo 139hp
- Standard HMMVV: -11,500 lbs -6.5L turbo 190hp
- Uparmored HMMVV: -15,200 lbs -6.5L turbo 190hp
- RSTV: -9,980 lbs -2.8L turbo 140hp

Based on the given statistical models of the test data, over the range of speeds, the Hybrid HMMVV showed a 10.2% improvement in Mean Fuel Economy over the Standard HMMVV.

Fuel Economy Varies with Terrain & Driving Conditions

UNCLASSIFIED: Dist A. Approved for public release