Award Number: W81XWH-06-1-0238

TITLE: Effects of Inactivating Ras-Converting Enzyme or Isoprenylcysteine Carboxyl Methyltransferase in the Pathogenesis of Chronic Myelogenous Leukemia

PRINCIPAL INVESTIGATOR: Ruibao Ren, M.D., Ph.D.

CONTRACTING ORGANIZATION: Brandeis University
Waltham, MA 02454

REPORT DATE: February 2007

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Title and Subtitle
Effects of Inactivating Ras-Converting Enzyme or Isoprenylcysteine Carboxyl Methyltransferase in the Pathogenesis of Chronic Myelogenous Leukemia

Authors
Ruibao Ren, M.D., Ph.D.

Email: ren@brandeis.edu

Performing Organization Name(s) and Address(es)
Brandeis University
Waltham, MA 02454

Abstract
The BCR-ABL fusion gene, the hallmark of CML, plays a causal role in the development of CML. The BCR-ABL tyrosine kinase inhibitors have been successfully used to treat patients with CML, but residual disease persists and drug resistance emerges. This clinical time bomb will have to be diffused in the not so distant future. Although BCR-ABL remains to be an attractive target for developing CML therapies, identifying and targeting additional essential components in the development of CML are important for overcoming resistance to BCR-ABL tyrosine kinase inhibitors and for eradicating leukemic cells. Substantial evidence indicates that Ras and Ras related proteins, which are commonly activated in human cancers, are critical mediators of BCR-ABL in leukemogenesis. Ras-converting enzyme (Rce1) and isoprenylcysteine carboxyl methyltransferase (Lcmt) are two unique enzymes for Ras modifications that are critical for their functions. Targeted inactivation of Rce1 or Lcmt is, therefore, an attractive strategy for the treatment of CML. The goal of this project is to determine whether targeted inactivation of Rce1 or Lcmt could block BCR-ABL leukemogenesis. In the past funding period we have generated mice with conditional alleles of Rce1 or Lcmt and used these mice to evaluate the importance of Rce1 in BCR-ABL leukemogenesis. Our preliminary results show that Rce1 plays an important role in the pathogenesis of CML.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Body</td>
<td>1</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>3</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>3</td>
</tr>
<tr>
<td>Conclusion</td>
<td>3</td>
</tr>
<tr>
<td>References</td>
<td>3</td>
</tr>
<tr>
<td>Appendices</td>
<td>3</td>
</tr>
</tbody>
</table>
Effects of Inactivating Ras-Converting Enzyme or Isoprenylcysteine Carboxyl Methyltransferase in the Pathogenesis of Chronic Myelogenous Leukemia

Report

Introduction

The BCR-ABL fusion gene, the hallmark of CML, plays a causal role in the development of CML. The BCR-ABL tyrosine kinase inhibitors have been successfully used to treat patients with CML, but residual disease persists and drug resistance emerges. This clinical time bomb will have to be diffused in the not so distant future. Although BCR-ABL remains to be an attractive target for developing CML therapies, identifying and targeting additional essential components in the development of CML are important for overcoming resistance to BCR-ABL tyrosine kinase inhibitors and for eradicating leukemic cells. Substantial evidence indicates that Ras and Ras related proteins, which are commonly activated in human cancers, are critical mediators of BCR-ABL in leukemogenesis. Ras-converting enzyme (Rce1) and isoprenylcysteine carboxyl methyltransferase (Icm) are two unique enzymes for Ras modifications that are critical for their functions. Targeted inactivation of Rce1 or Icm is, therefore, an attractive strategy for the treatment of CML. The goal of this project is to determine whether targeted inactivation of Rce1 or Icm could block BCR-ABL leukemogenesis. In the past funding period we have generated mice with conditional alleles of Rce1 or Icm and used these mice to evaluate the importance of Rce1 and Icm in BCR-ABL leukemogenesis. Our preliminary results show that Icm plays an important role in the pathogenesis of CML.

Body

1. (Task 1) We have generated Rce1flx/flx or Icmflx/flx mice, as well as Rce1flx/+, Icmflx/+, Rce1+/+, or Icm+/+ control mice harboring the Mx1-Cre transgene through breeding Rce1flx/+/Mx1-Cre and Icmflx/+/Mx1-Cre mice.

2. (Task 6) Since last submission, we have made new progress on the project, which is reported here. We examined the leukemogenic potential of BCR-ABL with or without Rce1 or Icm using the mouse bone marrow transduction and transplantation model for CML as proposed. Briefly Cre expression was induced in Rce1flx/flx/Mx1-Cre, Rce1flx/+/Mx1-Cre, Icmflx/flx/Mx1-Cre, Icmflx/+/Mx1-Cre, or Mx1-Cre control mice by intraperitoneal injections of polyinosinic-polyuridylic ribonucleic acid (pI-pC) for 4 times. These mice were then treated with 5-fluorouracil (5-FU) for 4 days to enrich and activate hematopoietic stem cells. Bone marrow (BM) cells from the above mice were isolated and transduced with BCR-ABL retroviruses. As shown in Figure 1, BCR/ABL leukemogenic potential was reduced in pI-pC-induced Rce1flx/+/Mx1-Cre mice, compared to BCR/ABL transduced Rce1+/+/Mx1-Cre mice. However, BCR/ABL transduced Rce1flx/flx/Mx1-Cre mice developed disease much faster than the control mice with wt Rce1. These data suggest that the role of Rce1 in BCR/ABL leukemogenesis is complicated and dependent on the dosage. This may due to the fact that there are many substrates of Rce1, some of them may facilitate BCR-ABL leukemogenesis, while others may inhibit. We will repeat this experiment and confirm the finding.
Unlike complicated result of Rce1 inactivation, Icmt inactivation significantly mitigated BCR-ABL leukemogenesis (Figure 2). This result suggests that Icmt plays an critical role in BCR-ABL leukemogenesis and that Icmt may be an effective target for developing CML therapeutics.

Figure 1. Survival of mice receiving transplantation of BCR-ABL transduced BM cells from pl-pC-induced Rce1flx/flx/Mx1-Cre, Rce1flx/+/Mx1-Cre, Rce1+/+/Mx1-Cre mice. Survival curves were generated by Kaplan-Meier survival analysis. The number (n) of mice for each group is indicated.

Figure 2. Survival of mice receiving transplantation of BCR/ABL transduced BM cells from pl-pC-induced Icmtflx/flx/Mx1-Cre, Icmtflx/+/Mx1-Cre, Icmt+/+/Mx1-Cre mice. Survival curves were generated by Kaplan-Meier survival analysis. The unit of time is days post-BM transplantation. The number (n) of mice for each group is indicated.

Since Icmt and Rce1 are important for BCR-ABL leukemogenesis, we will generate MCSV-BCR-ABL/gfp-IRES-Icmt and MCSV-BCR-ABL/gfp-IRES-Rce1 bicistronic retroviral constructs (Task 2) to examine whether the transforming potential of
BCR-ABL could be rescued by coexpressing Icmt or Rce1 (Task 4). We are currently performing the in vitro BCR-ABL transformation assay (factor independent bone marrow colony assay) as planned in Task 3.

3. (Related to Tasks 5 and 9). In addition to Ras proteins, a broad class of proteins, many of which are also involved in cellular regulatory processes that are important for tumor formation, are also substrates of Rce1 and Icmt. Rce1 and Icmt may affect BCR-ABL leukemogenesis through Ras proteins and/or other targets of the enzymes. Myristoylated Ras would help to evaluate whether the effect Rce1 deficiency on BCR-ABL leukemogenesis is primarily through Ras, but it does not directly test the Rce1 and Icmt mediated Ras modifications. We have previously found that the Grb2 SH2 binding site Y177 of BCR-ABL, the major mediator of BCR-ABL inactivating Ras, is required for the induction of CML-like disease by BCR-ABL. Recently we further show that oncogenic Ras can rescue the defect of the Y177F mutant BCR-ABL in the induction of CML-like disease. We will use this system to examine the importance of Ras modifications in BCR-ABL leukogenesis. To this end, we have generated an A2 (the second aliphatic residue in the CAAX motif) mutant of NRASD12 for testing the importance of removal of the AAX tripeptide and methylation of the terminal farnesylated cysteine residue in a different way (this would avoid complications of targeting proteins other than RAS). The A2 residue has been shown to be important for the AAX peptide cleavage and methylation.

Key research accomplishment

- We have generated Rce1^{flx/flx} or Icmt^{flx/flx} mice, as well as Rce1^{flx/+}, Icmt^{flx/+}, Rce1^{+/+}, or Icmt^{+/+} control mice harboring the Mx1-Cre transgene.
- We have found that Icmt plays a critical role in BCR-ABL leukemogenesis. This finding suggests that Icmt may be an effective target for developing CML therapeutics.
- We have found that the role of Rce1 in BCR-ABL leukemogenesis is dosage dependent.

Reportable outcomes
Not yet.

Conclusion

Our results show that Icmt plays an important role in the pathogenesis of CML and suggest that this enzyme is an effective target for developing CML therapies. Our results also show that the role of Rce1 in BCR-ABL leukemogenesis is dosage dependent.

References
NA

Appendices
NA