Transmit / Receive Modules

Dr. Brad Binder
Technical Director PEO IWS 2.0
Above Water Sensors Directorate
Naval Sea Systems Command

This brief is provided for information only and does not constitute a commitment on behalf of the U.S. Government to provide additional information on the program and/or sale of the equipment or system.
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE
01 MAY 2007

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
Unclassified Transmit / Receive Modules Transmit Modules

5a. CONTRACT NUMBER
-

5b. GRANT NUMBER
-

5c. PROGRAM ELEMENT NUMBER
-

5d. PROJECT NUMBER
-

5e. TASK NUMBER
-

5f. WORK UNIT NUMBER
-

6. AUTHOR(S)
-

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
PEO IWS 2.0 Above Water Sensors Directorate Naval Sea Systems Command

8. PERFORMING ORGANIZATION REPORT NUMBER
-

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
-

10. SPONSOR/MONITOR'S ACRONYM(S)
-

11. SPONSOR/MONITOR'S REPORT NUMBER(S)
-

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM202171., The original document contains color images.

14. ABSTRACT
-

15. SUBJECT TERMS
-

16. SECURITY CLASSIFICATION OF:

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
15

19a. NAME OF RESPONSIBLE PERSON
-

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
T/R Module Outline

- Future surface navy radar
- Performance and cost
- Wide bandgap semiconductors
- Summary
Radar System Performance Drivers

- Littoral Operations
- AAW Threats
 - Stealth
 - Speed
 - Altitude
 - Maneuvers
 - Countermeasures
- BMD Threats
- SUW
- TASW
- EMI / EMC
Above Water Sensor Overview

New Development
- SPY-3
- S-VSR
- CJR S
- CJR X

LOW-COST RADAR R&D
- LCS SENSOR SUITE
- LCS (Radar Suite)

In-Service
- SPY-3 / VSR
- Cobra Judy Replacement Suite
- DD(X)
- CVN
- LHA(R)

SUSTAINING UPGRADES
- Legacy Divestments
- In-Service RADARS
- (SPS-48 ROAR, SPQ-9B, etc)

LITTORAL WARFARE ENHANCEMENTS
- SPY-1
- In-service AEGIS

IN-SERVICE SLQ-32
- Fleet Upgrades & DD(X)

Passive Sensors
- SEWIP
- EO/IR SYSTEM
- SUSTAINING UPGRADES
- LEGACY DIVESTMENTS
- IN-SERVICE RADARS
- (SPS-48 ROAR, SPQ-9B, etc)

LITTORAL WARFARE ENHANCEMENTS
- SPY-1
- In-service AEGIS

IN-SERVICE SLQ-32
- Fleet Upgrades & DD(X)

EO/IR SYSTEM
- IROS3 & FOLLOW-ON
- Fleet Upgrades, LCS, & DD(X)

IN-SERVICE SLQ-32
- Fleet Upgrades & DD(X)

SUPPORTING TECHNOLOGIES AND INTERNATIONAL COOPERATION
- ONR, MDA, Int’l Cooperative Technology Efforts

Competition
- CG(X)

In-Service
- SPY-3 / VSR
- Cobra Judy Replacement Suite
- DD(X)
- CVN
- LHA(R)

SUSTAINING UPGRADES
- Legacy Divestments
- In-Service RADARS
- (SPS-48 ROAR, SPQ-9B, etc)

LITTORAL WARFARE ENHANCEMENTS
- SPY-1
- In-service AEGIS

IN-SERVICE SLQ-32
- Fleet Upgrades & DD(X)

Passive Sensors
- SEWIP
- EO/IR SYSTEM
- SUSTAINING UPGRADES
- LEGACY DIVESTMENTS
- IN-SERVICE RADARS
- (SPS-48 ROAR, SPQ-9B, etc)

LITTORAL WARFARE ENHANCEMENTS
- SPY-1
- In-service AEGIS

IN-SERVICE SLQ-32
- Fleet Upgrades, LCS, & DD(X)

SUPPORTING TECHNOLOGIES AND INTERNATIONAL COOPERATION
- ONR, MDA, Int’l Cooperative Technology Efforts
1939: Battleship Gunfire Control Radar

1960: USS Long Beach and USS Enterprise Search and Track Phased Arrays

1983- present:
27 Aegis Cruisers;
44+ Destroyers

- 60+ year track record of ship and phased array radar design, engineering, and construction
- Ongoing development of next-generation advanced shipboard phased array radars
- Clear understanding of shipboard power, cooling, and other auxiliary support systems
T/R Module Issues

• Technology supports most requirements
 – LV GaAs output power limitations
 – Can address by multiple HPAs per T/R module; Drives cost
 – HV GaAs satisfies most requirements
 – Wideband gap materials offer highest power potential
 – Thermal management and cost challenges

• LV GaAs in fielded systems
• HV GaAs in engineering development systems
• WBG devices in research and technology development
• High T/R module cost for long range RADAR applications
 – Large quantities of modules needed

Cost, not performance, is most challenging issue for future surface Navy applications
X-band T/R Module Cost Breakdown

- Three major X-band T/R module cost elements
 - GaAs MMICs, packaging, and assembly
- Reduction in all areas for significant price cut
 - GaAs cost significantly varies among suppliers

MMICs are highest cost item and have greatest variation
MMIC Cost

• MMIC $ = (Processed wafer $) / (# of “good” MMICs/wafer)
 – Processed wafer cost drivers are labor and capital
 – # of good MMICs determined by wafer diameter, MMIC size, and yield

Top view of wafer showing MMICs and defective parts
Wafer Processing Cost

• Capital and overhead costs vary widely among foundries
 – Foundry utilization = (Good wafers)/(Capacity)
 – Low foundry utilization increases cost by > 300%
• Volume often insufficient for low capital/overhead cost
 – GaAs foundry capacity = 10,000 - 50,000 4” wafers/yr
 – 100,000 10 W modules use ≈ 2,000 4” or 1,000 6” wafers
• High volume products using similar processes, not identical parts, necessary for low cost

Significant wafer volume necessary for low MMIC cost; MMIC volume driven by wireless applications
Wafer Diameter

- Larger diameter has more parts for similar wafer cost
- GaAs currently on 3” or 4”, some transition to 6”
- 6” processing requires large capital investment
 - High volume necessary to offset capital cost
 - Technical issues; Breakage and uniformity

Transition to 6” wafers driven by volume, not cost
Size/Complexity and Defects

- Smaller die less expensive/higher yield; Complexity drives yield
- High process yield enables higher power and higher integration
 - Current commercial devices will not drive improvements

High complexity control and PA MMICs stress yields and drive cost

40% MMIC Yield
(25-50% typical for ≈ 5 Watts)
T/R Module Assembly

- Wire bond and pick and place assembly is highly automated
 - High assembly yields (> 90%) can be achieved
 - Total direct labor time can be < 1 hour per module
 - Bond wire reliability not an issue; Missed, rather than weak, wire bonds made by robotics
- Flip-chip and ball-grid arrays can reduce assembly time
 - Introduces CTE-based reliability and design issues; Issue is more severe as integration/size increases
 - Batch (parallel) rather than serial assembly process
 - Eliminates cost of backside processing, but adds additional cost of wafer bumping

Bondwire-based assembly can be reliable and low cost
T/R Module Packaging

• Packaging satisfies performance
 – Low loss only critical after PA and before LNA
 – Thermal management can be an issue for high power MMIC applications
• Cost reduction is remaining issue
 – Thick-film, rather than thin-film, on low cost substrate
• Different requirements within a module; No traditional T/Rs
 – PA and LNA needs high performance, low I/O; Single layer, gold ink, thick-film substrate
 – Control MMICs needs low performance, high I/O; Multiple layer, thick-film conductor

Movement to lower cost, lower performance substrates and modified packaging architectures
Cost Determines Technology Choice

Wide Bandgap Technology
- X-Band 2P W Module
 - SiC or GaN
 - 16,750 Elements
 - 7.5 ft Diameter

Current Technology
- X-Band P W Module
 - GaAs
 - 33,000 Elements
 - 11 ft Diameter

Equivalent Performance Tracking Radars
- Higher power module lowers number of T/R modules and area
 - Requires more MMIC power, prime power, and cooling
- For many high power applications cost will drive technology choice

Unclassified
Future Trends for Phased Arrays

• Use of foundries with high loading
• Move to larger wafers driven by other applications
• Development to improve yields
 – Power amplifier and control MMIC complexity lowers yield compared to simpler components
 – Significant cost reduction potential (> 2X)
 – Enables lower cost packaging/assembly by enabling higher level of integration
• Semiconductor cost reduction through improved processes
 – Also enables higher integration to reduce packaging and assembly costs
• Utilize lower cost, lower performance packaging materials
• Cost and power are stressing future requirements
• Wide bandgap to address output power/cost issues
 – Metrics other than power density necessary to evaluate progress
 – Material quality key to scaling proof-of-concept devices to higher powers with same power density