Space Power: A Critical Strength…and a Critical Vulnerability of the US Military

In January 2007, China successfully tested a direct-ascent anti-satellite (ASAT) weapon, launching a kinetic kill vehicle staged atop a ballistic missile to destroy an aging weather satellite orbiting 537 miles above earth. Though not the first such test US space agencies had detected nor necessarily the most aggressive, as Air Force Chief of Staff General T. Michael Moseley explained to members of the Senate Armed Services Committee, the January test confirmed China “can attrit and literally kill satellites.”

Few would counter the assertion space systems have become critical to the efficacy of the instruments of national power, but to what extent do capabilities such as those demonstrated by China’s ASAT testing threaten the successful conduct of the nation’s diplomatic, information, military, and economic activities? This paper specifically seeks to determine whether a potential adversary’s ability to conduct counterspace operations makes space power a critical vulnerability of the US military.

Iraq’s 2003 counterspace operations provide proof positive the unchallenged space superiority the US military has enjoyed since Desert Storm can no longer be taken for granted. The United States’ disproportionate dependence on highly vulnerable space systems provides its enemies a recognizable opportunity to degrade the effectiveness of American forces that they are increasingly willing and capable of exploiting. By incorporating threat-based considerations into operational plans, wargames, and exercises, theater commanders can better prepare their forces for the operational implications of “war in space.”

Space, space power, counterspace, space control, space planning, space aggressors
Space power: A Critical Strength…and a Critical Vulnerability of the US Military

by

Dewitt Morgan III

Major, USAF

A paper submitted to the Faculty of the Naval War College in partial satisfaction of the requirements of the Department of Joint Military Operations.

The contents of this paper reflect my own personal views and are not necessarily endorsed by the Naval War College or the Department of the Navy.

Signature:____________________

10 May 07
Abstract

In January 2007, China successfully tested a direct-ascent anti-satellite (ASAT) weapon, launching a kinetic kill vehicle staged atop a ballistic missile to destroy an aging weather satellite orbiting 537 miles above earth. Though not the first such test US space agencies had detected nor necessarily the most aggressive, as Air Force Chief of Staff General T. Michael Moseley explained to members of the Senate Armed Services Committee, the January test confirmed China “can attrit and literally kill satellites.”

Few would counter the assertion space systems have become critical to the efficacy of the instruments of national power, but to what extent do capabilities such as those demonstrated by China’s ASAT testing threaten the successful conduct of the nation’s diplomatic, information, military, and economic activities? This paper specifically seeks to determine whether a potential adversary’s ability to conduct counterspace operations makes space power a critical vulnerability of the US military.

Iraq’s 2003 counterspace operations provide proof positive the unchallenged space superiority the US military has enjoyed since Desert Storm can no longer be taken for granted. The United States’ disproportionate dependence on highly vulnerable space systems provides its enemies a recognizable opportunity to degrade the effectiveness of American forces that they are increasingly willing and capable of exploiting. By incorporating threat-based considerations into operational plans, wargames, and exercises, theater commanders can better prepare their forces for the operational implications of “war in space.”
Table of Contents

Introduction
 - Research Question 2
 - Thesis 3
 - Scope of Study/Terms of Reference 3

Space power: A Critical Strength of the US Military…
 - Space Force Enhancement: An Asymmetric Advantage of the US Military 5
 - The US Military’s Growing Dependence on Space Power 6

…*and a Critical Vulnerability*
 - Threats to Satellites 9
 - Threats to Satellite Communications Links 11
 - Threats to Space System Ground Segments 12
 - US Commercial Satellite System Dependence and its Effect on Vulnerability 13

The Nexus: Dependence, Vulnerability, and a Credible Threat
 - A Counterargument: Few, if any, Truly Capable (and Willing) Enemies Exist 16
 - A Brief Case Study: China, The Assassin’s Mace, and a Look at Operational Implications 17

Conclusions 19

Recommendations 19

Plans 20

Wargames 20

Exercises 21

Summary 22

Bibliography 23
Introduction

On January 11, 2007, Robert Joseph, Under Secretary of State for Arms Control and International Security, appeared before an audience at the Center for Space and Defense Studies to promote President Bush’s recently released National Space Policy. During his remarks, Secretary Joseph highlighted the importance of space systems to US national security and economic interests as well as the Government’s concern over emerging threats to those systems and “the possibility others [might] take advantage of [the United States’] dependence on, and vulnerability in space to seek asymmetrical advantages over [the nation].” Later that same day in what now seems an almost uncanny coincidence, China successfully tested a direct-ascent anti-satellite (ASAT) weapon, launching a kinetic kill vehicle staged atop a ballistic missile to destroy an aging weather satellite orbiting 537 miles above earth. Perhaps even more coincidentally, China conducted this test exactly six years after the release of the report of the Commission to Assess United States National Security Space Management and Organization, which warned that an attack on US space assets during times of crisis or conflict “should not be considered an improbable act.”

4 Commonly referred to as the “Space Commission Report.” A complete copy of the report is available online at: http://space.au.af.mil/space_commission/.
In addition to drawing the ire of the international community because of the immense debris field it created,\(^6\) the Chinese ASAT test also sent a tremor through the US national security community. Though not the first such test US space agencies had detected nor necessarily the most aggressive,\(^7\) as Air Force Chief of Staff General T. Michael Moseley explained to members of the Senate Armed Services Committee in March, the January test confirmed China “can attrit and literally kill satellites.”\(^8\)

Research Question

Few would counter Secretary Joseph’s assertion space systems have become critical to the efficacy of the instruments of US national power, but to what extent do capabilities such as those demonstrated by China’s ASAT testing threaten the successful conduct of the nation’s diplomatic, information, military, and economic activities? More germane to this paper, does a potential adversary’s ability to conduct counterspace operations make space power a critical vulnerability of the US military?\(^9\) If so, what are the operational implications

\(^7\) In late 2006, the Pentagon confirmed China had engaged US reconnaissance satellites orbiting over Chinese territory with a ground-based laser (see Reuters, “China Jamming Test Sparks US Satellite Concerns,” USAToday.com, posted 5 October 06 (accessed 6 April 2007)).

\(^9\) **Counterspace operations:** Those offensive and defensive operations conducted by air, land, sea, space, special operations, and information forces with the objective of gaining and maintaining control of activities conducted in or through the space environment (see Air Force Doctrine Document (AFDD) 2-2, *Space Operations*, 27 November 2006). **Space power:** The total strength of a nation’s capabilities to conduct and influence activities to, in, through, and from space to achieve its objectives (see Joint Publication (JP) 3-14, *Joint Doctrine for Space Operations*, 9 August 2002). **Critical vulnerability:** An aspect of a critical requirement which is deficient or vulnerable to direct or indirect attack that will create decisive or significant effects (see JP 3-0, *Joint Operations*, 17 September 2006).
for theater commanders and what actions should they take to mitigate the impact of
challenges to US space superiority?10

Thesis

Given the US military’s growing dependence on the asymmetric advantages of space
current, the inherent vulnerability of space systems, and the ever-expanding threat posed to
those systems, space power has indeed become a critical vulnerability that, if exploited by an
adversary, could significantly degrade or disrupt the conduct of joint military operations.
Accordingly, during the contingency and crisis action planning processes theater
commanders should consider their level of dependence on space support as well as their
enemies’ abilities to deny them such support and develop appropriate mechanisms to mitigate
the impact of hostile actions against friendly space capabilities. Further, commanders should
wargame realistic adversary space denial and degradation scenarios and include like events in
major theater operational and tactical exercises.

Scope of Study/Terms of Reference

Theater commanders are ultimately responsible for establishing and maintaining
space superiority in their assigned areas of operation;11 however, the Unified Command Plan
establishes United States Strategic Command (USSTRATCOM) as the functional unified
command with overall responsibility for military space operations.12 The Commander,
USSTRATCOM executes this mission through a subordinate joint task force-like entity, the
Joint Force Component Command (JFCC) Space, which is charged with employing joint

10 **Space superiority**: The degree of dominance in space of one force over another that permits the conduct of
operations by the former and its related land, sea, air, space, and special operations forces at a given time and
place without prohibitive interference by the opposing force (see JP 3-14).
August 2004), 12.
space forces for missile warning, precision navigation and timing, communications, spacelift,
and counterspace operations in support of all combatant commands. The Commander,
JFCC Space conducts counterspace operations in particular to ensure freedom of action in
space for friendly forces; these operations collectively fall within the “space control” mission
area. Though space control efforts form the bedrock upon which space superiority is built,
because theater commanders play a somewhat limited role in their execution under current
command and control relationships these activities fall outside the scope of this study.

Space power: A Critical Strength of the US Military…

Since making its first significant contributions at the operational and tactical levels of
war during Operation Desert Storm, space power has become increasingly integrated into
joint military operations. In a January 2006 article for *Military Review*, Lieutenant General
Larry Dodgen, Commanding General, US Army Space and Missile Defense Command, notes,
“In the decade since [Desert Storm], the value of space capabilities has grown
significantly…military operations have moved from being supported by space assets to being
space-enabled.” Not to diminish the significance of General Dodgen’s remarks, as
highlighted in the introduction to this work the notion that space capabilities have become
key elements of US military power is by no means a revelation. Space force enhancement
operations—intelligence, surveillance, and reconnaissance (ISR); integrated tactical warning
and attack assessment; environmental monitoring; communications; and position, velocity,
time, and navigation—clearly provide an asymmetric advantage upon which US warfighters
have become increasingly dependent when conducting activities across the range of military

13 Ibid.
operations. However, it is the extent to which space systems and space-based applications enable the modern American way of war—principally through these force enhancement efforts—that makes space power a critical strength\(^{16}\) of the US military—a preliminary point key to the premise of this paper.

Space Force Enhancement: An Asymmetric Advantage of the US Military

In joint terms, space systems have become critical requirements; that is, they are essential resources that ensure the critical capabilities of the US military are fully operational, in turn allowing the armed forces to function as an operational center of gravity.\(^{17}\) Space-based ISR systems once employed almost exclusively at the national-strategic level now provide warfighters at all levels a previously unimaginable degree of battlespace awareness and are integral to “the most reliable and secure” of the current US blue force tracking (BFT) architectures.\(^{18}\) Cold War-era Defense Support Program (DSP) satellites not only provide the backbone of the US strategic missile warning system, but also cue theater missile warning assets and have proven invaluable to modern combat search and rescue efforts.\(^{19}\) Space-based environmental monitoring systems like the Defense Meteorological Satellite Program (DMSP), which rose to prominence during Vietnam and continues to serve as the US military’s *only* “assured source of global weather data,”\(^{20}\) remain unique in their ability to

\(^{16}\) **Critical strength:** Those military and nonmilitary capabilities considered essential to the accomplishment of one’s or the enemy’s military objective(s); in joint terms a critical requirement (see Vego, *Operational Warfare*).

\(^{17}\) **Center of gravity:** The source of power that provides moral or physical strength, freedom of action, or will to act (see *JP 3-0*). **Critical capabilities:** Those means that are considered crucial enablers for a center of gravity to function as such and are essential to accomplishment of the specified or assumed objective(s) (see *JP 3-0*).

\(^{19}\) During Operation Iraqi Freedom, DSP operators assisted in the rescue of a Navy F-14 crew whose plane had crashed in an unidentified area of Southern Iraq. The Tomcat crew was rescued within 100 minutes of its ejection due in large part to the DSP constellation’s infrared detection capabilities, which had identified the heat signature emanating from the plane’s crash site (see Kitfield, “Weapons in the High Heavens,” and Hebert, “High Anxiety”).

offer decision makers continually updated environmental information regarding remote or
denied areas21 and in their capacity for supplementing traditional ISR collection platforms
through employment of onboard multi-spectral imaging sensors.22 Military and commercial
space-based satellite communications (SATCOM) systems fulfill the massive bandwidth
requirements of modern military operations, moving volumes of information and
communications and enabling new operational concepts like “reach back” and “reach
forward”23 as well as command and control of cutting-edge weapon systems like the Predator
unmanned aerial vehicle (UAV). And perhaps no space system has revolutionized warfare to
the extent of the Global Positioning System (GPS), which in addition to providing critical
data for precision navigation and weapons employment has been integrated into innumerable
military applications ranging from worldwide logistics tracking systems to tactical-use
aircrew survival and evasion radios.

The US Military’s Growing Dependence on Space Power

As Everett Dolman of the Air Force School for Advanced Air and Space Studies
points out in the Winter 2006 edition of SAIS Review, even a casual review of the appropriate
statistics reveals the tremendous growth in the US military’s dependence on space systems
from Desert Storm to Operation Iraqi Freedom.24 For example, Iraqi Freedom used 42 times
the space-based communications bandwidth of Desert Storm while employing a force less

21 JP 3-14, Joint Doctrine for Space Operations, C-2.
17 October 01 (accessed 13 April 2007).
23 Everett C. Dolman, “US Military Transformation and Weapons in Space,” SAIS Review XXVI, no. 1 (Winter-
24 Ibid.
than half the size.25 The dramatic increase in basic GPS applications between the two operations is equally staggering:

“In Desert Storm, 90 percent of munitions used were unguided. Of the 10 percent that were guided, none was GPS capable. By Iraqi Freedom, 70 percent were precision guided, more than half of those from GPS satellites. In Desert Storm, fewer than five percent of aircraft were GPS equipped. By Iraqi Freedom all were. During Desert Storm, GPS proved so valuable to the Army that it procured and rushed into theater over 4,500 \textit{commercial} receivers…an average of one per company (about 200 personnel). By Iraqi Freedom, each Army squad (6-10 soldiers) had \textit{at least} one \textit{military} GPS receiver.”26

While the preceding paragraphs outline the critical functions space assets perform in support of the modern joint force, this data highlights a reliance upon space systems that potential adversaries view as the “soft underbelly” of the US military.27 As evidence of this perception, Dr. Joan Johnson-Freese of the Naval War College and Tom Wilson, a staff member for the Space Commission, cite a July 2000 Chinese newspaper report, which suggested, “For countries that could never win a war by using the method of tanks and planes, attacking the US space system may be an irresistible and most tempting choice….”28 Joint Vision 2020 identifies “[t]he potential of such asymmetric approaches [as] perhaps the most serious danger the United States faces in the immediate future.”29

\textit{...and a Critical Vulnerability}

As previously noted, critical vulnerabilities are those aspects of one’s critical requirements that are susceptible to a direct or indirect attack that will create effects disproportionate to the resources applied. The US military’s demonstrated dependence on

25 Dodgen, “Space: Inextricably Linked to Warfighting.”
26 Dolman, “US Military Transformation and Weapons in Space,” 165.
27 Andrew Plieninger, “All Along the Watchtower: Safeguarding American Space Dominance,” \textit{Ad Astra} (Fall 2005), http://firstsearch.oclc.org/ (accessed 4 April 2007).
29 Chairman, US Joint Chiefs of Staff, Joint Vision 2020 (Washington, DC: CJCS, 30 May 2000), 5.
space systems coupled with the inherent vulnerability of those systems presents just such an opportunity for those hostile to the United States to degrade the effectiveness of its fielded forces.

Major David Meteyer of the Naval Postgraduate School outlines the vulnerability of space assets in a 2005 occasional paper for the Institute for National Space Studies:

“…the multiple elements necessary to operate space systems [i.e., the satellites and associated ground stations as well as the communications signals that link them] make them more vulnerable than other, more traditional weapon systems. Therefore, while space operations are critical, they are also vulnerable, and while US forces are highly dependent upon these systems, they are not well protected nor easily replaced.”

Air Force doctrine governing counterspace operations confirms Major Meteyer’s assertion:

“The US military is dependent on the use of space capabilities in all types of warfare to maintain a combat advantage over [its] adversaries. With rare exception, today’s space infrastructure is largely unprotected. Space capabilities…could be prime targets for hostile exploitation and attack.”

USSTRATCOM Commander General James Cartwright amplified this perspective in response to questions submitted in advance of his 2004 Senate confirmation hearings, identifying system vulnerabilities among the top five most significant challenges facing US military space programs. Such concerns are well founded—as noted in the 2001 Space Commission Report:

“[t]hose hostile to the United States possess, or can acquire on the global market, the means to deny, disrupt or destroy [emphasis added] US space systems by attacking satellites in space, communications links to and from the ground or ground stations that command the satellites and process their data.”

30 JP 3-14, Joint Doctrine for Space Operations, I-1.
32 AFDD 2-2.1, Counterspace Operations, 1.
Ground-based lasers (GBLs), direct-ascent ASAT weapons, high-altitude nuclear explosions, and “hunter-killer” or “parasitic” microsatellites all threaten orbiting space assets, while electronic and conventional attack can affect corresponding signal links and ground stations.

Threats to Satellites

“Capable of temporarily or permanently degrading or destroying satellite subsystems,” GBLs offer a subtle but highly effective means of satellite engagement. Though National Reconnaissance Office Director Donald Kerr reports the Chinese laser “dazzling” of a US reconnaissance satellite disclosed by the Pentagon in late 2006 “did not materially damage the satellite’s ability to collect information,” Jonathan Lockwood of *Defense & Foreign Affairs Strategic Policy* estimates “20 to 30 nations” have access to technology similar to that employed in a 1997 US experiment during which a low-power ground-based tracking laser *was in fact* able to *significantly* disrupt the operation of an orbiting satellite.

Dr. Johnson-Freese suggests ground-based direct-ascent ASAT weapons employed in either a kinetic fashion, such as in China’s January test, or launched to deploy destructive objects into a satellite’s path offer the “easiest way to attack and destroy a satellite.” She estimates more than a dozen countries have the capability to build such a system.

37 Reuters, “China Jamming Test Sparks US Satellite Concerns.”
39 Joan Johnson-Freese, “‘Houston, we have a problem’: China and the Race to Space.” *Current History* 102 (September 2003), http://www.proquest.com/ (accessed 22 February 2007).
40 Ibid.
Writing for *Ad Astra*, Andrew Plieninger identifies high-altitude nuclear explosions as a “relatively simple, well-known and devastating means” of attack against orbiting space assets, stating “[d]etonation over any point on the globe will promptly disable all satellites within line-of-sight and render virtually all unhardened satellites in Low Earth Orbit (LEO) useless within two months.” Testifying before the House Armed Services Committee in June 2006, Michael O’Hanlon of the Brookings Institution, agreed “[v]irtually any country capable of putting a nuclear weapon into LEO [e.g., Russia, China, India and potentially North Korea and Iran] has a latent anti-satellite capability.”

According to a report in the *Sing Tao Daily*, in January 2001 China completed ground testing of a “nanometer-sized ‘parasitic satellite,’” which when deployed from a “carrier” is capable of attaching itself to a target satellite and remaining latent until issued commands to interfere with or destroy its host. Gregory Kulacki, a China Specialist for the Union of Concerned Scientists, claims reports of such an ASAT capability are baseless; however, both the 2005 and 2006 editions of the *Department of Defense Annual Report to Congress on the Military Power of the People’s Republic of China* highlight China’s pursuit of small and microsatellites. Further, the Air Force Research Laboratory’s Experimental Satellite Series (XSS) of microsatellites has demonstrated capabilities similar to those attributed to the Chinese parasitic satellites. In fact, in an article for the *Air and Space Power Journal*

41 Plieninger, “All Along the Watchtower.”
43 Nanometer sized satellites generally weigh between 1-10 kilograms (see Federation of American Scientists, “Ensuring America’s Space Security”).
Captain Joseph Page identified the on-orbit XSS-11 as a potential prototype for parasitic satellite attitude control systems.47

Threats to Satellite Communications Links

In a paper prepared for the Space Commission, Tom Wilson explains all military and commercial satellites are to some degree susceptible to electronic attack;48 more specifically, radio frequency (RF) “jamming”49 of the communications links that beam satellite data down to a user or controlling ground station (the downlink), or of the links that transmit data up to the satellite from a user or controlling ground station (the uplink). Noting the relative ease with which satellite communications links can be attacked, Michael O’Hanlon reports Air Force Research Laboratory engineers “homebuilt” an effective Ultra High Frequency (UHF) SATCOM jammer “using about $7,500 worth of goods bought at electronics and hardware stores.”50

During Iraqi Freedom, Iraq’s air defense forces deployed six Russian-made GPS downlink jamming devices around Baghdad in an attempt to reduce the accuracy of coalition precision-guided munitions.51 In a 2000 article for *Aviation Week & Space Technology*, James Asker notes Iraq employed similar jammers against coalition aircraft during Operation Northern Watch52 and it is possible like devices have been sold to Iran, Egypt, Serbia, and

48 Wilson, “Threats to United States Space Capabilities.”
49 At the most basic level, jamming is the transmission of signals that interfere with the operation of a satellite or its payload (see Jeffrey Lewis, “False Alarm on Foreign Capabilities”).
Though largely ineffective, James Canan of *Aerospace America* points out, “Iraq’s use of electronic countermeasures…[is] an ominous portent of possibly higher-powered jamming by better-equipped, more adept adversaries in conflicts to come.”

Though technically more complex than downlink jamming, uplink jamming has been quite pervasive in recent years as well. In 2003, Cuba successfully jammed a Voice of America-sponsored Persian-language television news program being broadcast to Iran on a US commercial communications satellite deemed to be the most technically advanced of its series. The governments of Indonesia, Turkey, Libya, and Israel have all allegedly conducted similar jamming efforts, as has the Chinese Falun Gong movement.

Threats to Space System Ground Segments

As Robert Ackerman points out in a June 2005 article for *Signal*, “Critical ground facilities [e.g., satellite communications, data reception, and command and control sites] associated with US space systems can be struck by organized terrorists or by foreign special operations forces” rather easily. General Dodgen confirms, “the ground segments of [US] space systems are particularly vulnerable to a conventional attack,” because many such facilities are described in great detail in open-source material, attacks upon which, if

54 Iraq’s GPS jamming devices were destroyed by two B-1 bombers, employing, ironically, GPS-aided munitions (see Rivers, “USAF General Stresses Importance of Space”).
56 Uplink jammers must be at least as powerful as the emitter associated with the link being jammed; to the contrary, downlink jammers can be much less powerful and still be effective (see Wilson, “Threats to United States Space Capabilities”).
59 National Air and Space Intelligence Center, *Challenges to US Space Superiority,* (Wright-Patterson AFB, OH, March 2005), 19.
successful, could certainly “disrupt, deny, degrade, or destroy the utility of the [entire] space system.”62 The coalition’s destruction of an Iraqi satellite television ground station during Iraqi Freedom, an operation that hampered Iraq’s communications and command and control capabilities, is an example of the military utility of an attack against a space ground segment.

US Commercial Satellite System Dependence and its Effect on Vulnerability

In its 2001 report, the Space Commission expressed concern over the US Government’s increasing dependence on the commercial space sector for provision of “essential services for national security operations.”63 However, as highlighted in Air Force Doctrine Document (AFDD) 2-2, Space Operations, “during large-scale contingencies and combat operations” US military space capabilities, like other military resources, “will be stressed,” requiring the use of “civil, commercial, and/or foreign space assets to support military objectives.”64 Air Force doctrine goes on to assert integration of such capabilities may even become vital to mission accomplishment in the future.65

During Desert Storm, commercial systems provided only 20 percent of the requisite SATCOM; 66 however, that number rose to 60 percent during Operations Allied Force and Enduring Freedom67 and to a high of 80 percent during Iraqi Freedom.68 David Cavossa, Executive Director of the Satellite Industry Association, reports in 2005 alone “the [Department of Defense] spent over $650 million on commercial satellite communications

62 National Air and Space Intelligence Center, Challenges to US Space Superiority, 19.
64 AFDD 2-2, Space Operations, 35.
65 Ibid.
68 Sega, “Testimony.”
equipment and capacity and is projected to spend over $1 billion a year by 2010 on its expanding commercial satellite communications requirements."69 Though military SATCOM provides adequate bandwidth for most secure communications, sensitive operations, and strategic command and control, the command and control of the Predator UAV weapon system, for example, is completely reliant on a commercial SATCOM architecture when operating beyond line-of-sight,70 as are many of the Army’s current BFT systems.71

The US military is equally dependent on commercial imagery providers. According to a 2003 article in Washington Quarterly, “During the first five months of Operation Enduring Freedom the Department of Defense paid the Space Imaging Corporation $1.9 million per month for images of Afghanistan collected by its Ikonos imaging satellite.”72 Though some contend the Department purchased the Ikonos imagery to preclude others from accessing it, the Congressional Research Service reports “Congress has strongly encouraged [the National Geospatial-Intelligence Agency (NGA)] to purchase commercial imagery to augment classified imagery” obtained through national ISR assets.73 The Department of Commerce confirms “the NGA will spend up to $500 million over the next five years on commercial imagery…for use by various agencies of the federal government.”74

This heavy reliance on commercial space providers, a trend likely to continue as “US military dependence on space systems…continue[s] to outpace DoD budget and production

69 Cavossa, “Testimony.”
71 FM 3-14, Space Support to Army Operations, B-2.
capability,”75 further exacerbates America’s significant vulnerability in space. Unlike many military satellites, which offer some limited anti-jam capabilities, commercial satellites are highly susceptible to the full array of ASAT threats. Robert Dickman, Executive Director of the American Institute of Aeronautics and Astronautics and former Deputy for Military Space in the Office of the Undersecretary of the Air Force, notes commercial satellite providers have put themselves in “an attack circle” they simply may not have anticipated.76

The Nexus: Dependence, Vulnerability, and a Credible Threat

In January 1997, the Army War College and US Army Training and Doctrine Command conducted a wargame as part of a larger effort to “identify and explore issues affecting the development of the Army in the next century.”77 The 1997 Army After Next Winter Wargame pitted a Blue force heavily dependent on space assets against near-peer Red and Pink forces each of which, while possessing counterspace capabilities commensurate with those described in this paper, was considered technologically inferior to the Blue force. Jonathon Lockwood, a writer and Red team member during the game, recalls:

“The Red leadership quickly recognized that directly challenging Blue’s [Revolution in Military Affairs (RMA)-style] forces on its own terms would be strategic suicide for Red. Red recognized that Blue’s space assets were the crucial ‘center of gravity’ for its RMA forces…[and] it would be necessary to mount a ‘space offensive’ from the outset to neutralize Blue’s space assets. This would break the crucial link in its RMA force structure, and thus slow down Blue’s reaction time enough for Red to achieve its objectives.

On day two…Red launched its offensive…while simultaneously initiating a ‘space offensive’ designed as part of its ‘space denial’ strategy against Blue’s RMA forces [specifically, its intelligence and communications satellites]. The results were dramatic…Blue’s RMA forces were completely paralyzed by the space offensive. In the words of one stunned Blue participant, ‘everything just ground to a halt.’”78

77 Walter L. Perry and Marc Dean Millot, Issues from the 1997 Army After Next Winter Wargame, (Santa Monica, CA, 1998), ix.
78 Lockwood, “Space Control Versus Space Denial in 21st Century Warfare: Achilles Heel of the RMA?”.
In recounting the outcome of the 1997 Winter Wargame, Lockwood outlines three key lessons learned identified by participants that are particularly cogent to the argument outlined in this paper. First, the vulnerability of space assets was a “critical weak link” to the Blue RMA forces. Second, neither Red nor Pink forces needed to control space to deny Blue its use. And third, “preemptive strikes in space...offered an attractive ‘asymmetric response’ for a technologically inferior opponent that wished to negate the advantages of an RMA force.”

A Counterargument: Few, if any, Truly Capable (and Willing) Enemies Exist

In addressing the Red force attack on Blue space assets during the 1997 Winter Wargame, the authors of the RAND report analyzing the game’s results identified a reality later echoed by former Space Commission chairman and then-Secretary of Defense Donald Rumsfeld: that no nation possessed either the necessary space order of battle or disregard for consequence to execute a “space Pearl Harbor” against US forces. The Federation of American Scientists recognized the political dimension of such an attack in a 2004 study on space weaponization, noting “just because satellites are vulnerable to ground-based missiles, laser[s], or radiation from a high-altitude nuclear explosion, it does not mean that there are credible threats that might exploit these vulnerabilities.” Setting aside the political considerations associated with such an attack, _effective_ counterspace operations, regardless of tactic employed, are also extremely complex and require a fundamental ability to “find, fix,

79 Ibid.
and track space objects, signals, and terrestrial nodes”82 that is simply beyond the indigenous capability of even most space-faring nations.83

\textit{A Brief Case Study: China, The Assassin’s Mace, and a Look at Operational Implications}

In yet another somewhat coincidental twist on China’s recent ASAT activity, in its 2001 report the Space Commission identified a conflict in the Taiwan Straits as a crisis in which “the potential vulnerability of space systems would be worrisome.”84 Echoing the Commission’s concerns, the 2005 and 2006 Department of Defense reports on China’s military power confirm the Asian nation has aims of developing “counters to third party, including potential US, intervention in cross-Strait crises” and “is in the process of long-term transformation from a mass army designed for protracted wars of attrition…to a more modern force capable of fighting short duration, high intensity conflicts against high-tech adversaries.”85 In a February 2007 article for the \textit{Taipei Times}, James Holmes outlines a complementary concept known as the “Assassin’s Mace” that embodies the traditional Chinese niche-capability approach to warfare which he describes as “…negating a superior enemy’s advantages by landing a single, sharp blow. The kind of blow that Chinese forces might strike against US warships with sea mines or stealthy submarines, or against satellites with ground-based interceptors or lasers.”86 These assertions coupled with its recent ASAT activity clearly indicate China is considering, if not committed to, the concept for asymmetric

\begin{itemize}
 \item 82 AFDD 2-2.1, \textit{Counterspace Operations}, 22.
 \item 83 Russia, China, France, Japan, and South Korea all reportedly have or are developing ground-based space object surveillance and identification sensors (see \textit{Challenges to US Space Superiority}, 17).
 \item 86 James Holmes, “‘Assassin’s Mace’ is the PRC’s Key in New Race,” \textit{Taipei Times}, 17 February 2007.
\end{itemize}
attack against US space forces highlighted in the July 2000 Chinese report cited earlier in this paper.

Given the US military’s highlighted dependence on space systems and the demonstrated vulnerabilities of those systems, an effective Chinese space attack in the spirit of the Assassin’s Mace—which it is completely capable of and apparently willing to conduct under the right circumstances—could at minimum degrade, or at worst disrupt, the responsible joint task force commander’s ability to integrate, synchronize, and direct military operations using the operational functions outlined in joint doctrine.87 For example, jamming of SATCOM links could hamper effective command and control. GBL engagement of orbiting ISR assets could preclude efficient intelligence collection and dissemination. GPS degradation could affect not only movement and maneuver, but also the employment of precision-guided munitions, limiting options for operational fires and potentially causing logistics problems. And finally, disruption of the space-based systems that link the DSP constellation with the Navy Aegis cruisers and Army Joint Tactical Ground Stations and Patriot Air Defense batteries likely to be operating in the vicinity of the Straits could create significant operational protection concerns given the nearly 800 ballistic missiles China reportedly has aimed at Taiwan.88

Barring employment of a high-altitude nuclear explosion, it is unlikely even China could completely deny space support to the US military; however, in a Taiwan scenario many space functions would be critical to successful US intervention, any of which if degraded even moderately could significantly handicap US forces operating in the region. Open-

87 The joint/operational functions are: command and control; intelligence, fires, movement and maneuver; protection; and sustainment (see JP 3-0).
source reporting of China’s dogged pursuit of counterspace capabilities coupled with its demonstrated willingness to employ them should make mitigating the impact of space degradation a priority concern for US Pacific Command war planners.

Conclusions

While an attack commensurate with a “space Pearl Harbor” seems no more likely today than it might have been prior to release of the Space Commission report in 2001, the Commission’s concerns regarding the increasing US dependence upon space power and the vulnerabilities that dependence creates are significantly more compelling now than when its findings were originally published. Modern space capabilities no longer simply enhance, but in fact enable the effectiveness of today’s warfighters, providing them an asymmetric advantage of which potential adversaries have taken note. As the US military continues to integrate space assets and space-based applications into its doctrine, plans, and programs, hostile actors remain focused on development, proliferation, and employment of credible threats that seek to not only negate the strength the United States derives from space, but to dramatically degrade the effectiveness of its armed forces by means of indirect attack against this critical vulnerability.

Recommendations

As prescribed in Joint Publication 3-14, Joint Doctrine for Space Operations, “commanders must anticipate hostile actions that attempt to deny friendly forces access to or use of space capabilities.” At the operational level of war, commanders and their staffs can prepare for such challenges to space superiority by: 1) developing contingency and crisis

89 Space-based capabilities enable the visions of all future network-centric operations, such as the Army’s Battle Command-on-the-Move and the Navy’s Sea Power 21, FORCEnet, and FORCEview concepts (see 2007 US Air Force Posture Statement).
action plans that not only consider, but *mitigate* the impact of an enemy’s abilities to attack supporting space systems; 2) wargaming realistic adversary space denial and degradation scenarios; and 3) including like events in major theater operational and tactical exercises.

Plans

Joint and service doctrine governing space operations adequately emphasizes the importance of integrating space assets into campaign planning, to include consideration of the belligerents’ space orders of battle and their associated vulnerabilities as well as enemy threats to US space superiority and their potential employment.91 Certainly such a robust space input is key to the theater commander’s grasp of the operational environment; however, beyond a passing reference in AFDD 2-2 there is no discussion of the need to prepare alternatives in the event friendly space capabilities are denied or degraded.

If an adversary presents a realistic counterspace threat, theater planners should, at minimum, consider developing branches from a campaign’s base plan that account for the potential disruption of space support. Since many space-based capabilities are not necessarily unique to the medium,92 these branches could, among other possibilities, include requests for air-breathing forces that provide capabilities complementary to those provided by at-risk space systems.

Wargames

Another of the Space Commission’s key findings pertained to the Department of Defense’s failure to adequately wargame “the loss or temporary interruption of key space

The Air Force developed the “Schriever” series of wargames to address this concern at the national level; however, wargaming conducted to analyze friendly and enemy courses of action (COAs) developed at the operational level of war should also consider the impact of hostile counterspace operations. Rather than injecting Pearl Harbor-like attacks against friendly space systems as did the Red forces during the 1997 Army After Next Wargame, the “red cells” established to assist in evaluating the effectiveness of friendly COAs against red counterspace threats should do so from the same aggressive, but realistic perspective that pervades enemy COA development during intelligence preparation of the operational environment.

Exercises

In October 2000, the Air Force established the 527th Space Aggressor Squadron (527 SAS) to prepare service, joint, and allied forces for combat with space-capable adversaries with the intent of improving the ability of these forces to detect and mitigate the effect of enemy space use or attack. The 527 SAS and its Air National Guard sister-squadron attempt to disrupt friendly military exercises by employing actual or simulated foreign space systems to jam supporting satellite communications links, providing targeted forces “their first taste of space combat.”

Regional combatant commanders employ the aggressor squadrons extensively during major theater operational and tactical exercises; however, the squadrons’ unique capabilities are often underutilized, as their activity is too often limited solely to red cell participation.

94 527 SAS, *Mission Brief*.

To reap the full benefit of the aggressors’ involvement, theater commanders should request more robust participation to include live-fire jamming that portrays realistic enemy counterspace capabilities. This degree of involvement would allow theater forces greater opportunity to experience and understand the effects of degraded or denied space support and better prepare them for operating in such environments.

Summary

Iraq’s 2003 counterspace operations provide proof positive the unchallenged space superiority the US military has enjoyed since Desert Storm can no longer be taken for granted. The United States’ disproportionate dependence on highly vulnerable space systems provides its enemies a recognizable opportunity to degrade the effectiveness of American forces that they are increasingly willing and capable of exploiting. By incorporating threat-based considerations into operational plans, wargames, and exercises, theater commanders can better prepare their forces for the operational implications of “war in space.”
Bibliography

Holmes, James. “‘Assassin’s Mace’ is the PRC’s Key in New Race.” Taipei Times, 17 February 2007.

Johnson-Freese, Joan. “‘Houston, we have a problem’: China and the Race to Space.” Current History 102 (September 2003): http://www.proquest.com/ (accessed 22 February 2007).

