Award Number: W81XWH-06-1-0341

TITLE: Targeting Breast Cancers Featuring Activating Mutations in PIK3CA by Generating a Lethal Dose of PIP3

PRINCIPAL INVESTIGATOR: Jean J. Zhao, Ph.D.

CONTRACTING ORGANIZATION: Dana-Farber Cancer Institute
Boston, MA 02115

REPORT DATE: February 2007

TYPE OF REPORT: Annual Summary

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Targeting Breast Cancers Featuring Activating Mutations in PIK3CA by Generating a Lethal Dose of PIP3

Jean J. Zhao, Ph.D.
Email: jean_zhao@dfci.harvard.edu

Dana-Farber Cancer Institute
Boston, MA 02115

Our research described here is relevant to the pathogenesis and a potential novel therapy for breast cancers. The PIK3CA is the most commonly mutated oncogene in breast cancer and loss of the tumor suppressor, PTEN, occurs frequently in patients suffering from this disease. The most significant accomplishment during the first year of funding is the generation of the oncogenic PIK3CA transgenic animal model which will allow us to determine the oncogenic role of PIK3CA in tumor initiation, progression, maintenance and metastasis etc. It should also significantly facilitate preclinical testing for the development of PI3K inhibitors for targeted therapy. Our final goal of simultaneous inactivation of PTEN and activation of PIK3CA will not only provide a new perspective on the relationship of the two key oncogene and tumor suppressor, PIK3CA and PTEN, and the signaling pathway under their control in cell regulation and oncogenic transformation, but also a potential novel therapy to all patients plagued with the common tumorigenic mutations.
Introduction

Our proposed study is to test a novel molecular targeting strategy that challenges the existing paradigm of drug treatment: Instead of inhibiting PI3K activity and reduce the amount of PIP₃ in cancer cells carrying activating PI3K mutants, we will further elevate the PIP₃ levels by inactivating PTEN to push these tumor cells “over the brink”. The lipid PIP₃ is a critical second messenger in cell signal transduction. The level of PIP₃ is tightly regulated by the activities of these two opposing enzymes, the lipid kinase, PI3K, and the lipid phosphatase, PTEN. We believe that PI3K activity is tolerated within a relatively narrow window in cells - “too much of PIP₃ is just as lethal as too little”. The abnormal elevation of PIP₃ levels has been frequently found in human cancers bearing somatic activating mutations in the PIK3CA gene or loss of PTEN function. Interestingly, while both PI3CA and PTEN mutations occur so frequently in cancers (Bachman et al., 2004; Samuels et al., 2005), PIK3CA mutations and PTEN loss are almost mutually exclusive in, at least, breast (Saal et al., 2005), brain (Broderick et al., 2004), and gastric cancers (Byun et al., 2003). Since the two genes act as “on/off” switches on PI3K signaling, the reciprocal nature of PIK3CA mutations and PTEN inactivation indicate that while either PIK3CA activation or PTEN loss of function results in an elevation of PIP₃ sufficient for oncogenesis, the PIK3CA/PTEN double mutants may elevate PIP₃ to a lethal level. To test this hypothesis, we will inactivate PTEN in cells expressing activating mutants of PIK3CA. We will also test our idea by simultaneous activation of PI3K and inactivation of PTEN in an animal breast tumor model.

Aim 1. To determine the effect of PTEN inactivation in human mammary epithelial cells (HMECs) expressing activated alleles of PIK3CA.

Aim 2. To determine the effect of simultaneous inactivation of PTEN and activation of PIK3CA in an animal breast tumor model.

Body

During the first year of funding, we have devoted most of our effort in testing the inactivation of PTEN in HMECs and generating the transgenic mouse carrying the oncogenic PIK3CA under a inducible tetO-promoter as outlined in the Statement of Work (SOW). We have made good progresses, especially in making the transgenic animal models for Aim 2, although encountered some difficulties in Aim 1 with PTEN inactivation. Details of the studies and results are as follows:

On Aim1: Inactivation of PTEN using RNAi in HMECs. To test the effect of transient inactivation of PTEN in cells, we have tried introducing PTEN-siRNAs oligos into HMECs by transfection. However, these HMECs were extremely difficulty to be transfected. With several leading transfection regents used, the highest efficiency of transfection to HMECs was only near 10%. Such low transfection efficiency affected our further analysis of the correlation of PTEN silencing and cell death and survival. Using retro-viral based shRNA (pSuper-retroviral-shPTEN) mediated knockdown, we have generated three stable HMEC lines transduced with three retroviral shPTENs targeting different regions of PTEN mRNA. Western-blots analysis showed that the best reduction of PTEN level was about 60% as compared to that of control
cells. We found the 60% reduction of PTEN level was not sufficient to induce anchorage-independent growth of HMECs in the presence of hTERT, high level of c-my and p53DD. We have then tested a set of five lentiviral shRNAs against PTEN and found one of them significantly knockdown PTEN with close to 90% efficiency. We are now constructing a lentivirus-based inducible H1 vector carrying this working shRNA-PTEN. We have already generated lentiviral construct bearing tetR and made a stable HMEC line expressing tetR which will be introduced with inducible shRNA-PTEN for the functional analysis listed in task 1B of SOW.

On Aim 2: Simultaneous inactivation of PTEN and activation of PIK3CA in a mouse mammary tumor model. We have succeeded in making the transgenic constructs carrying inducible expression of tumor mutant alleles of PIK3CA, H1047R or E545K, and luciferase for live imaging of breast tissue: TetO-HA-PIK3CA-IRES-luciferase (Fig. 1). More than 60-fold and 80-fold induction were reached as tested by transfecting 293-tetR cells with the “TetO-HA-PIK3CA-IRES-luciferase” constructs and treated with doxycycline or untreated (Fig. 2). The construct, TetO-HA-H1047R-1RES-luciferase (T-H1047R-luc), was picked for the production of our transgenic line by injecting the DNA into embryos followed by implantation into foster mice. This was done at Harvard Medical School Transgenic Core Facility. Genotyping of tail biopsies showed that five pups were transgenic founders, including 3 males and 2 females. All three male founders were bred and produced progenies carrying the transgene, confirming positive germline transmission. The two female founders have not produced after being in a breeder for three months. The transferring of MMTV-rtTA mouse line (Gunther et al., 2002) from Dr. Chodosh’s lab is in process. This MMTV-rtTA line will be crossed with the newly produced T-H1047R-luc transgenic line to generate a bi-tansgenic mouse, T-H1047R-luc:MMTV-rtTA. This model will allow us to determine the oncogenic role of PIK3CA in tumor development and, ultimately, examine the simultaneous inactivation of PTEN and activation of PIK3CA in mouse mammary tumorigenesis.

Both of the PTEN flox and MMTV-Cre mouse lines (Li et al., 2002; Wagner et al., 1997) have been obtained from NCI-Frederick Repository and completed quarantine at Charles River Laboratory animal facility. We have bred the PTEN flox to homozygous PTEN^{Lox/Lox}, and started crossing the PTEN flox and MMTV-Cre lines to generate PTEN^{Lox/Lox}/MMTV-Cre as described in SOW.
Key Research Accomplishments

2. Generated a stable HMEC line expressing tetR.

Reportable Outcomes

The support from the Department of Defense Idea Award has helped me to start my independent research program and provided research opportunity for one postdoctoral fellow, Hailing Cheng, to pursue her career in cancer research. Other outcomes, such as cell lines and animal models, are listed under “key research accomplishments”

Conclusion

The research described here is relevant to the pathogenesis and a potential novel therapy for breast cancers. The \textit{PIK3CA} is the most commonly mutated oncogene in breast cancer and loss of the tumor suppressor, PTEN, occurs frequently in patients suffering from this disease. Our newly generated oncogenic \textit{PIK3CA} transgenic animal model will allow us to determine the oncogenic role of \textit{PIK3CA} in tumor initiation, progression, maintenance and metastasis etc. It should also significantly facilitate preclinical testing for the development of PI3K inhibitors for targeted therapy. Our final goal of simultaneous inactivation of \textit{PTEN} and activation of \textit{PIK3CA} will not only provide a new perspective on the relationship of the two key oncogene and tumor suppressor, \textit{PIK3CA} and \textit{PTEN}, and the signaling pathway under their control in cell regulation and oncogenic transformation, but also a potential novel therapy to all patients plagued with the common tumorigenic mutations.

References

Appendices None