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ABSTRACT 

The objective of this thesis is to investigate the vertical distribution of dust and its 

impact on the top of the atmosphere radiance and associated remotely sensed thermal 

variability in the midwave infrared wavelengths. Due to the inconsistent availability and 

coincidence of in-situ data with dust events, model data was used to identify the vertical 

dust regions.  The Navy Aerosol Analysis and Prediction System global aerosol model 

was used to determine mass concentration and vertical extent of dust.  Mass 

concentration was converted to extinction and individual dust events were analyzed to 

characterize the vertical distribution, extinction, and optical depth.  The average height 

was defined for specific dust regions of Iraq and Korea.  This value was used to 

determine the impact of the dust layer on the top of the atmosphere radiance and 

brightness temperature in the wavelengths of interest.  Radiative transfer software was 

used to determine the top of the atmosphere radiance of the modeled dust atmosphere. 

Resultant brightness temperature was calculated to obtain the thermal characteristics of 

the dust layer and associated atmosphere.  The vertical distribution of the dust layer was 

varied with fixed atmospheric components to gain insight into the resultant variation of 

radiance and subsequent brightness temperature to provide a set of possible values for a 

regionally specific dust event.  
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I. INTRODUCTION  

The vertical variation of dust is a little-studied quantity.  Until recently, in-situ 

measurement of the vertical distribution of dust has not been possible.  With the advent of 

specialized instruments such as limb sounders and airborne and orbiting LIDAR 

technology, scientists are now able to directly measure the vertical region where dust 

occurs and model the behavior so accurate forecasts can be made.  Dust is one of the 

most visible and common aerosols impacting the earth's radiation budget and our daily 

lives.  Common to every inhabited continent, dust impacts areas where humans live and 

work and can therefore impact nearly every populated corner of the globe.  Aerosolized 

dust has been studied by many scientists and researchers and yet, as its properties are 

becoming better understood, there is still much to learn.  Arid and semi-arid regions of 

the world, which are the major potential source of dust, cover about a third of the earth's 

surface. Desert aerosol experiences the largest variability of all aerosol types by virtue of 

its physical and optical properties (D'Almeida et al., 1991).  The physical variability, 

specifically the variation with regard to height along with the radiative impact is the 

primary focus of this study.   

As remote sensing technology becomes more advanced, understanding radiative 

transfer in the midwave infrared is emerging as a relatively new area of scientific 

concentration.  As we begin to determine the components of the atmosphere which 

impact the midwave infrared, we can then ask how to compensate for those “unwanted” 

constituents in satellite measurements.  In wavelengths shorter than 1 µm or longer than 

8 µm, either reflected solar or emitted terrestrial radiation dominate respectively.  The 

nebulous region of the midwave infrared is more complicated due to both solar and 

thermal sensitivities along with highly dynamic diurnal effects. 

In the midwave infrared, the reflected solar irradiance combines with the 

emittance from the earth's surface along with the path emission to give the total top of the 

atmosphere radiance as measured by earth orbiting sensors.  In these wavelenghs, both 

the solar term (reflected solar irradiance) and the thermal emittance term are significant 

contributors and are highly variable with wavelength.   
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Aerosol size, shape, and number distribution are critical in determining radiative 

impacts within specific wavelengths.  In the midwave infrared, aerosols such as sulfate, 

smoke, sea salt, and dust have a profound impact on measured radiance through their 

complex reflective and absorptive/emissive properties.  Because dust occurs as a result of 

dynamic meteorological processes, this study attempts to undertake the task of 

identifying the vertical variation of dust and how that variation affects the top of the 

atmosphere radiance in the 3-5 µm wavelengths.  This study also provides insight to how 

this variation impacts the top of the atmosphere brightness temperature across the 

midwave infrared spectrum.   Many other regions of the world exhibit significant dust 

storm events.  For the sake of scale, military significance, and data collection, this study 

focuses on two source regions; one in southern Iraq, and the other is the Gobi Desert with 

dust impacts over the Korean Peninsula. 

The goal of this study is to further our understanding of the radiative 

characteristics of the vertical variation of dust and to contribute to our ability to correct 

for atmospheric effects in the midwave infrared.  Ultimately, once we can determine the 

impact of the intervening atmosphere, making calculations of upwelling radiance 

measured by satellite radiometers will allow more effective estimates of surface thermal 

characteristics.  These estimates can be used in data assimilation to better improve 

forecast and climate models. 
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II. BACKGROUND 

A. RADIATIVE TRANSFER AND THE MIDWAVE INFRARED SPECTRUM 
 

Radiative transfer is the study of the essential energy flux in the atmosphere.  It 

quantifies the transfer of energy between the sun, the earth and the atmosphere.  In the 

case of no atmospheric absorption, the transfer is straightforward.  Earth-bound or down-

welling radiation from the sun is received at the earth as solar irradiance.  The earth 

absorbs and reflects the solar radiation and emits radiation based on the surface 

temperature at the point of emission.  When atmospheric effects are added, the radiative 

transfer problem becomes more complex.  Depending on the wavelength and optical 

properties of the atmospheric constituents, some solar irradiance may be absorbed and/or 

reflected by the atmosphere.  Additionally, some terrestrial radiation may be absorbed by 

the atmosphere.   

The midwave IR is the region between the shortwave infrared (1-3 µm) and the 

longwave infrared (8-12 µm).  It is a complex region in that there is not a continuously 

dominant radiation source across the spectrum.  Figure 1 shows the Planck curves for 

both solar and terrestrial radiation assuming a 280 K surface.  At 280 K, the wavelength 

where the solar and terrestrial radiation curves cross is roughly 4.7 µm.  Using the Kidder 

and Vonder Haar's example of the surface as a 250 K blackbody, the solar radiation and 

terrestrial radiation are roughly equal at 5.7 µm.  This demonstrates the variability of the 

crossing point as a function of the temperature of the earth’s surface.  As such, the 

midwave infrared represents a tremendously complicated and dynamic region for 

radiative transfer.  That complexity makes radiative transfer in the midwave infrared 

challenging. 
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Figure 1.   Planck Curves for Solar and Terrestrial Radiation Using 280 K Blackbody 

for the Earth Approximation.   

 

Figure 1 shows Planck curves for solar irradiance and terrestrial exitance for a 280 K 

surface temperature.  Solar radiation is the curve on the left peaking at roughly 0.48 µm 

and terrestrial radiation is the curve on the right peaking at roughly 10 µm.  Notice the 

crossing point at 4.7 µm where values are nearly equal.   

During daylight hours, the dominant photon source is highly wavelength-

dependent with solar irradiance dominating up to approximately 4 µm and the terrestrial 

emission dominating at longer wavelengths.  The midwave infrared is highly susceptible 

to the impacts of solar radiation and therefore depends on solar zenith angle, time of year, 

and the solar cycle.  The nighttime radiance values depend on terrestrial emission with 

some reflected lunar impacts depending on the moon phase. 
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1. Solar Irradiance 
 

Solar radiance as measured at the surface varies due to the distance from the sun 

to earth and the subsequent small angle subtended by the earth.  Reflected solar radiation 

is a function of zenith angle and the surface albedo.  Albedo is simply a ratio of reflected 

solar radiation to incident solar radiation.  Since the path length of incoming solar 

radiation depends on the solar zenith angle, the radiation is scattered and absorbed along 

the path causing radiance depletion.  Similarly, reflected solar radiation traveling through 

the atmosphere back to a sensor in low-earth orbit or geostationary orbit will also 

undergo depletion through scattering and absorption.  Larger angles of incidence cause 

more depletion due to more scattering and absorption by greater amounts of intervening 

atmosphere. 

 

2. Terrestrial Emittance 
 

In contrast to reflected solar radiation, terrestrial emittance is only affected in one 

direction.  As terrestrial radiation travels toward the orbiting sensor, energy is scattered 

and absorbed along the path causing depletion.  Although the wavelength peak of 

terrestrial emission is near 10 µm, scattering and absorption by particles of size similar to 

the midwave infrared wavelengths have a large impact on radiative transfer within the 

terrestrial emission spectral band.  Dust is one such particle type with size ranges from 

0.01 µm to 100 µm.  

 

3.  Transmission Windows and Atmospheric Constituents Impacting the 
Midwave Infrared 

 

Transmission of solar and terrestrial radiation through the atmosphere is impeded 

by normal atmospheric gaseous constituents such as water vapor, carbon dioxide, 

methane, and ozone.  These constituents affect areas within the spectrum differently  
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causing degraded conditions at some wavelengths while allowing complete transmission 

at others.  Figure 2 shows the transmittance across the midwave spectrum.  There are 

several “window” bands with very little atmospheric impact.  
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Figure 2.   Transmittance in the Midwave Infrared 

 

Kirchhoff's law of thermal radiation states that at thermal equilibrium, the 

emissivity of a body equals its absorptance (Kidder et al., 1995).  Thus, by Kirchhoff's 

Law of thermal radiation, a good absorber is a good emitter.  Therefore the absorbing 

atmosphere also emits radiation at the ambient temperature of the atmosphere in which is 

resides.  In the midwave infrared, there are several absorbing constituents.  Table 1 shows 

absorption bands for water vapor (H2O), Carbon monoxide (CO), Carbon dioxide (CO2), 

and Methane (CH4).  The central absorption bands in the midwave infrared for the 

following gases are as follows: carbon dioxide absorbs at 2.69 µm, 2.76 µm, and  

4.25  µm, carbon monoxide absorbs at 2.3 µm, and 4.7 µm, water vapor absorbs at 2.70 

µm, 3.20 µm, and 6.30 µm and methane absorbs at 3.4 µm. The water vapor and carbon 

dioxide absorption bands are much broader in spectral scope while methane and carbon 

monoxide have much narrower bands.  

H2O 
Vapor 

CO2 
H2O 

Vapor 
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Table 1.   Molecular Absorption in The Midwave Infrared Spectrum (adapted from 
Ramanathan, 1978) 

 

Absorption Bands of Atmospheric Gases 

Constituents Absorption Bands (µm) 
H2O 0.5 - 2.0 
H2O, CO, and CO2 2.0 - 3.0 
H2O and CH4 3.0 - 4.0 
CO and CO2 4.0 - 5.0 
H2O 5.0 - 7.0 

 

The midwave infrared “window” bands where there is relatively little absorption 

are from to 2.1 to 2.4 µm, 3.3 to 4.2 µm.  Other bands may be used with careful 

consideration for molecular absorption.  These bands are given for a dust free atmosphere 

in standard conditions using the 1976 US Standard Atmospheric components.  When dust 

is added, optical depth increases resulting in a corresponding decrease in transmittance 

due to dust scattering and absorption. 

 

B.  TROPOSPHERIC DUST SOURCE REGIONS 
 

1. China - Gobi Desert 
 

Wind-blown dust originating from the arid deserts of Mongolia and China is a 

well known springtime meteorological phenomenon throughout East Asia.  In fact, 

“yellow sand” meteorological conditions have acquired local names: Huangsha in China, 

Whangsa in Korea, and Kosa in Japan.  The transport of desert dust from Asia to the 

North Pacific atmosphere is well documented and shows a maximum in dust loading each 

spring (Husar et al., 1998).  The overwhelming majority of Asian Dust storms occur in 

the spring as the polar jet retreats to the north and brings mid-latitude cyclones through 

northern Mongolia.  
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Figure 3.   Main source region for Asian dust events including the Gobi Desert and 

Tibetan Plateau. 

 

Source regions of Asian dust are located in east central and eastern Asia in the 

Gobi Desert and the northeast of the Tibetan Plateau.  Figure 3 shows the dust source 

area of interest.  Satellite measurements and climatological records make defining the 

dust source region for East Asia fairly straightforward.  Desertification of the Gobi region 

along with the Tibetan Plateau has created a large source region centered in northern 

China and southern Mongolia.  This region is virtually surrounded by mountain ranges 

particularly to the north and west.  These mountains serve as the mechanism for 

significant surface wind in pre- and post-frontal dust scenarios.   

As mid-latitude cyclones approach and pass through northern Mongolia, 

significant gap flows quickly accelerate surface winds in the Gobi region above 35 knots.  

Particle sizes can reach 100 µm in the immediate source region.  Asian dust often travels 

thousands of kilometers and cases of Asian dust deposited in North America and 

Greenland are not uncommon.  However, eastern China, the Korean Peninsula, and Japan 

are most impacted by these events. 
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2. Iraq - Dry Lake Beds and Alluvial Plains 
 

Particularly fine silt and clay combined with the arid climate and unique 

geography make the Tigris-Euphrates alluvial plain the primary source for aerosolized 

dust in the region.  Other point sources include dry lake beds to the northwest which are 

primarily composed of silt and clay.  These point sources can cause significant dust 

events but are generally not of the geographical and temporal scope of the larger events 

caused by the primary source in southeastern Iraq.  

According the UCAR COMET module on dust, the primary sources of dust in the 

Middle East are dry lake beds and the alluvial plain of the Tigris and Euphrates River 

plain (COMET MetEd, http://www.meted.ucar.edu/mesoprim/dust/, February 2007).  

This region is the primary source of aerosolized dust and is composed of silt and clay.  In 

addition, the Syrian Desert and the Arabian Desert in Saudi Arabia contribute to dust 

events during large spring and autumn mid-latitude storms.  These regions are composed 

of fine and coarse sand and, to a lesser degree, silt. 

There are two primary meteorological causes of dust events in the Middle East.  

The first is the mid-latitude storm producing prefrontal and/or postfrontal dust events.  

The interaction between the polar jet and subtropical jet over the northern Arabian 

Peninsula in the spring and fall acts to enhance the horizontal and vertical motions 

resulting in significant aerial dust coverage as well as vertical transport.  The second 

cause is the summer Shamal.  This enhancement of the northern wind along the eastern 

half of Iraq bounded by the Zagros Mountains of Iran is the result of high pressure 

centered over the northern Arabian Peninsula, low pressure over central Iran, and the 

monsoon trough in the Indian Ocean.  These interactions, combined with much warmer 

temperatures can loft dust above 5000 feet for days and sometimes weeks at a time.  

Figure 4 identifies dust source regions for the Middle East. In Fig. 4a, high 

probability source regions are identified including the Tigris-Euphrates River plain 

(COMET MetEd, http://www.meted.ucar.edu/mesoprim/dust/, February 2007).  In Fig. 

4b, the climatological point sources are identified through the long-term study of satellite 

imagery using the US Air Force Defense Meteorological Satellite Program.  These 
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sources are primarily dry lake beds with high silt and clay concentrations.  In Fig. 4c, a 

true color Sea-WiFS image depicts summer Shamal lofting dust from central Iraq over 

the northern Persian Gulf.  The highlighted circle depicts the source region for the 

aerosolized dust for the Iraq case study in the following chapters. 
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(a) 

(b) 

(c) 

Figure 4.   Dust Source Regions of Iraq and the Middle East (adapted from COMET 
MetEd, http://www.meted.ucar.edu/mesoprim/dust/, February 2007). 
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C. NAVY AEROSOL ANALYSIS AND PREDICTION SYSTEM (NAAPS) 
 

1. Model Description 
 

The Navy Aerosol Analysis and Prediction System (NAAPS) global aerosol 

model was derived from a modified form of that developed by Christensen (1997) and is 

run by the Naval Research Laboratory, Marine Meteorology Division, Monterey, CA, 

under the guidance of Dr. Doug Westphal.  It uses global meteorological fields from the 

Navy Operational Global Atmospheric System (NOGAPS).  The model is based upon the 

Optical Properties of Aerosol and Clouds (OPAC) defined by Hess et al., (1998).  

NAAPS is run on a global 1 x 1 degree grid at six hour increments with 25 vertical levels 

based on the NOGAPS sigma levels up to 100mb.  According to the NAAPS webpage, 

strengths of the model include the use of operational dynamics, 120 hour forecasts, near 

real time operation, global coverage, and dust and smoke simulations.  Areas currently 

under further development are improvement of the dust source function, verification of 

sulfate simulations, and improvement of the microphysics and chemistry (Description of 

NAAPS, http://www.nrlmry.navy.mil/aerosol_web/Docs/globaer_model.html, February 

2007). 

NAAPS works on the premise that dust is lofted whenever the friction velocity 

exceeds a critical value, the snow depth is below a critical value, and surface moisture is 

below a critical value.  In accordance with Westphal et al., 1988, the flux is scaled to 

only include particles smaller than 5 µm and is allowed in the lowest two layers of the 

model.  The friction velocity threshold is set for known dust emission areas in accordance 

with eight of the United States Geological Survey (USGS) land cover types.  The Naval 

Research Laboratory, Marine Meteorology Division, Monterey, CA, has interpolated 

these eight USGS land use types to cover a 0.01 degree resolution and characterized the 

global land masses accordingly.  The resolution was reduced to coincide with the NAAPS 

global aerosol 1x1 degree grid box. 
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The eight USGS land cover types which are identified in NAAPS as dust 

producing areas are: low sparse grassland, bare desert, sand desert, semi-desert shrubs, 

semi-desert sage, polar and alpine desert, salt playas, and sparse dunes and ridges. 

The surface flux is scaled by the erodible fraction for each grid box and friction 

velocity is set to 0.6 m s-1 for all land types. The critical surface moisture is set to 0.3 and 

the critical snow depth value is set to 0.4 cm.  

 

Table 2.   Natural Aerosol Characteristics Source Strength, Atmospheric Burden and 
Optical Extinction Adapted from Ramanathan (2001) 

 
Global source strength, atmospheric burden, and optical extinction due to the 

various types of aerosols (for the 1990s) 
Source Flux (Tg year -1) Lifetime (days) Column Burden 

(mg m-2) 
Specific 
scattering/ 
absorption 
(m2/g) 

Optical depth (×100) 
scattering/absorption 

Primary 
Dust(desert) 900-1500 4 19-33 0.6 1-2 
Sea salt 2300 1 3 1.5 2 
Biological debris 50 4 1 2 0.2 

Secondary 
Sulfates from 
biogenic gases 

70 5 2 8 1.6 

Sulfates from 
volcanic SO2 
(troposphere) 

20 10 1 8 0.8 

Sulfates from 
Pinatubo (1991) 
(stratosphere) 

(40) (400) (80) (2) (16) 

Organic matter 
from biogenic 
hydrocarbons 

20 5 0.6 8 0.5 

Total natural 2400-3000   32-45   6-7 (±3) 

 

From Table 2, it is clear that desert dust is responsible for roughly 1/3 of the total 

optical depth (excluding volcanic ash) based on global source strength measured during a 

1990's study undertaken by Ramanathan et al., (2001).  It is second only to sea salt in 

global annual flux and the 4 day lifespan gives it a highly variable longer life than sea 

salt.  In the case of Asian dust storms, particles with mass between 2.5 and 10 µg m-3 

were found to increase four to six times over the background levels (Yuan et al., 2004).  

This natural variability of the dust is the impetus for this study. 

 

 



14 

D. OPTICAL PROPERTIES OF AEROSOL AND CLOUDS (OPAC) 
 

The software package Optical Properties of Aerosol and Clouds was developed by 

Hess et al., (1998) to effectively manage the optical properties of aerosols within the 

solar and terrestrial spectral range.  The variability of aerosols in number density, size 

distribution, shape, and height makes determining the point-in-time state quite difficult.  

The OPAC software package attempts to reduce this complexity without neglecting the 

likely variations in order to model the aerosol.  In OPAC, this goal is achieved by the use 

of a dataset of typical clouds and internally mixed aerosol components (Hess et al., 

1998).  Specifically, the NAAPS dust mass concentration incorporates the OPAC desert 

model for size, shape and number densities as well as optical properties.  Desert aerosol 

size distribution tends to exhibit three overlapping modes at diameters of 0.01 µm or less, 

0.05 µm, and 10 µm (Seinfeld 1998).  The OPAC desert model components are listed in 

Table 3 and the size distribution is shown in Fig. 5.    

 

Table 3.   OPAC Software Package Composition of Desert Aerosols for 50% Relative 
Humidity  

 

Component Ni 

(cm-3) 

Mi 

(µg m-3) 

Number 

Mixing Ratios 

(nj) 

Mass Mixing 

Ratios (mj) 

Mineral (coa.) 0.142 45.6 0.617E-4 0.202 

Mineral (acc.) 30.5 168.7 0.133E-1 0.747 

Mineral (nuc.) 269.5 7.5 0.117 0.033 

Water Soluble 2000 4.0 0.87 0.018 

Total 2300 225.8 - - 
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OPAC assumes a spherical shaped dust particle with log-normal size distributions 

consisting of a mixture of quartz and clay minerals modeled with three distinct modes to 

capture the increasing relative amount of larger particles for increasing turbidity and mie 

scattering theory is used in calculation the optical properties (Hess et al., 1998).  The 

accumulation mode is the primary contributor to the mass concentration with a mass 

mixing ratio of 0.747.  Figure 5 shows the size distribution for particle radii of 0.01 to 10 

µm range.   
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Figure 5.   OPAC Desert Model Size Distribution 
 
 
E. MODERATE RESOLUTION ATMOSPHERIC TRANSMISSION 

(MODTRAN) RADIATIVE TRANSFER MODELING SOFTWARE 
 

This study used the MODTRAN 4 software for the computation of all radiance 

and transmittance values.  MODTRAN is modeling software created by the Air Force 

Research Laboratory used for computing radiative properties including radiance and 

transmittance for frequencies from 0 to 50,000 cm-1 at 2 cm-1 spectral resolution.  It 

incorporates spherical and refractive geometry, solar and lunar source functions for both 
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Rayleigh and Mie scattering, and allows multiple scattering and multiple viewing angles.  

Recent improvements to MODTRAN allow multiple scattering using a Bi-directional 

Reflectance Distribution Function (BRDF) which gives the reflectance of a target as a 

function of illumination geometry and viewing geometry.  This allows scattering to be 

other than Lambertian, producing more accurate results (MODTAN 4 Software, 

http://www.vs.afrl.af.mil/ProductLines/IR-Clutter/modtran4.aspx, February 2007). 

 

1.  MODTRAN Input Parameters 
 

Using the OPAC Software Package and the desert model values listed in Table 3, 

the scattering phase function, extinction coefficient, absorption coefficient, single scatter 

albedo, and asymmetry parameter for the desert model were calculated at 3, 4 and 5 µm 

wavelengths.  MODTRAN input cards with vertical atmospheric profiles and layer 

extinction values calculated from mass concentration from NAAPS were created and 

added to the spectral optical values.  Tables 4 and 5 list these values normalized to 

0.55 µm (as required by MODTRAN). 

In this study, standard values for atmospheric gases were used.  The default 

values for CO, CO2, H2O, O3, N2O, CH4 and MODTRAN defined heavy species were 

used corresponding to mid-latitude winter defaults for the Korean Peninsula dust scenario 

and mid-latitude summer for the Iraq dust scenario.  Caution should be used in 

interpreting the absorption bands for each of these constituents as present atmospheric 

values have changed for each of these quantities.  

 
Table 4.   MODTRAN Spectral Input Parameters 

 
wavelength (µm) ext. coef. 

(1/km) 

abs. coef. 

(1/km) 

asymmetry 

parameter  

3 0.67464 0.14960 0.7154 

4 0.51965 0.15110 0.6774 

5 0.40480 0.15200 0.6182 



17 

The OPAC derived scattering phase functions normalized to 0.55 µm for each 

wavelength can be found in Table 5 below. 

 

Table 5.   MODTRAN User Input Scattering Phase Functions 

 

 Wavelength (µm) 
θ 3 4 5 
0 60.568 37.157 24.216 
2 40.342 28.682 20.116 
4 26.065 20.208 14.808 
6 19.292 15.485 11.455 
8 15.480 12.644 9.298 

10 12.983 10.741 7.825 
12 11.149 9.344 6.749 
16 8.511 7.342 5.237 
20 6.633 5.890 4.177 
24 5.211 4.755 3.372 
28 4.118 3.849 2.733 
32 3.267 3.117 2.220 
36 2.605 2.526 1.807 
40 2.087 2.054 1.473 
52 1.107 1.122 0.812 
60 0.749 0.767 0.557 
68 0.523 0.538 0.391 
80 0.323 0.334 0.242 
92 0.218 0.226 0.163 

100 0.177 0.184 0.132 
108 0.150 0.157 0.113 
120 0.129 0.138 0.098 
124 0.126 0.136 0.096 
132 0.125 0.139 0.096 
136 0.126 0.143 0.098 
140 0.129 0.150 0.102 
146 0.134 0.165 0.109 
150 0.137 0.179 0.115 
156 0.141 0.204 0.126 
160 0.140 0.221 0.133 
166 0.139 0.234 0.134 
170 0.147 0.245 0.134 
176 0.175 0.288 0.149 
180 0.186 0.314 0.159 

 

 



18 

The OPAC-derived scattering phase functions for each wavelength were used up 

to 100 mb and the default MODTRAN phase functions were used for the remainder of 

the column.  Multiple scattering with four streams was selected as the default scattering 

mechanism to create the MODTRAN output values for radiance and transmittance.  All 

MODTRAN runs were calculated based on a nadir low-earth orbit viewing angle and 

altitude. 

 

F.  EXTINCTION, OPTICAL DEPTH, AND BRIGHTNESS TEMPERATURE 
 

In order to determine the vertical variation of dust and how it impacts satellite 

measured radiance, we must know the character of the dust.  From the NAAPS and 

OPAC data, extinction and subsequent optical depth can be calculated using the NAAPS 

aerosol mass to optical depth transfer function.  Brightness temperature is calculated from 

radiance output from radiative transfer modeling software. 

 

1. Extinction 
 

The standard form of volume extinction coefficient is calculated as the sum of the 

scattering and extinction coefficients 

 e a sσ σσ = +        (1) 

where the absorption coefficient is 

 * * (1 )a mi ei oCσ α ω= −       (2) 

and the scattering coefficient is 

  * *s mi ei oCσ α ω=        (3) 

 In this form, C is the volume dust mass concentration in (g m-3), scaled by the dry 

dust mass extinction efficiency α in (m2 g-1).  The single scatter albedo ωo is used to 

separate the scattering and absorption components. 
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2.  Optical Depth 
 

For Aerosol optical depth δ, Kidder and Vonder Haar define the vertical optical 

depth as the vertically integrated volume extinction as follows 

1 2

2

1

( , )( , ) e

z

z

zz z dzλδ σ= ∫       (4) 

Because there are 25 layers in the NAAPS model, an approximation for aerosol 

optical depth is used and is defined as the vertical sum of each volume extinction value 

from the NAAPS mass concentration.  This is accomplished by using the aerosol mass to 

optical depth transfer function 

( )* * ( , )ei mi ei
i

C f RHλδ α λ λ=∑       (5)   

where δ is the aerosol optical depth calculated by the vertical sum of the model layer 

mass concentration C (g m-3) scaled by the mass extinction efficiency, α (m2 g-1), 

multiplied by the aerosol hygroscopic growth factor for extinction, f.  The mass 

extinction cross-sections (as a function of wavelength) for dust are obtained from OPAC 

(Hess et al., 1998) and can be found in Table 4.  Assuming dust is hydrophobic, the 

aerosol hygroscopic growth factor is one.  Optical depth values given in this study are 

normalized to 0.55 µm for consistency. 

 

3.  Brightness Temperature 
 

Calculating brightness temperature from spectral radiance requires the use of 

Planck's Law of Blackbody Radiation.  In standard form the equation is 

 

2 52

1
hc
kT

hc

e
Lλ

λ

λ−

−
=        (6) 
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where  

 L(λ, T) is the wavelength and surface temperature dependent radiance,  

 h = Planck's Constant (6.626068 E -34 J s), 

 k = Boltzman's Constant (1.38066 E -23 J deg-1), 

 c = the speed of light in a vacuum (2.997925 E 8 m s-1), and  

 T = surface temperature in Kelvin 

From Smith (2005), calculating brightness temperature can be accomplished by 

first inverting the Planck Function 

 

2 521
hc
kT hce

L
λ

λ

λ−

− =       (7) 

and taking the natural log for both sides 

 
2 5(2 )ln 1hc hc

kT Lλ

λ
λ

−⎡ ⎤
= +⎢ ⎥

⎣ ⎦
     (8) 

after isolating temperature, 

 2 5

1
(2 )ln 1

T = hc
k hc

Lλ

λ λ−

⎛ ⎞
⎜ ⎟

⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟⎡ ⎤⎝ ⎠ +⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

     (9) 

we can make the substitutions 

 2 5
1 2K hc λ−=  2

hcK
kλ

=      (10) 

and the formula for brightness temperature from radiance becomes: 

 
2

1ln 1

KT
K
Lλ

=
⎛ ⎞

+⎜ ⎟
⎝ ⎠

       (11) 
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Once the wavelength-dependent radiance values were calculated by MODTRAN, 

the data were imported into spreadsheet software which was used to accomplish the 

brightness temperature calculation and graphing for further analysis. 
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III. DATA 

A. NAVY AEROSOL ANALYSIS AND PREDICTION SYSTEM OUTPUT 
 

The NAAPS data sets included global grid fields for March through May 2001 

and 2002 as well as selected dates from 2002 through 2006.  The data included latitude, 

longitude, model level, mid layer pressure, layer thickness, mid-layer temperature, mass 

concentration for dust, mass concentration for smoke and mass concentration for sea salt. 

The data sets were defined for the dust events of study based on duration, aerial 

coverage, vertical extent, verifying satellite imagery, and location of the affected area of 

the dust event.  Two cases were chosen for the study, one in central North Korea from 

March 20-23, 2002 and one in Southern Iraq from May 13-15. 

The ASCII data files for each event covered the corresponding 6 hourly NOGAPS 

data set giving a total of four files per day.  Each file was formatted using IDL to 

calculate height AGL from thickness, re-orient arrays for use by other software, and 

subset the data to the specific area of interest.  The IDL output was given in unformatted 

binary code for ingest into three dimensional visualization and simulation software. 

 

B. VIS5D VISUALIZATION AND SIMULATION SOFTWARE 
 

Vis5D is a system for interactive visualization of large 5-D gridded or binary data 

sets such as those produced by numerical weather models (Vis5D, 

http://www.ssec.wisc.edu/~billh/vis5d.html , February 2007).  Once the data are ingested, 

they can be manipulated in x, y, and z directions to create varying perspectives, 

isosurfaces, vertical and horizontal cross sections, and volume renderings of any or all of 

four possible user-defined variables within a 3-D space rendering.  The data can be 

depicted over three dimensional topographical maps and rotated and animated in real 

time.  Vis5D is open source software available through University of Wisconsin to  
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anyone with a Unix/Linux capable computing platform.  Figure 6 represents dust mass 

concentration renderings within Vis5D for each case during the peak optical depth 

produced. 

 

  

  

 

  
Figure 6.   Vis5D Depiction of High AOD Dust Over The Middle East (top 4 panels) 

and East-Asia (bottom 4 panels) 

 

C. MODERATE RESOLUTION IMAGING SPECTRORADIOMETER 
(MODIS) 
 

The MODIS instrument suite consists of components aboard two satellites from 

the Earth Observing System called Aqua and Terra.  Both are sun-synchronous polar 



25 

orbiting satellites with near circular orbits at 98.2 degree inclination orbiting at 

approximately 705 km.  Terra is “morning” satellite with a descending node crossing the 

equator at 10:30 AM local and Aqua is the “afternoon” satellite with an ascending node 

crossing the equator at 1:30 PM local.  A ±55-degree scanning pattern achieves a 2,330 

Km swath offering the capability of total earth coverage every 24-48 hours (NASA 

Goddard Space Flight Center, 2007). 

The MODIS instrument is a scan mirror assembly which operates at 12 bit 

sensitivity in 36 spectral bands ranging from visible (0.405 µm) to thermal infrared 

(14.385 µm).  MODIS has a 6 year design life and Terra, launched in 1999, has already 

outlived its design.  

The MODIS data are provided in HDF format are delivered by file transfer 

protocol.  The software suite ENVI was used to view the files. 

 

D. MODTRAN OUTPUT 
 

MODTRAN output files are generated after the user input file has been run 

through the radiative transfer algorithm.  They are in ASCII format readable with any text 

file reading program.  The file repeats the user input followed by the spectral output data 

including path thermal emission, solar irradiance, path scattered radiance, ground 

reflected radiance, total radiance, and total transmittance.   
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IV.   METHODS AND PROCEDURES 

This chapter outlines the methods and procedures undertaken in the selection of 

areas of interest, calculation of extinction and optical depth for each time step, radiance, 

transmittance calculations, and brightness temperature calculations for both the actual 

cases and the idealized atmospheric and dust cases. 

  

A. ESTABLISHING AREAS OF INTEREST AND CASE STUDIES 
 

Satellite imagery and model output were used in order to determine the fixed 

points of interest.  MODIS imagery was used to identify times and areas of dust events 

and validate the mass concentration values given by NAAPS.  Vis5D was used to create 

three dimensional volume renderings, cross sections, and time series simulations for dust 

mass concentration, layer temperature, height above ground and layer thickness. 

 

1. Gobi Desert Dust Event 
 

Climatologically the majority of dust events over the Korean Peninsula occur in 

the spring between the months of March and May.  A visual inspection of MODIS RGB 

composite satellite imagery allowed dust detection for multiple dates during the Aerosol 

Characterization Experiment-Asia timeframe.  Longer duration events were favored in 

order to obtain multiple days of dust over the point of interest. 

After careful evaluation, the dust event over North Korea from March 20-25, 

2002 was selected due to consistently dusty imagery.  Figure 7 depicts the storm with (a) 

showing the dust storm inception on March 19, 2002 as the result of wind channeling 

through mountain passes due to a mid-latitude cyclone in northern Mongolia and (b) 

showing the advected dust or “Yellow Sand” over the Korean Peninsula and extending 

out to northern Japan under cloud cover on March 20, 2002.  This storm continued to 

blow significant dust over the Korean Peninsula through March 23, 2002.  The point at 

39.0° north latitude and 126.0° east longitude was chosen to represent North Korea.  
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(a) 

(b) 

Figure 7.   Gobi Dust Storm and Resultant Dust Plume Over The Korean Peninsula 

 

Some cloud masking is visible over the dust layers in North and South Korea and 

throughout Japan. Since this study uses modeled data, cloud masking is not a factor in 

determining aerosol optical depth or vertical dust distribution. 
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2.  Iraq Dust Event 
 

The method for finding a suitable dust event for the Iraq case study was similar to 

the method used for the Korean Peninsula case.  MODIS composite RGB satellite 

imagery from known dust events was analyzed to find a suitable case with sufficient 

spatial and temporal size.  The point 31.0° north and 47.0° east was chosen to represent 

Iraq. 

 
Figure 8.   Southern Iraq and Persian Gulf Dust Event 
 

The dust event in southern Iraq was the result of a summer Shamal which created 

a large dust plume which rotated around high pressure in western Iraq.  In addition, 

previous storm activity in the Nile River Valley increased ambient aerosolized dust over 

Iraq prior to this event. 

 
 



30 

B. EXTINCTION, OPTICAL DEPTH, RADIANCE, AND TRANSMITTANCE 

 

1. Extinction 
 

Extinction was calculated using the bulk method outlined in Chapter II section F.  

The mass concentration for each volume cell extending vertically over the points of 

interest was multiplied by the volume extinction coefficient to calculate the mass 

extinction per meter for the layer.  The layer extinction was multiplied by the thickness in 

meters of the layer to calculate the layer extinction.    

 
2. Optical Depth 
 

Because optical depth is the vertical integral of extinction, an approximation for 

optical depth was calculated by using the sum total of all 25 layer extinction values.  

High and low ranges were based on the largest modeled optical depth and the smallest 

modeled optical depth.  Optical depth values given in this study are normalized to 

0.55 µm for consistency. 

 

3. Radiance and Transmittance 
 

Radiance and transmittance were calculated based on the user inputs into 

MODTRAN.  After formatting the user-defined atmosphere including the pressure, 

temperature, height, and extinction for each layer at each 6 hour time step, the 

MODTRAN radiative transfer software output radiance and transmittance in text file 

format.  
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C. IDEALIZED CASES FOR THE IRAQI DESERT AND KOREAN 
PENINSULA 
 

After determining the vertical extinction for each time step of each case, the 

averages were calculated for the extinction and vertical atmospheric values to create a 

pseudo-standard dust atmosphere.  For temperature, pressure, and thickness, the average 

was used to create a standard for each case.  The heavy to light range for optical depth 

was used to create three aerosol optical depth bins according to the maximum and 

minimum dust aerosol optical depth observed in the case studies.  The vertical variation 

was determined by observing the extinction vs. height curves for each time step of the 

dust event.  The high to low range for the dust altitude was used to create three height 

bins according to the highest and lowest altitude of 50% of the maximum extinction. 

The average atmosphere was set as the static setting in MODTRAN while the 

aerosol extinction and height values were varied to create 10 separate extinction profiles 

for each case including; light-low, medium-low, heavy-low, light-mid, medium mid, 

heavy-mid, light-high, medium-high, heavy-high, and no dust.  The radiance and 

transmittance values were calculated for each profile through MODTRAN for both a day 

scenario and a night scenario.   

The MODTRAN radiance and transmittance were graphed for examination and 

further calculation.  The brightness temperature from each radiance value at each 

wavelength was also calculated in order to compare the effect of varying the height and 

mass optical depth on satellite received temperature values. 
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V.   RESULTS 

The results of this study are broken into two sections.  First, the case studies for 

North Korea and Iraq which determine the baseline values for dust in their respective 

regions.  Second, the idealized dust scenarios over fixed atmospheres representing each 

of the regions in the case studies are described. 

 

A.  CASE STUDIES 
 

1.  Korean Peninsula 
 

The Korean Peninsula case study is based on a dust event which began in the 

Gobi Desert on March 18, 2002.  The storm lasted through March 23, 2002.  The dust 

effects were modeled over North Korea at 39.0° north latitude and 126.0° east from 

March 20, 2002 through March 23, 2002. 

  

a.  Extinction Due to Dust 
 

For the first study, the results of the vertical extent of the dust were 

somewhat surprising.  The dust extended to a much greater altitude than expected.  On 

March 21st at 1800 UTC the greatest concentration of dust was observed at 4.5 km with 

the extinction value reaching 0.16 m-1.  The total optical depth for this time frame of 1.64 

was the greatest seen for this case.  The lightest optical depth of 0.14 occurred when there 

was no observable dust on March 23rd at 1200 UTC.  The first day/time step where dust 

was observed was on March 21st at 0000 UTC with an optical depth of 0.47. This was 

the lightest optical depth observed in conjunction with the dust event over North Korea.   
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Extinction vs. Height
Korean Peninsula, March 20-25, 2002
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Figure 9.   NAAPS Modeled Extinction vs. Height - Korea Case Study.  

 

Figure 9 depicts the extinction values for each of the 15 time steps of the 

study.  Note the vertical variability of the extinction peaks ranging from 1 to 5 km and the 

greater extinction values observed on March 21st at 1200 and 1800 UTC extending to 7 

km.  All time steps on March 20th along with March 23rd were considered non-event 

extinction values representing the normal background mass concentration for the area of 

interest. 

 

b.  Transmittance 
 

Transmittance values for this study ranged from zero in the water vapor 

and carbon-dioxide absorbing bands centered at 2.7 and 4.3 µm respectively to 0.92 at 

2.1  µm.  This is a function of molecular absorption, the dust optical depth, MODTRAN 

input parameters, and the internal MODTRAN transmittance algorithm.  In this case, the  

 

 



35 

MODTRAN input parameters for molecular models were based on mid-latitude winter 

gaseous constituents. The OPAC model generated optical properties were based on 50% 

relative humidity representing Korean atmospheric conditions in March. 

Total Transmittance
Korean Peninsula, March 20-24, 2002
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Figure 10.   Transmittance - Korean Peninsula Case Study  

 

The radiance values calculated for each day/time step and are shown in 

Fig. 11.  A “No Dust Day” value is also plotted with all MODTRAN aerosol extinction 

values set to zero.  The solar zenith angle plays a large part in the total reflected radiance 

and the difference between 0000 UTC and 0600 UTC can clearly be seen at wavelengths 

from 2 to 2.6 µm (shorter than the 2.7 µm water vapor absorption band).  
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Daytime Total Radiance
Korean Peninsula, March 20-24, 2002
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Figure 11.   Korean Peninsula Total Daytime Radiance  

 

The variation of the daytime radiance in the 3-5 µm band is relatively 

small.  The largest difference for 3 µm occurs between March 22nd at 0600Z and the No 

Dust case with a difference of 4.60 x 10-5 W m-2 sr-1 µm-1.  While the numbers are small, 

the smallest value is 9.3 % smaller than the greatest.  The radiance difference translates to 

a brightness temperature difference of 13.4 K.  At 4 µm, the smallest value seen on the 

22nd at 0600 UTC is 56.5% smaller than the greatest seen on the 23rd at 0000 UTC 

resulting in a brightness temperature difference of 4.6 K.  At 5 µm, the smallest produced 

value seen on the 23rd at 0000 UTC is 55% smaller than the greatest value seen on the 

20th at 0600 UTC resulting in a brightness temperature difference of 6.1 K. 
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Nighttime Total Radiance
Korean Peninsula, March 20-24, 2002
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Figure 12.   Korean Peninsula Total Nighttime Radiance 
 

For the radiance during the night time steps shown in Fig. 12, the solar 

component is completely absent and the only available radiance is due to the surface and 

path terms.  Of note here are the much larger modeled values on March 20th at 1800 

UTC.  This time step had the second warmest surface and average column temperature 

modeled.  Higher temperatures combined with optical depth of 0.17 allowed more 

terrestrial radiation to reach the sensor. 
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MWIR Day/Night Radiance Difference
Korean Peninsula, March 20-23, 2002
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Figure 13.   Average Day-Night Radiance Difference - North Korea Case 

 

Figure 13 shows the difference between the day and night radiance values 

in the North Korea case study.  The average solar contribution in the midwave bands was 

calculated as the difference between the daytime nighttime radiances.  The greatest 

day/night radiance difference occurred at 3.509 µm with the average daytime radiance 

representing an 86% increase over the average nighttime radiance values. 

It is important to consider that the difference in radiance values here are 

not simply the result of the variable height and mass concentration of the overlying dust.  

These cases are time steps within the NAAPS model run thus, not only is the dust mass 

concentration changing, but the atmosphere is changing as well.  Temperature, pressure 

and layer thickness profiles change with each successive modeled time step.  Therefore, 

we can not attribute the resultant radiance variance to dust alone. 
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2.  Iraqi Desert 
 

The Iraq desert case study is based on a dust event which began in the Tigris-

Euphrates Alluvial Plain on May 13, 2004.  The storm lasted through May 15, 2004.  The 

dust effects were modeled over Southern Iraq at 31.0° north and 47.0° east. 

 

a.  Extinction Due to Dust 
 

For the second study, the results of the vertical extent of the dust were not 

as surprising given the proximity to the source region and typical atmospheric heating in 

the summer months of Iraq.  On May 15th at 1200 UTC the greatest concentration of dust 

was observed at 3.5 km.  The total 0.55 µm optical depth of 1.45 was the greatest seen for 

this case.  The lightest optical depth of 0.43 occurred when there was no observable dust 

on May 13th at 0000 UTC.  The first time step where dust was advected over the area 

was on May 13th at 0600 UTC with a total optical depth of 0.81.  The extinction curves 

for this event were generally restricted to lower altitudes but were more concentrated than 

the Korean event.  This is due to the geographically closer proximity of the point selected 

to the source region. 
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Extinction vs. Height
Southern Iraq May 13-15, 2004
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Figure 14.   NAAPS Modeled Extinction vs. Height - Iraq Case Study.  

 

Figure 14 depicts the extinction values for each of the 12 day/time steps of 

this study.  Note the vertical variability of the extinction peaks ranging from 1 to 4 km 

with the greater extinction values observed on May 15th extending to 5 km.  All time 

steps on May 14th were considered non-event extinction values representing the normal 

background mass concentration for the area of interest. 

 

b.  Transmittance 
 

Transmittance values for this study ranged from zero in the water vapor 

and carbon-dioxide absorbing bands centered at 2.7 and 4.3 µm respectively to 0.83 at 

2.1 µm.  Again, this is a function of molecular absorption, the dust optical depth, 

MODTRAN input, and the internal MODTRAN transmittance algorithm.  In the Iraq 

case, the input parameters for molecular models were based on mid-latitude summer 

molecular and atmospheric constituents along with a 0% relative humidity OPAC model  
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and desert albedo.  The transmittance is less throughout the midwave spectrum in Iraq 

due to the greater background dust levels and subsequent greater optical depth in the 

region.  

Day Total Transmittance
Southern Iraq, May 13-15, 2004
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Figure 15.   Transmittance - Iraq Case Study  

 

The radiance values calculated for each day/time step and are shown in 

Fig. 16.  A “No Dust Day” value is also plotted with all MODTRAN user defined dust 

extinction values set to zero, leaving only molecular absorption.  The solar zenith angle 

plays a large part in the total reflected radiance and accounts for much of the difference 

between wavelengths from 2 to 2.6 µm (below the 2.7 µm water vapor absorption band). 

The daylight time steps for this region are 0600 UTC and 1200 UTC. 
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Daytime Radiance
 Southern Iraq, May 13-15, 2004
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Figure 16.   Iraq Total Daytime Radiance  

 

Like the North Korea case, the variation of the daytime radiance values in 

the 3 to 5 µm band again is relatively small.  The greatest difference for the 3 µm 

wavelength occurs between May 15th at 0600 UTC and the No Dust case with a 

difference of 3.50 x 10-5 W m-2 sr-1 µm-1.  While the values are small, the smallest value 

is 42% smaller than the greatest.  At 4 µm, the smallest value is 17% smaller than the 

greatest, and at 5 µm the smallest value is 27% smaller than the greatest value. 
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Nighttime Radiance
Southern Iraq, May 13-15, 2004
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Figure 17.   Iraq Total Nighttime Radiance 
 

For the night time steps shown in Fig. 17, the solar component is 

completely absent and the only available radiance is due to the surface and path terms.  

Here the larger modeled radiance values on May 18th at 1800 UTC result from the 

warmest average column temperature and a 1.45 optical depth.  The warm thermal 

characteristics for the column and heavy mass concentration allow the dust to absorb and 

emit more than the other days. 
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MWIR Day/Night Radiance Difference
Southern Iraq, May 13-15, 2004
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Figure 18.   Average Day-Night Radiance Difference - Iraq Case 

 

Figure 18 shows the difference between the day and night radiance values 

in the Iraq case study.  The average solar contribution in the midwave bands was 

calculated as the difference between the daytime nighttime radiances.  The greatest 

day/night radiance difference occurred at 3.49 µm with the average daytime radiance 

representing a 97% increase over the average nighttime radiance values.  This further 

exemplifies the complexities of the midwave infrared region resulting from diurnal 

variability of radiance. 

B.  FIXED ATMOSPHERE CASES 

 

1.  Korean Peninsula 
 

This case focused on the Korean Peninsula in central North Korea.  The dust 

cases are based on the average atmospheric and dust mass concentration values modeled 

from March 20th, 2002 at 0000 UTC through March 23rd, 2002 at 1200 UTC.   
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a.  Idealized Atmosphere 
 

The need to isolate the effect of dust on the measured radiance values 

brought about the need to develop standard atmospheric profiles for each of the areas of 

interest.  Once average profiles were developed, the extinction values could be modified 

to create idealized cases for light, moderate, and heavy mass concentrations as well as 

low, medium, and high dust altitude regions. 

Each of the atmospheric parameters for all time steps within the case study 

was averaged to generate an “average” atmosphere, all of which could be treated as static 

parameters within MODTRAN.  This allowed isolation of the dust vertical height and 

concentration as well as the time of day to derive radiance differences due solely to dust. 

Table 6 lists the static parameters used for the following calculations. 
 
Table 6.   Average Atmosphere - North Korea Idealized Case 

 

Level Layer dz (m) Temp (K) Pressure (mb) 
Height 
(km) 

1 33.44 278.38 944.75 0.017 
2 70.49 278.02 936.60 0.069 
3 109.00 277.00 924.09 0.158 
4 147.91 275.91 907.32 0.287 
5 227.31 275.67 882.11 0.475 
6 301.70 273.79 849.51 0.739 
7 372.24 271.73 810.66 1.076 
8 440.96 269.05 766.50 1.483 
9 508.23 266.19 718.07 1.957 

10 576.01 263.80 666.43 2.499 
11 640.22 259.90 612.60 3.107 
12 706.24 256.43 557.55 3.781 
13 768.71 252.39 502.39 4.518 
14 831.30 248.60 448.09 5.318 
15 887.61 244.63 395.78 6.178 
16 923.41 237.15 346.41 7.083 
17 944.74 230.21 301.02 8.017 
18 939.64 223.35 260.65 8.959 
19 988.48 217.70 223.13 9.923 
20 1054.63 214.43 188.54 10.945 
21 1152.12 214.11 156.79 12.048 
22 1273.92 214.36 127.89 13.261 
23 1412.82 213.63 101.92 14.605 
24 1588.20 213.05 78.90 16.105 
25 1833.99 213.60 58.71 17.816 
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b.  Extinction Curves 
 

The following extinction curves were created manually with the objective 

of placing the dust within specific vertical bins while achieving aerosol optical depths of 

light, moderate, and heavy corresponding to values of 0.5, 1.0, and 1.5, respectively.  The 

height bins were determined by using the highest and lowest values observed in the 

Korean Peninsula case study in section A, and range from 1.5 to 6 km. 
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Figure 19.   Idealized Dust Extinction and Height Curves - Korean Peninsula  

 

Figure 19 depicts the manually generated extinction curves for the Korean 

Peninsula idealized case.  A separate MODTRAN radiative transfer model run was 

accomplished for each curve for both a day and a night scenario.  In addition, a case 

involving no dust was also run to measure the impact of dust on radiance and subsequent 

brightness temperature calculations.  
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c.  Radiance 
 

The following radiance values were calculated based on the average 

atmosphere and a 280 K surface temperature.  Absorbing dust was assumed and multiple 

scattering with four streams was used for the MODTRAN calculations.  
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Figure 20.   North Korea Variable Dust Daytime Total Radiance Output 

 

The greatest total radiance produced for the midwave infrared in this case 

was the heavy dust at 6.0 km and was localized at the 3 µm end of the spectrum.  With 

the solar irradiance still having a significant impact at wavelengths shorter than 4 µm, the 

highest and most dense dust receives more incident solar radiation thereby reflecting 

more solar radiation back to the sensor.  The heavy dust continued to produce the greatest 

radiance through 4.185 µm where the carbon-dioxide absorption band reduced all values 

to near zero.  As the wavelength exceeded 4.5 µm, the “No Dust” case produced the 

greatest values allowing the most terrestrial emittance through the atmosphere, though the 

difference between the greatest and least radiance was extremely small (< 1 K).  Of note, 

the water vapor absorption band centered at 2.7 µm shows variability due to more water 
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vapor lower than the 6 km dust.  This allowed the heavy 6 km dust to continue to reflect 

some incident solar irradiance.  Heavy dust loading at higher altitudes resulted in greater 

radiance values at wavelengths shorter than 2.97 µm where heavy dust loading at 3.0 km 

resulted in greater radiance values than light dust loading at 6.0 km.  This is a result of 

the light 0.5 AOD dust at 6.0 km losing enough solar reflectance to the point where the 

heavy 1.5 AOD dust at 3.0 km made up the difference with greater thermal emission but 

reduced reflective properties. 
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Figure 21.   North Korea Variable Dust Nighttime Total Radiance Output 

 

The night radiance graph shown in Fig. 21, allows closer inspection of the 

thermal end of the spectrum.  This gives a better look at the impact of the thermal 

emissivity and associated dust impacts at longer wavelengths.  Since the solar radiances 

are no longer dominating, there is no perceptible measurable radiance at wavelengths 

shorter than 2.5 µm.  The radiance differences here are solely dependent on the 

absorptive/emissive properties of the dust and the thermal character of the surrounding 

atmosphere.   
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In this case, the greatest value within the 3-5 µm range was the “No Dust” 

case with heavy dust loading at 6 km representing the smallest value.  Since this was a 

springtime case, the elevated dust will emit at a cooler temperature due to the 250 K 

temperature at 6.0 km.  The greatest radiance is due to emission by the greater surface 

temperature transmitting through an atmosphere with no dust.  These are small 

differences relative to the daytime condition but become more significant when 

calculating brightness temperature. 

 

d.  Brightness Temperature 
 

Brightness temperature was calculated based on the inverted Planck 

Function.  All values in the figures below correspond directly to the radiance values in 

Figures 20 and 21. 
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Figure 22.   North Korea Variable Dust Daytime Brightness Temperature 
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Although the radiance values showed small differences between the “No 

Dust” and differing aerosol optical depths and heights, the brightness temperatures show 

much greater differences due to the nonlinear nature of the Planck Function.  The greatest 

difference within the midwave band for this case occurred at 3.0 µm where heavy dust 

loading at 6.0 km was 18.6 K warmer than the No Dust case - an 8% increase for heavy 

dust over the “No Dust” case.  This is indicative of solar irradiance reflection off of the 

dust layer and increased top of the atmosphere radiance.  The effect was similar with 

brightness temperature differences decreasing up to 4 µm where carbon-dioxide 

absorption reduced all values.  Beyond 4.7 µm there were only fractional differences in 

brightness temperature.  Table 7 shows the greatest differences for each 1/4 µm of the 

midwave infrared. 

 

Table 7.   Brightness Temperature Differences For Midwave Infrared Wavelengths 
During the Idealized Korean Day Scenario 

 

Wavelength Coldest Temp Tb Warmest Temp Tb Difference 
(µm)   (Kelvin)   (Kelvin) (Kelvin) 

6.006 Heavy-High 153.175 Moderate/Heavy-Low 153.294 0.119 
5.747 No Dust 154.315 Heavy-High 154.643 0.328 
5.510 Heavy-High 163.508 Light-High 163.805 0.297 
5.249 Heavy-High 168.194 Light-High 168.680 0.486 
5.013 Heavy-High 172.139 Light-High 172.699 0.560 
4.762 Heavy-High 173.789 Light-Low 174.900 1.111 
4.505 Heavy-Mid 170.177 Light-High 170.530 0.353 
4.246 Heavy-High 150.826 Moderate/Heavy-Low 165.523 14.697 
3.992 No Dust 191.709 Heavy-High 193.886 2.177 
3.745 No Dust 198.964 Heavy-High 202.720 3.756 
3.490 No Dust 207.838 Heavy-High 213.465 5.627 
3.252 No Dust 205.284 Heavy-High 221.147 15.863 
3.003 No Dust 221.151 Heavy-High 239.722 18.571 
2.755 No Dust 175.291 Heavy-High 210.560 35.269 
2.554 No Dust 196.771 Heavy-High 268.484 71.713 
2.497 No Dust 271.352 Heavy-High 281.823 10.471 
2.252 Heavy-High 321.272 Light-Low 323.629 2.357 
2.002 Heavy-Low 322.189 Heavy-High 331.350 9.161 

 

Toward shorter wavelengths of the midwave IR, brightness temperature 

fluctuations become larger due to increased reflected solar radiation.  These differences 
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decrease in the window wavelengths.  Water vapor and carbon-dioxide absorption have a 

significant impact at and just below 2 µm. The significant brightness temperature 

differences for the Korea Day case occur from 2.5 to 4 µm.  At 4.25 µm there is a carbon-

dioxide absorption band which impacts brightness temperature measurement by 

absorbing low level radiation.  When the dust becomes sufficiently elevated, the upper 

portions of the dust layer are high enough to radiate photons to the top of the atmosphere.  

The heavy dust loading at high altitudes and colder temperatures produces cooler 

brightness temperatures.  The lower dust layers become obscured by carbon-dioxide 

absorption. 

Average brightness temperature ranged from 172.7 to 233.2 K with the 

largest standard deviation of 14.1 at 2.55 µm outside the midwave spectrum and 7.60 K at 

3.2 µm within the midwave spectrum.  The variance is reduced to less than 1 K at 

3.70 µm and remains less than 1 K through the rest of the midwave, with the exception of 

the 4.24 to 4.27 µm band where there is a 6 to 6.5 K variance due to carbon dioxide 

absorption. 
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Figure 23.   North Korea Variable Dust Daytime Average Brightness Temperature 
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For an atmosphere with no dust, the wavelength where the MODTRAN 

defined surface temperature of 280 K was most closely observed was roughly 2.478 µm.  

The average temperature of all cases at this wavelength was 281.80 K and the variance 

was 1.7 K.  Significant variances within the 2.7 µm water vapor absorption band were 

observed with values greater than 5 K in the range of 2.5 to 3.1 µm.  In this range, the 

greatest brightness temperature was consistently the heavy dust loading at 6.0 km and the 

smallest were the “No Dust” case and light dust loading at 1.5 km.  This is a result of less 

intervening water vapor between the elevated dust and the top of the atmosphere, thus 

allowing solar reflected radiation through to the dust and back to the sensor. 
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Figure 24.   North Korea Variable Dust Nighttime Brightness Temperature 

 

Nighttime brightness temperatures exhibited far less variability but more 

consistent differences across the midwave spectrum.  The spectral brightness temperature 

graph in Fig. 24 shows the variability and Table 8 shows fairly consistent temperature 

variability from 0.9 K at 5.013 µm to 1.9 K at 3.49 µm.  Again, the carbon-dioxide  
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absorption band brings a large 14 to 15 K difference from 4.24 to 4.27 µm.  The “No 

Dust” case showed the warmest temperature throughout (excluding the carbon dioxide 

absorption band) and the heavy dust loading at 6.0 km was consistently the coldest.   

At virtually all midwave wavelengths (except the carbon dioxide 

absorption band), brightness temperature ranged from warmest to coldest in order of dust 

height and loading as follows:  

No Dust 
Light Dust  1.5 km 
Moderate Dust  1.5 km 
Heavy Dust  1.5 km 
Light Dust  3.0 km 
Moderate Dust  3.0 km 
Light Dust  6.0 km 
Heavy Dust  3.0 km 
Moderate Dust  6.0 km  
Heavy Dust  6.0 km 

 
Table 8.   Brightness Temperature Differences for Midwave Infrared Wavelengths 

During the Idealized Korean Night Scenario 

 

Wavelength Coldest Temp Tb Warmest Temp Tb Difference 
(µm)   (Kelvin)   (Kelvin) (Kelvin) 

6.006 Heavy-High 153.095 
Light/Mod/Heavy - 
Low/Mid 153.135 0.040 

5.747 No Dust 154.315 
Mod/Heavy Low, Mod-
High 154.480 0.165 

5.510 Heavy-High 163.125 Mod/Heavy-Low 163.732 0.607 
5.249 Heavy-High 167.645 Light-Low, No Dust 168.480 0.835 
5.013 Heavy-High 171.193 Light-Low 172.139 0.946 
4.762 Heavy-High 172.142 Light-Low 173.642 1.500 
4.505 Heavy-High 168.602 No Dust 170.077 1.475 

4.274* Heavy-High 149.409 Light-Low 164.847 15.438 
4.246 Heavy-High 150.826 Mod/Heavy-Low 165.523 14.697 
3.992 Heavy-High 182.578 No Dust 184.310 1.732 
3.745 Heavy-High 185.623 No Dust 187.446 1.823 
3.490 Heavy-High 188.540 No Dust 190.450 1.910 
3.252 Heavy-High 189.274 No Dust 190.903 1.629 
3.003 Heavy-High 194.406 No Dust 196.255 1.849 
2.755 No Dust 172.766 Mod/Heavy-Low 172.847 0.081 
2.497 Heavy-High 199.556 Light-Low 200.694 1.138 
2.252 Heavy-High 200.704 Heavy-Low 202.203 1.499 
2.002 Heavy-High 204.007 No Dust 205.781 1.774 
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Table 8 provides a tabular snapshot at roughly 1/4 µm increments 

brightness temperature differences.  There were very consistent values within the 

midwave IR region.  Heavy dust loading at high altitudes was consistently the coldest 

temperature due to the cool temperatures of the emitting layer.  
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Figure 25.   North Korea Variable Dust Nighttime Average Brightness Temperature 

 

The night average radiance values exhibited much less spectral variability 

and much less variance between cases.  Since there is no reflected solar radiation, and the 

wavelength is too short to exhibit significant emissive properties, the large variance 

values seen in the water vapor absorption band during the daytime cases are eliminated.  

All water vapor absorption band cases had less than 0.5 K variance between 2.5 and 

3 µm.   
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2.  Iraq Desert 
 

This case focused on the desert of Iraq toward the Tigris-Euphrates River Valley.  

The dust cases are based on the average atmospheric and dust mass concentration values 

modeled from May 13, 2004 at 0000 UTC through May 15, 2004 at 1800 UTC. 

 

a.  Idealized Atmosphere 
 

As with the Korean Peninsula case, a pseudo-standard atmospheric profile 

was used for this area of interest, average profiles were developed, and the extinction 

values were modified to create idealized cases for light, moderate, and heavy mass 

concentrations as well as low, medium, and high dust altitude regions. 
 
Table 9.   Average Atmosphere - Iraq Desert Idealized Case 

 

Level Layer dz (m) Temp (K) Pressure (mb) Height (km) 
1 36.14 300.88 976.17 0.018 
2 76.98 303.58 967.75 0.075 
3 119.34 303.27 954.83 0.173 
4 162.16 302.47 937.50 0.314 
5 248.12 300.90 911.45 0.519 
6 328.98 298.54 877.76 0.807 
7 404.87 295.54 837.62 1.174 
8 478.12 291.71 791.99 1.616 
9 548.86 287.46 741.95 2.129 
10 618.27 283.14 688.59 2.713 
11 684.82 277.99 632.97 3.364 
12 751.40 272.81 576.08 4.082 
13 812.57 266.77 519.09 4.864 
14 872.57 260.92 462.98 5.707 
15 923.38 254.47 408.93 6.605 
16 962.55 247.18 357.91 7.548 
17 983.57 239.64 311.01 8.521 
18 977.69 232.36 269.30 9.502 
19 1022.96 225.27 230.52 10.502 
20 1090.08 221.61 194.78 11.558 
21 1182.64 219.74 161.98 12.695 
22 1283.08 215.85 132.11 13.928 
23 1381.83 208.88 105.28 15.260 
24 1519.48 203.76 81.49 16.711 
25 1751.21 203.86 60.63 18.346 
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Table 9 identifies the static atmospheric profile for the Iraq Desert case 

using the average NAAPS output for each variable.  The column temperature was 

significantly warmer, which one would expect given the geographic region and the later 

spring date. 

 

b.  Extinction Curves 
 

The following extinction curves were created manually with the objective 

of placing the dust within specific vertical bins while achieving aerosol optical depths of 

light, moderate, and heavy corresponding to values of 0.5, 1.0, and 1.5 respectively.  The 

height bins were determined by using the highest and lowest values observed in the Iraq 

Desert case study in section A and altitudes range from 1.5 to 5 km. 
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Figure 26.   Idealized Dust Extinction and Height Curves - Iraq Desert  
 

Figure 26 depicts the manually generated extinction curves for the Iraq 

Desert idealized case.  Like the Korean Peninsula case, a separate MODTRAN radiative 
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transfer model run was accomplished for each curve for both a day and a night scenario.  

In addition, a case involving no dust was also run to measure the impact of dust on 

radiance and subsequent brightness temperature calculations.  

 

c.  Radiance 
 

The following radiance values were calculated based on the average 

atmosphere and a 300 K surface temperature.  Absorbing dust was assumed and multiple 

scattering with four streams was used.  
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Figure 27.   Southern Iraq Variable Dust Daytime Total Radiance Output 

 
In Fig. 27 the radiance values again showed small differences between the 

“No Dust” and differing aerosol optical depth and heights.  These radiance values 

translate to greater brightness temperature values through conversion in the Planck 

Function.  For wavelengths shorter than 3.3 µm, the warmest temperature was 

represented by the heavy dust loading at 5.0 km due to the increase in solar reflectance by 

the heavy-elevated dust.  This occurs at a much shorter wavelength than the Korean 

Peninsula case due to the warmer surface/low level temperatures and less albedo 
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difference between the desert surface and the elevated dust.  The “No Dust” case was 

consistently warmer in the spectral bands longer than 3.3 µm.  At wavelengths longer 

than the 4.2 µm carbon dioxide band, radiance differences became very small due to less 

impact of dust sized particles on longer wavelength radiation.   
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Figure 28.   Southern Iraq Variable Dust Nighttime Total Radiance Output 

 

The night radiance graph shown in Fig. 28, allows us to scale closer to see 

the thermal end of the spectrum giving a better look at the impact of the thermal 

emissivity and associated dust impacts.  Since the solar radiances are no longer 

dominating, there is no perceptible measurable radiance at wavelengths shorter than 

2.5 µm.  The radiance differences here are solely dependent on the absorptive properties 

of the dust and the thermal character of the atmosphere in which they occupy.   

In this case, the greatest value within the 3 to 5 µm range was the heavy 

dust loading at 1.5 km.  This was puzzling until the temperature profile used was closely 

examined.  In this case, the low level temperatures are warmer than the surface 

temperature and therefore the dust at the lower levels will emit at warmer temperatures 
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than the surface and the elevated dust.  For that reason, all dust layers produced greater 

radiance values than the “No Dust” case between 3 and 4.25 µm.  At wavelengths longer 

than 4.25 µm, the “No Dust” case returned the greatest radiance values.    

   

d.  Brightness Temperature 
 

Brightness temperature was calculated based on the inverted Planck 

Function.  All values correspond directly to the radiance values in Figures 27 and 28. 
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Figure 29.   Southern Iraq Variable Dust Daytime Brightness Temperature 

 

Although the radiance values showed small differences between the “No 

Dust” and differing aerosol optical depth and heights, the brightness temperatures show 

much larger differences due to the Planck Function.  The greatest difference within the 

midwave band for this case occurred at 3.0 µm where heavy dust loading at 6.0 km was 

12.4 K warmer than the No Dust case.  That is a 5.3% increase for heavy dust over the 

“No Dust” case.  This is an important area in the midwave due to its proximity to the 



60 

water vapor absorption band in the 2 to 3 µm region.  Atmospheric water vapor still has 

some effects at 3 µm and lower dust will have more water vapor above it to absorb solar 

radiation thus reducing the solar irradiance incident on the dust and thereby reducing the 

reflectance to the sensor. Additionally, the elevated dust at a wavelength of 3 µm 

continued to have the highest brightness temperature up to 3.5 µm where the solar and 

terrestrial dominance switched causing the warmest brightness temperature beyond 

3.5 µm to come from the “No Dust” case.  More terrestrial radiation and greater near-

surface temperatures made the low dust or the “No Dust” cases produce warmer 

brightness temperatures through the 5 µm band.  At 4.25 µm, the carbon-dioxide 

absorption band reduced all temperatures, but the 5.0 km dust layer produced coldest 

values due to its elevated level above enough of the carbon dioxide to radiate at colder 

temperatures.  Beyond 4.7 µm there were only fractional differences in brightness 

temperature.  Table 10 shows the greatest differences for each 1/4 µm increment of the 

midwave infrared. 

 
Table 10.   Brightness Temperature Differences For Midwave Infrared Wavelengths 

During the Idealized Iraq Day Scenario 
 

Wavelength Coldest Temp Tb Warmest Temp Tb Difference
(µm)   (Kelvin)   (Kelvin) (Kelvin) 

6.006 Heavy-High 153.175 Mod/Heavy-Low 153.254 0.079 
5.747 Heavy-High 153.370 Mod/Heavy-Low 154.589 0.219 
5.51 Heavy-High 165.979 Mod/Heavy-Low 166.281 0.302 

5.249 Heavy-High 172.133 Light-High 172.457 0.323 
5.013 Heavy-High 177.610 Light-High 178.029 0.419 
4.762 Heavy-High 180.604 Light/Heavy-Low 181.624 1.020 
4.505 Heavy-High 176.253 No Dust 177.208 0.956 

4.246 Heavy-High 152.527 
Light/Mod/Heavy-
Low & No Dust 165.523 12.996 

3.992 Heavy-High 203.357 Light-Low 205.296 1.939 
3.745 Heavy-High 212.160 No Dust 214.796 2.636 
3.49 Heavy-High 224.316 No Dust 227.031 2.715 

3.252 No Dust 214.297 Heavy-High 220.591 6.294 
3.003 No Dust 222.874 Heavy-High 235.231 12.357 
2.755 No Dust 176.558 Mod/Heavy-Low 198.075 21.518 
2.516 No Dust 206.219 Heavy-High 267.456 61.237 
2.497 No Dust 243.117 Heavy-High 275.843 32.726 
2.252 Light-Low 327.971 Heavy-High 330.815 2.844 
2.002 Heavy-Low 323.377 Heavy-High 329.154 5.776 
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Figure 30.   Southern Iraq Variable Dust Daytime Average Brightness Temperature 

 

The average brightness temperature and one standard deviation for the 

daytime Iraq scenario are plotted in Fig. 30.  The greatest variance in the midwave 

occurred at the shortest wavelengths with a standard deviation of 4.9 K at 3.04 µm.  Other 

notable variances were observed at 3.2 µm with a variance of 5.4 K and at 4.2 µm in the 

carbon-dioxide absorption band with a variance of 5.2 K. 
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Figure 31.   Southern Iraq Variable Dust Nighttime Brightness Temperature 

 

Nighttime brightness temperatures exhibited less variability and more 

consistent differences across the midwave spectrum.  The low-level thermal inversion 

made the 1.5km dust warmer than all other cases.  The greatest variability within the 

midwave infrared spectrum for this case (excluding the carbon-dioxide band) occurred at 

3.96 µm where the heavy dust loading at 1.5 km was 6.7 K warmer than the “No Dust” 

condition, as a result of the low-level thermal inversion.  The spectral graph in Fig. 31 

shows the variability between the dust cases and the “No Dust” case and Table 11 shows 

fairly consistent temperature variability above 4.5 µm with differences below 1.3 K.  At 

wavelengths shorter than 4 µm the differences ranged from 1.2 K at 3 µm to 6.7 at  

3.96  µm.   

This case underscored the importance of the low-level temperature profile.  

The data indicate that heavy dust loading in the low levels can make interpreting the 

surface temperature quite difficult in the presence of a temperature inversion. 

 

  



63 

Table 11.   Brightness Temperature Differences For Midwave Infrared Wavelengths 
During the Idealized Iraq Night Scenario 

 

Wavelength Coldest Temp Tb Warmest Temp Tb Difference 
(µm)   (Kelvin)   Kelvin) (Kelvin) 

6.006 Heavy-High 153.175 Mod/Heavy-Low 153.254 0.079 
5.747 Heavy-High 154.370 Mod/Heavy-Low 154.589 0.219 
5.51 Heavy-High 165.887 Light-Low 166.251 0.364 

5.249 Heavy-High 171.923 Light-Low 172.428 0.504 
5.013 Heavy-High 177.239 Light-High 177.851 0.612 
4.762 Heavy-High 179.081 Heavy-Low 180.06 0.979 
4.505 Heavy-High 175.365 No Dust 176.584 1.219 
4.246 Heavy-High 152.527 Light-Low 165.523 12.996 
3.992 No Dust 176.049 Heavy-Low 182.249 6.200 
3.745 No Dust 186.937 Heavy-Low 189.628 2.690 
3.49 No Dust 188.999 Heavy-Low 192.094 3.095 

3.252 Heavy-Mid 198.093 Light-Low 198.711 0.617 
3.003 No Dust 201.680 Light-High 202.801 1.122 
2.755 No Dust 174.305 Mod/Heavy-Low 174.415 0.111 
2.497 Light-High 209.313 Heavy-High 210.212 0.899 
2.252 No Dust 199.169 Heavy-Low 207.299 8.130 
2.002 Heavy-High 216.635 Light-Low 218.309 1.674 

 

The values in Table 11 represent each 1/4 µm increment maximum 

brightness temperature difference from all cases in the Iraq nighttime scenario.  Due to 

the low-level thermal inversion and the warmer low-level temperatures, the warmest 

temperatures were for the dust rather than the “No Dust” case.  The results indicate that a 

nocturnal inversion will make the emission from dust layers greater at midwave infrared 

wavelengths.  With the exception of the carbon dioxide absorption band, where the low-

level dust is not able to emit to the top of the atmosphere, the 1.5 km dust was 

consistently warmer. 
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Figure 32.   Southern Iraq Variable Dust Nighttime Average Brightness Temperature 

 

The average brightness temperature, and plus/minus one standard 

deviation for the nighttime Iraq scenario are plotted in Fig. 32.  The greatest variance in 

the midwave occurred from 3.8 to 4.0 µm with a standard deviation of 1 to 1.5 K and in 

the carbon dioxide absorption band with a variance of 3.0 to 5.2 K.  The variance beyond 

4.3 µm was below 0.4 K. 
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VI.   CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 
 

The objective of this study was to determine the vertical variation of dust during 

dust events over operationally significant regions and the subsequent impact that 

variation has on the top of the atmosphere radiance and brightness temperature in the 

midwave infrared spectrum.   

The NAAPS global aerosol model dust mass concentration was used to determine 

how dust varies vertically during a given dust event through vertical extinction.  The 

NAAPS dust data along with the corresponding atmospheric data of two dust events were 

used in conjunction with the MODTRAN radiative transfer software to generate the 

impact of varying the height and aerosol optical depth on top of the atmosphere radiance 

and brightness temperature producing the following results. 

 

1. Vertical Variation of Dust 
 

The extinction curves indicate that the heavy mass concentration dust modeled 

from the Gobi Desert over the Korean Peninsula varied from 1 to 6 km using the 25 layer 

NAAPS model.  Above 6 km the mass concentration and extinction values dropped 

exponentially with height with extinction values of less than 0.05 m-1 above 6 km.  It is 

important to note the NAAPS model layers correspond to the NOGAPS sigma coordinate 

system, thus vertical resolution decreases with height. 

The extinction curves in the Iraq desert case indicate that the heavy mass 

concentration dust modeled from the Tigris-Euphrates Alluvial Plain over southern Iraq 

varied from 1 to 5 km using the 25 layer NAAPS model.  Again, above 5 km the mass 

concentration and extinction values dropped exponentially with height with extinction 

values of less than 0.05 m-1 above 5.25 km. 
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Factors most impacting the vertical variability of dust include the proximity of the 

measured dust to the source region, atmospheric dynamics including stability and vertical 

motion, and the composition of the dust including mass, number and size distribution.   

Discussions with the NAAPS modeling group from the Naval Research 

Laboratory, Marine Meteorology Division, Monterey, CA, indicate there could be 

significant differences between using the OPAC based NAAPS model and other dust 

models due to differing size and number distribution characteristics as well as differing 

optical properties and meteorological forcing parameters.  Results of a study undertaken 

by John McMillen in 2007 showed the differences between various dust optical property 

models to be significant, particularly between the default MODTRAN models and 

external models. 

 

2. Impact of Vertically Varying Dust in Midwave Infrared Radiance and 
Brightness Temperature 

 

Varying dust height while keeping temperature, pressure, and thickness static 

changed the modeled radiance and subsequent brightness temperature at the top of the 

atmosphere.  The aerosol optical depth and vertical height of the dust made dust more or 

less reflective in the solar irradiance influenced band between 3 and 4.25 µm which 

varied the brightness temperature greatly during daytime hours.  Beyond the carbon-

dioxide band at 4.25 µm, solar impacts were far less and the temperature of the dust layer 

and the surface temperature were dominant.   

The greatest brightness temperature variability due to dust height and loading 

ranged from 2.1 to 18.6 K in Korea daytime case, 0.9 to 1.9 K in Korea nighttime case, 

0.5 to 12.4 K in Iraq daytime case, and 0.6 to 6.2 K in Iraq nighttime case.  Radiance and 

brightness temperature differences became relatively small (< 1.5 K) beyond the 4.2 µm 

carbon-dioxide absorption band. 
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Measuring carbon dioxide absorption at 4.2 µm is not recommended during dust 

events as results will vary greatly with the height and mass concentration of the dust.  In 

every case, the elevated dust produced a colder temperature than all other dust and non-

dust events in the 4.25 µm band.  The dust layers at 1.5 and 3.0 km were low enough to 

be within or below the highest/most elevated carbon-dioxide weighting function.  

Significant differences from 13.0 to 15.4 K occurred within the carbon-dioxide 

absorbing band at 4.25 µm during both day and nigh scenarios.  Differences from 61.2 to 

71.7 K occurred within the water vapor absorbing band at 2.55 µm during the daytime 

scenario.  These differences were the result of varying the height of dust above the 

weighting functions of the respective gases creating colder emission in the case of the 

elevated dust in the carbon-dioxide absorbing band and greater reflectance in the water 

vapor absorption band.  

 

B. RECOMMENDATIONS 
 

As a result of this study, the following recommendations are suggested: 

 

• Repeat the study for differing optical properties of dust and differing low-
level temperature profiles.  Use of the NPS aerosol models, MODTRAN 
internal models, and the US Army dust optical models will help determine 
the inter-model variability in radiance and brightness temperature.  Vary 
the atmospheric conditions to represent realistic seasonal and regime-
specific vertical profiles of pressure, temperature, and thickness for the 
given areas of interest.  Combining the best model with the best 
atmospheric representation will result in a better estimation of the impact 
of dust. 

• Undertake a measured and modeled climatological study of the vertical 
variation of dust in the known source regions and downstream dust 
impacted regions incorporating LIDAR technology with various dust 
models.  Exploit recent on-orbit LIDAR data availability from satellites 
such as CALIPSO and CloudSat.  Compare these data with modeled 
NAAPS data to assess the accuracy of dust modeling.  Using information 
on backscatter polarization will provide information about particle shape 
which will further improve the ability to model the dust. 
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• Use higher spatial and temporal resolution meteorological and dust models 
to study short lived, smaller events from concentrated point sources and 
better resolve the vertical height of dust in all regions.  Inner nests of 
COAMPS and WRF/MM5 will provide resolution to capture events 
lasting less than 6 hours.  Use of these high resolution models will provide 
much better vertical resolution to further quantify the vertical variation of 
dust as well as better horizontal resolution to better resolve the small dust 
events resulting from point sources. 

• Verify the MODTRAN output in the midwave infrared spectrum using 
commercial and DOD satellite measurements.  This can be accomplished 
by comparing brightness temperature output from MODTRAN to satellite 
measurements from MODIS, SeaWiFS, and AVHRR.  Further research 
will allow gaseous constituents to be more accurately represented in 
MODTRAN resulting in a better representation of the background 
atmosphere. 

• Create an automated process by which NAAPS or similar 3-D modeled 
dust data can be ingested into a radiative transfer algorithm such as 
MODTRAN to produce user-defined spectrally and geographically 
specific radiance/brightness temperature variability data in graphical form. 
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