Homeland Security:
Requirements for Installation
Security Decision Support Systems

MAJ Gregg Powell, COL Charles Dunn III
POC: MAJ Gregg Powell
Battle Command Battle Lab (Gordon)
Bldg 71600, 16th Street
Fort Gordon, GA 30905
(706) 791-7550
FAX (706) 791-3799
gregg.powell@us.army.mil
21 March 2004

Report Documentation Page

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>JUN 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. REPORT TYPE</td>
<td></td>
</tr>
<tr>
<td>3. DATES COVERED</td>
<td>00-00-2004 to 00-00-2004</td>
</tr>
<tr>
<td>5a. CONTRACT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5b. GRANT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5c. PROGRAM ELEMENT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5d. PROJECT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5e. TASK NUMBER</td>
<td></td>
</tr>
<tr>
<td>5f. WORK UNIT NUMBER</td>
<td></td>
</tr>
<tr>
<td>6. AUTHOR(S)</td>
<td></td>
</tr>
<tr>
<td>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</td>
<td>Battle Command Battle Lab (Gordon), Bldg. 71600, 16th Street, Fort Gordon, GA, 30905</td>
</tr>
<tr>
<td>8. PERFORMING ORGANIZATION REPORT NUMBER</td>
<td></td>
</tr>
<tr>
<td>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</td>
<td></td>
</tr>
<tr>
<td>10. SPONSOR/MONITOR’S ACRONYM(S)</td>
<td></td>
</tr>
<tr>
<td>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</td>
<td></td>
</tr>
<tr>
<td>12. DISTRIBUTION/AVAILABILITY STATEMENT</td>
<td>Approved for public release; distribution unlimited</td>
</tr>
<tr>
<td>13. SUPPLEMENTARY NOTES</td>
<td>The original document contains color images.</td>
</tr>
<tr>
<td>14. ABSTRACT</td>
<td></td>
</tr>
<tr>
<td>15. SUBJECT TERMS</td>
<td></td>
</tr>
<tr>
<td>16. SECURITY CLASSIFICATION OF:</td>
<td></td>
</tr>
<tr>
<td>a. REPORT</td>
<td>unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>unclassified</td>
</tr>
<tr>
<td>17. LIMITATION OF ABSTRACT</td>
<td></td>
</tr>
<tr>
<td>18. NUMBER OF PAGES</td>
<td>43</td>
</tr>
<tr>
<td>19a. NAME OF RESPONSIBLE PERSON</td>
<td></td>
</tr>
</tbody>
</table>

Approved for public release; distribution unlimited

The original document contains color images.

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Abstract

The terrorist attacks that occurred on September 11, 2001 caught the nation off guard and made it apparent that existing homeland security capabilities were inadequate. There was also a realization that federal, state, and local government agencies require an installation security system that serves as an interagency communication and decision support tool. This tool would present one Common Operational Picture (COP), and provide common situational awareness in real time. Such a system must enhance the government’s ability to effectively combat terrorism and respond to large-scale emergencies and disasters in a coordinated fashion. Installation security is both a force protection and public safety assurance measure that must detect and identify threats, deter attacks, secure key facilities, and protect personnel to ensure national security and mission readiness. There are currently a number of endeavors being undertaken in parallel efforts to field such a system. None of these endeavors, however, are being coordinated to ensure compatibility or to prevent duplicative effort.

This paper will define the requirements for an installation security system, compare the capabilities of the different systems that are currently being proposed, discuss the status of acquiring and fielding these systems, and provide a recommendation about which system best meets the necessary requirements.
Purpose

The purpose of this paper is (1) to show the necessity for a common, interoperable set of installation security systems and standards that fit within the framework of the national Homeland security and Homeland defense requirements; (2) to define what the installation security requirements are; (3) to discuss the progress the government has made in addressing these requirements; and (4) to make recommendations on how these requirements may be better fulfilled in the future.

The United States Government has a non-negotiable contract with the American people to pursue every foreseeable threat and take every possible action in its effort to prevent terrorism. This responsibility also extends to ensuring that there exists the means to respond effectively in the event that a terrorist attack occurs. Unfortunately, no guarantee can be made that every act of terrorism will be prevented. What must be guaranteed, however, is that every possible step is taken in the war against this threat. The business of preventing and responding to terrorist attacks when they occur requires considerable coordination, information sharing, and cooperation among the many federal, state, and local government organizations and agencies, to include the United States Army, other DoD services, the Federal Emergency Management Agency (FEMA), non-government humanitarian organizations, and various intelligence and law enforcement agencies.
What triggered the realization that this requirement exists?

Prior to the terrorist attack on September 11, 2001, Homeland security was essentially taken for granted. The relative geographic isolation of the United States afforded by the North American continent provided a level of security that seemed adequate. The Cold War had ended a decade earlier, and aside from the unlikely menace of nuclear war, no real threat to the nation was perceived. The thought of a catastrophic terrorist attack seemed unlikely and even unimaginable to all except the most pessimistic intelligence analysts. Even as terrorist attacks against American interests began to escalate through the 1980s and 90s, no one foresaw the events that were about to take place. Not even the terrorist bombing in the basement of the World Trade Center in February 1993 caused the American government to face its vulnerability to terrorist attack.

The American public was forced to deal with this reality on September 11, 2001. The terrorist attacks on the World Trade Center towers and the Pentagon were no less infamous than the Japanese attack on Pearl Harbor sixty years before. Aside from the surprise nature and magnitude of these catastrophic attacks, few similarities exist. The 1941 attack on Pearl Harbor was conducted by a sovereign power that was easily identified and branded as the enemy. In comparison, the terrorist strikes against New York City and the Pentagon, and the failed attack against a target in Washington D.C. were conducted by members of an international Islamic terrorist organization. The perpetrators were operating freely in the United States during the preparation and training phase of their attack. Failure to detect the presence of the terrorist cells was partly assured by the laws that prevented law enforcement and intelligence agencies from
sharing information, even on matters involving terrorism. No system was in place to enable the sharing of information among the government agencies that had the responsibility for protecting the American people.

Additionally, the nature of the current war on terrorism being conducted is different than the nature of the Second World War against Japan. Given that the September 11, 2001 attack was carried out by a non-state entity that is much more difficult to isolate and identify as the enemy, or to locate for retaliation and destruction, the prosecution of this war requires a completely different strategy. Years of liberal entry and immigration policies have allowed terrorists to easily infiltrate and establish themselves within the nation. Intelligence analysts warn that future terrorist attacks on the scale of those that occurred against the Pentagon and the World Trade Center are inevitable. There exists a clear and present danger of future terrorist attack, and the necessity for heightened vigilance remains paramount.

Given this scenario, every effort must be made now to provide all government agencies that safeguard the American people with the capabilities that they need to effectively combat terrorism. For this reason, the Department of Homeland Security (DHS) was created, resulting in the largest restructuring of the federal government in history. The DHS has taken significant steps to ensure that the people and assets of the United States are protected, however, a significant vulnerability still remains that requires immediate attention: there are no common standards or systems in place that will provide the capabilities necessary to perform installation security effectively.
Installation Security Requirements Defined

At the national level, conducting the missions of Homeland security and Homeland defense are daunting tasks. One fundamental piece of the Homeland security puzzle that this paper will address involves installation security. Installation security ensures, among other things, that government agencies, their assets, personnel, and property are protected against any threat to include terrorism. Installation security applies to agencies at the federal, state, and local level. There are a number of capabilities that are vital to an effective installation security plan. The foremost requirement is that an automated installation security system, commonly referred to as a Decision Support System (DSS), provides the following capabilities:

(1) **Instantaneous inter- and intra-agency communication.** Two essential requirements for any installation security system involve compatibility and accessibility. The ability for different federal, state, and local government agencies to share relevant information across compatible systems in real-time is absolutely critical for installation security operations, whether at the national level when the security of the country is concerned, or at a regional level where individual installations and their surrounding areas are concerned. Additionally, any DSS employed for the purposes of installation security must be accessible to all agencies that have a need to coordinate efforts. The requirements for compatibility and accessibility were validated during the Federal Emergency Management Agency (FEMA) Region IV’s Consequence Management Exercises conducted at Fort Gordon in 2002 and 2003. During both exercises, the requirement was validated for the Fort Gordon Installation Operation Center (IOC) to share information with a number of other organizations and agencies to include the Fort
Given the immense amount of information that must be shared, processed, and analyzed, simply maintaining open lines of communication over the telephone network is wholly inadequate. Each organization requires access to a common DSS that queries parallel and distributed information sources. Using these information sources, the DSS then provides a Common Operational Picture (COP) that is updated in real-time.

Typically, each organization operates on its own network; each has its own separate requirements for network security, and each has separate budgets for purchasing computer systems and networking equipment. Having an installation security DSS that is flexible enough so that every required organization or agency is able to gain access to relevant information, was viewed to be a paramount requirement for any Homeland security operation to be successful. Metcalf’s Law states that as the number of nodes on a network grows, the corresponding value to the user of the networked system grows exponentially. His theory holds true in this case. Flexibility is gained by employing a system that is web-based (as opposed to application-based) and that uses a federated, distributed, peer-to-peer model. Agencies that have the resources to purchase and maintain their own DSS can do so. Other pertinent and authorized organizations, which

1 The Fort Gordon Eisenhower Army Medical Center and Fort Gordon are both Army organizations; however, each falls under a different and unrelated command structure.
do not have the money or resources to maintain a DSS, may gain access to all of the relevant information maintained by a given system through a web browser that is used to access a DSS server. All that is needed to allow the client to access the DSS server is an account on the server and prior coordination through the network administrator on whose network the DSS server resides.

Using common applications like the web browser, and open source protocols like HTML and XML, inter- and intra-agency communications can be revolutionized. There is no need for different, expensive, application-based, and resource-heavy systems for every organization to administer. The ubiquitous nature of the Internet and other DoD networks makes it possible to leverage this common architecture to provide an inter-agency communications capability.

(2) Access to a Common Operational Picture (COP). A real-time tailorable COP that includes all relevant and actionable information that is geo-referenced to a set of computerized maps must be accessible to every agency that is responding to missions of Homeland and Installation security. The necessity for a COP is a fundamental and undisputed requirement for the conduct of warfare. According to the US Joint Forces Command (USJFCOM) Glossary\(^1\), a COP is a single identical display of relevant information shared by more than one organization. A COP facilitates collaborative planning and assists all echelons to achieve situational awareness. While the nature of the war against terrorism is different than the nature of conventional war, many requirements remain similar. To facilitate a coordinated response to a given situation, everyone must have access to the visual display of the same relevant information. Thus,
any automated installation security DSS must display a COP that is maintained in real-time and is customizable to the agency or organization that is viewing it.

(3) Remote monitoring of alarm or sensor systems (chemical, biological, radiological, and nuclear). The ability to remotely monitor alarms and sensors that detect the presence of chemical and biological agents and radioactive isotopes is a critical component of installation security. An installation security system’s ability to monitor fire, HVAC, intrusion detection, and other sensors is also an important requirement because the sensors serve as the eyes and ears for an automated installation security system.

(4) Location tracking of assets in real time. The ability to track assets and display this information within the COP on the DSS is important for personnel who manage installation security. A need exists to track the location of first responders, emergency response personnel and vehicles, and other mobile assets, and to provide this information to every organization or agency that requires it. In the same way that a commander must understand where his forces are located on the battlefield, emergency response managers must understand where first responders and emergency support teams are located during a crisis.

(5) Automated public alert and recall or notification of essential and key personnel. Any automated system used for the purposes of installation security must have the ability to notify and recall key personnel. It must also have the ability to either serve as, or trigger a public alert system in order to warn the public in times of emergency. Finally, an installation security DSS must also have the ability to notify and
alert higher headquarters and adjacent organizations and agencies, and be capable of receiving notifications and alerts from both.

(6) Tie-in to law enforcement criminal background check systems. The ability to access law enforcement criminal background checking systems is a capability that while not critical, may serve to enhance a DSS designed for Homeland and Installation Security. This capability would enable installation security personnel to identify known criminals and terrorists for the purpose of apprehension.

(7) Integrated Decision Support System (DSS). The combination of the capabilities described in the preceding paragraphs, for the purposes of providing an automated installation and homeland security system, is described as a Decision Support System (DSS) in the context of this paper.

What has been done to date to develop a DSS?

At the time of this writing, there are at least four systems that perform some or all of the requirements outlined in the previous paragraphs. The four systems are Joint Protection Enterprise Network (JPEN), Joint Warning and Reporting Network (JWARN), Area Security Operations Command and Control (ASOCC), and Protect, Respond, Inform, Secure, and Monitor (PRISM). A description, overview, and summary of each system’s capabilities follow.

(1) Joint Protection Enterprise Network (JPEN). According to documentation released by the Joint Staff C4 Systems Directorate, the purpose of JPEN is to create an integrated, cross-domain / inter-agency, information sharing program for force protection and threat related events that potentially impact the security of DoD installations within the United States. The program is intended to permit essential information sharing
among military, law enforcement, and intelligence organizations that, as part of their mission, collect and disseminate information in an effort to identify and combat possible threats. JPEN can document, refer, track, monitor, and evaluate suspected criminal activity that threatens the interests, property, and/or personnel on a DoD installation.\(^2\)

JPEN was created by CellExchange in Jacksonville, Florida. The JPEN system manager is the Joint Staff C4 Systems Directorate. Records maintained in the JPEN system include investigative information supporting known or suspected suspicious activity and incidents at DoD installations. JPEN essentially serves as a law enforcement database that can be accessed by DoD and non-DoD agencies.\(^3\) JPEN is a government-off-the-shelf (GOTS) product. It was previously known as “Protect America”.

Unfortunately, JPEN does not provide the capabilities necessary for it to be used as an installation security decision support tool, because it only addresses one of the capabilities previously listed as critical for an installation security DSS.

(2) Joint Warning and Reporting Network (JWARN). The purpose of JWARN is to accelerate the warfighter’s response to an enemy chemical, biological, radiological, or nuclear (CBRN) attack by providing the joint forces with the capability to report, analyze, and disseminate CBRN detection, identification, location and warning information. JWARN consists of software and hardware components that link CBRN detectors to tactical communications for CBRN warning, reporting, and battlefield management.\(^4\) The U.S. Marine Corps is the program lead. The JWARN Program will replace the manual service-specific systems currently in use. At full capability, it will automate the transfer of data between CBRN detectors/sensors and C4I systems that will facilitate the military’s decision-making process. Quicker response with accurate and
current information will minimize the effects of hostile attack, accidents or incidents. JWARN will be compatible with and integrated into the Joint Service C4I2 systems, and will be located in C2 centers once fielded. This system is a combination of commercial off the shelf (COTS) and GOTS products. A significant shortcoming of JWARN is that it only addresses a limited set of installation security requirements, as it provides only CBRN threat warning and mitigation capability.

(3) Area Security Operations Command and Control (ASOCC). The purpose of ASOCC is to serve as a DSS for installation security operations. The ASOCC software originally was called the Coalition Rear Area Security Operations Command and Control System. It was developed for C2 applications by Science Applications International Corporation (SAIC) for the US Pacific Command (PACOM) before being modified for Homeland security and installation security purposes. ASOCC has three main functional areas: information management, situation management, and collaboration.

ASOCC is a package of COTS and GOTS products integrated by the Defense Information System Agency (DISA) and accredited for secure and non-secure government networks. One core component of ASOCC is the Defense Collaborative Tool Suite (DCTS). DCTS itself is a Joint Program that provides a COTS-based suite of applications that enables a voice-over-whiteboard collaboration capability. DCTS uses Microsoft’s Internet Information Server (IIS) suite of software products, including Netmeeting as a client. ASOCC is currently in operation in the US Pacific Command (PACOM) and in the Capital Area Defense Information Initiative (CADII).
provides commanders with the capability to plan, coordinate, integrate and manage anti-terrorism and force protection operations. Other ASOCC components include:

- **ExPanel** – A real-time alerting and status visualization system.
- **KnowledgeBoard** – Portal that pushes web-based information.
- **Java Imagery and Video Exploitation (JIVE)** - Multiple formats of geo-spatial imagery with overlays and text capabilities.
- **eXtensible Information Systems (XIS)** – Provides open standards information management support.
- **Deployment Visualization Toolkit (DVT)** - Provides read-only access to the Joint Operational Planning Execution System (JOPES) database.

ASOCC is a fully developed solution for Homeland security and installation security operations. It provides several of the capabilities outlined earlier with the exception of the automated public alert and recall capability, and criminal background checking capability. ASOCC has limited CBRN capability integration. ASOCC’s largest drawback is limited accessibility due to high cost. Every location that uses ASOCC must have a copy of DCTS, which costs approximately $600,000 per system installation. Additionally, ASOCC is not web-based which precludes accessibility for all non-DoD and DoD agencies that do not have the resources necessary to purchase such an expensive system. Given that accessibility is a critical requirement for an installation security system, ASOCC is not the best choice for many agencies.

(4) **PRISM – Protect, Respond, Inform, Secure, and Monitor.** PRISM is a Homeland security Command and Control (C2) decision support system. PRISM is composed of two primary components: **Contora** and **ESRI ArcIMS.** Additional and optional components include **Message 911, Enso Sentry,** and **Lunar Eye.** These components have been tightly integrated into a single end-user application that provides a
messaging, alerting, geo-referenced mapping, asset tracking, CBRN sensing, and public warning system. The core PRISM package which includes sensor and asset tracking integration costs approximately $80,000 per installation with a 50-client license. A brief explanation of the COTS components that make up the integrated PRISM system follows:

Messaging and alerting capability: The component of PRISM that provides messaging and alerting capabilities is called Contora. Contora, with its embedded Transsend Enterprise Messaging Service software, is the COTS component that is the core of PRISM. It provides enterprise messaging to every agency or organization that is equipped with a PRISM server or that has a web-based account on the server. The Contora engine is seamlessly integrated into PRISM, operates in a distributed client-server model, and is accessible from any web browser. It provides an incident reporting and tracking capability and a tasking and facility reporting capability.

Georeferenced mapping capability: The PRISM component that provides this capability is called ArcIMS. ArcIMS is also seamlessly integrated into PRISM through Contora. ArcIMS is a component of the COTS ArcGIS mapping software suite that will replace the Joint Mapping Toolkit (JMTK). ArcIMS provides web-based geographical maps onto which Contora plots geo-referenced incident reports, asset tracking, and Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) events tracking and reporting. ArcIMS is the industry standard Geo-referenced Information System (GIS) mapping software.
Integrated sensor capability: Ensco Sentry is a COTS component that provides sensor integration capabilities to tie together a deployed suite of Chemical, Biological, Radiological, and Nuclear (CBRN) sensors. Sentry is tightly integrated with PRISM to provide immediate notification of CBRN events that can then be plotted to the ESRI ArcIMS enabled mapping display. Ensco Sentry can also integrate other types of sensors and alarms to include facility and boundary intrusion alert, and facility emergency alert (fire, HVAC, etc.). The Ensco Sentry system is capable of generating downwind hazard plume information and passing this information off to Message 911 for geo-referenced reverse lookup message alerting.

Automated public alert and recall capability: Message 911 is a COTS web-based voice notification system that can be configured to call, automatically or on command, all of the telephones in a geographic area. It can also be set up to call, automatically or on command, all of the telephone numbers in a predefined group or set of groups. Message 911 is capable of sending alerts via pager, mobile trunked radios, and e-mail. This system has a text-to-speech capability that enables computer-generated voice messages to be generated from text. ArcIMS mapping is seamlessly integrated into the notification system providing a geo-referenced reverse look-up capability. Message 911 is also integrated with the Ensco Sentry Sensor suite of products so that it is able to receive a CBRN plume and then notify all residents within the affected area.

Asset tracking capability: LunarEye is a COTS hardware / subscription service that is tightly integrated into PRISM. LunarEye provides an asset tracking capability based on GPS position data and cellular telephone network information transmission.
Any asset with a LunarEye asset-tracking device installed will report its location back to the PRISM server. This feature provides an invaluable command and control, and situational awareness capability for tracking and monitoring the location and movement of emergency response units and first responders such as fire-rescue units, police, HAZMAT, and EMS teams. The asset tracking system information is passed over the cellular telephone control channels, so that user saturation of the network will not prevent the information from reaching its destination.

Comparative summary of competing decision support systems

Based on the requirements in the TRADOC Force Protection Operational and Organizational (O&O) document, and on the criteria outlined in the previous paragraphs, PRISM provides the largest set of capabilities in comparison to the other installation security systems outlined in this paper. Both JPEN and JWARN, while providing valuable capabilities that fulfill a portion of the requirements, do not provide the depth of capabilities necessary to be considered installation security decision support systems. ASOCC is a robust system that provides many of the required capabilities outlined in the TRADOC Force Protection O&O Plan. However, ASOCC does not meet the level of accessibility necessary for many organizations and agencies due to its high cost and application-based nature. PRISM’s web-based design and relative low cost provides the greatest level of accessibility. It is ideally suited for deployment in federal, state, and local government agency Installation Operation Centers (IOCs), Emergency Operation Centers (EOCs), and Crisis Management Centers (CMCs). PRISM uses the XML open standard protocol to pass information across the network and can be easily configured for
compatibility with other HTML or XML open standard DSS systems. PRISM provides a “Common Operational Picture” across agency, organizational, and installation boundaries. PRISM is highly scalable: every PRISM server and client can be associated vertically and horizontally with other PRISM servers. None of the other installation security decision support systems provide the comprehensive set of capabilities offered by PRISM, while also being highly accessible and cost affordable. PRISM is a complete package that has already seen limited deployment.

In summary, the most important benefit of PRISM is its accessibility, in that it provides a web-based, distributed solution that does not require significant investment by every organization that requires access to the force protection information provided by a DSS.

Conclusion

The acquisition, development, and fielding of the four installation security systems detailed in the previous paragraphs are each being undertaken by different Department of Defense organizations and agencies in parallel efforts without any coordination among the programs. Parallel efforts, when the goal is testing and evaluation, are typically a good thing because it allows best-of-breed technologies to be developed and identified. Under other circumstances, such as when national security is at stake, parallel effort without central coordination is not a good thing because incompatibility and duplication are the byproduct. This is the situation that is occurring today.
There is no coordinated effort or central control by any agency or organization within the Department of Defense or the Department of Homeland Security to ensure that compatible and interoperable, installation security DSSs are being acquired and fielded. Further, no effort is being made to ensure that the DSSs currently being identified as solutions will provide the level of accessibility necessary to adequately assure Homeland and installation security. One agency must be delegated responsibility for ensuring that all installation security DSS solutions are compatible, interoperable, and accessible. The security of the United States will remain at risk until these measures are taken.
Bibliography

Homeland Security:
Requirements for Installation Security
Decision Support Systems
CONUS and OCONUS installations must be prepared for and capable of preventing terrorist, criminal and other threats.

TDA installations require command, control, and situational awareness based on reliable sources of focused operations and intelligence information.

MACOM and installation commander need seamless exchange data on personnel, indicators and events that uncover activity and trigger decision points.
Installation Security
Requirements Defined

• Instantaneous inter/intra-agency communication.
• Access to a Common Operating Picture (COP).
• Remote Monitoring of alarm or Sensor systems (chemical, biological, radiological, and nuclear).
• Location tracking of assets in real time.
• Automated public alert and recall or notification of essential and key personnel.
• Tie-in to law enforcement criminal background check systems
• Integrated Decision Support System
What has been done to date to develop a DSS?

• At least 4 systems have been developed to perform some or all requirements:
 – Joint Protection Enterprise Network (JPEN)
 – Joint Warfare and Reporting Network (JWARN)
 – Area Security Operations Command and Control (ASOCC)
 – Prism (Protect, Respond, Inform, Secure, and Monitor)
PRISM Overview

• PRISM is a Homeland Defense application standing for Prepare, Respond, Inform, Secure, and Monitor

• PRISM provides command and control technology…
 – For the Federal Government in support of Department of Defense force protection requirements and Department of Homeland Security needs
 – For State and Local Government to direct and synchronize the activities of first responders
 – To facilitate collaboration among federal, state, and local governments.

• PRISM was born out of IDM-T
Required capabilities include the necessity to...

- Operate a robust electronic communications system linking the IOC with all installation public safety, medical, and emergency response agencies with adjacent military and civilian headquarters/agencies.

- Identify and track installation participation in disaster relief operations to ensure efficient and effective crisis response.

- Track critical installation crisis response assets to provide visibility and effectively manage crisis operations.

- Provide links between the installation and local law enforcement to identify and deter potential threat to the installation.

- Monitor and analyzes CBRN intelligence threats; Provide a SA/C2 response capability that mitigates repercussions of CBRN attacks.
Force Protection/Homeland Defense

P REPARE
- Provides Garrison Commander / IOC with a Decision Support Tool
- Provides a COE for information analysis, dissemination, and sharing
- Assures inter-agency interoperability
- Enables Scenario planning
- Provides situational/threat awareness

R ESPOND
- Provides disaster / event notification through Message 911 component
- Provides a C2 capability during emergency operations
- Enables alert messaging, incident reporting, GPS asset tracking

I NFORM
- Based on open standard web portal technology for easy access
- Provides a COP across agencies and installations
- Linkage to all responders/agencies that have access to the network
- Provides immediate CBRN sensor alert notice to users
- Provides immediate incident reporting and messaging

S ECURE
- Data is safeguarded in a protected database
- Access is controlled through security policy
- Shared information is pushed or pulled from system directories

M ONITOR
- Based off of a Tailored and configurable Regional / Installation / City map
- Allows situational input from local, state, and federal producers
- Aggregates sensor data into one COP (webcams, chem/bio, etc)
IDM is a management activity, automated by software services, that directs end-to-end information flows throughout the GIG based on commanders policy.

Transsend™ is an Enterprise Messaging Product, offering a fully functional Java Messaging Service (JMS) 1.02b implementation.
provided an opportunity for coordination and communication between various public, private, local, state, federal agencies and supported activities in the execution of WMD/HAZMAT multi-casualty incidents using the PRISM prototype
Provides an opportunity for coordination and communication between various public, private, local, state, federal agencies and supports activities in the execution of multi-casualty incidents using PRISM
Medical Fusion Information Management Concept
PRISM Components

- **Solers Transcend**
 - Open standards; web-based access requires only a browser on the client machine
 - Incident report tracking
 - Tasking and facility reporting
 - Request for Information
 - Information sharing and collaboration
 - Search for information
 - Transsend™ enterprise messaging for assured delivery of information among distributed PRISM nodes.
 - Local management of each distributed node
 - Shared situational awareness among nodes

- **ESRI® ArcIMS®**
 - Provides web-based access to maps and geographic data and services.
 - Operates in conjunction with ArcGIS suite of products.
 - Provides map display for PRISM onto which incident reports, CBRN events, and first responder locations may be georeferenced.
 - Supports map display with configurable layers for the local facility.
 - Incident geo-referencing.

- **LunarEye™ LE2000™**
 - Asset tracking devices hosted in first responder vehicles
 - Provides geolocation of vehicles to PRISM, enabling tracking of first responders on map display

- **ENSco Sentry**
 - Automated sensor integration
 - Protects facilities and borders from intrusion and Chemical, Biological, Radiological, and Nuclear attack

Calling Post Communications Message911™
- Delivers thousands of emergency notification messages in seconds via phone, email, or pager.
- Powerful mapping selections integrated with notification system to allow geographic selection of those to notify.
- Integration with ENSco Sentry allows notification based on CBRN plume.
- Web-based interface enables access to Message911™ services from any location.
Audible and visual notification of new alerts, messages, and incidents is persistent until read.

Channels, groups, and roles are highly customizable, and tuned to policy driven security levels.

Bandwidth throttling for large files. File sending reestablishment if connection is lost.

Red dots indicate reported incidents.

Yellow dots indicate reported CBRN detections.

Blue dots indicate asset tracking.

PRISM Release IV - GUI
This picture is shared throughout the network when incidents occur or when mission dictates.
Enterprise Messaging Distributes PRISM Portals Across a Network-Centric Environment

PRISM’s messaging enables information sharing among Army installations, agencies, and commands, and external federal, state, and local governments.
Alerting Capabilities

- PRISM generates alert messages that are sent to all portal users.
- Intended to provide collaborative capabilities for early notification of critical issues to a wide audience.
- Form utilized to enter alert and send.

Users may view all alerts that have been received, or just recent events.

Visual and audio notification provided when new alerts are received.
Incident Reporting

- Incident reports are generated and linked to a particular Lat/Long on the map.

- Drop down lists and automatically populated fields are provided to ease the Incident Report entry process.

- Incident reports are delivered via Transsend to all portals and plotted on the map (in red) as they are sent.
Other Reporting

• Additional reporting mechanisms are available for:
 – Tasking Reports
 – Facility Reports
 – Messaging
 – Requests for Information (RFI)

• Pre-defined forms are utilized with drop-down lists and automatically populated fields for ease of entry.

• Information entered is delivered via Transsend to all PRISM portals.
• Links to commercial and Government search engines are integrated into PRISM.
 – This allows users to locate and retrieve information in support of first response operations.

• Additional links to relevant, external sites may also be added.
CBRN Sensors

- CBRN sensors from ENSCO Sentry are integrated with PRISM.
- Sentry Sensors may be positioned to detect CBRN events.
- Upon detection, a message is automatically generated and received by PRISM.
- The event is plotted on the map (yellow dot) and information on the event can be accessed by the user.
- Sensor input can be used to generate downwind plume information which may be linked to phones in the affected area.
• COTs voice notification system designed to meet critical emergency alert situations. Message immediately reaches first responders, and every person in a command, organization, agency, or geographical area.

• Controlled from any phone or web browser anywhere and anytime. It can deliver to land lines, cell phones, pagers, mobile radios and PDA’s.

• Message may be recorded using voice or text-to-speech. Capability to deliver more than 3,000 calls per minute.

• May activate other devices such as sirens and public address systems.

• GIS ready. Mapping tools seamlessly integrate map selections directly with notification system.

• Calls are automatically placed to all telephones within a geographic area.

• Integrated with ENSCO Sentry software to allow CBRN events to drive the geographic region that will be called.
• First Responder Tracking from LunarEye is integrated with PRISM.
• LunarEye hardware is placed in the first responder vehicles and emits a GPS signal that makes the location of the vehicle available to PRISM.
• The vehicle location is plotted on the map (in blue) and periodically updated.
• A terrorist releases a biological agent in a populated urban area:
 – The Sentry Sensors positioned within the area detect the event and report it to PRISM. The event is plotted on the map and the user is alerted.
 – Human intelligence from the scene results in an Incident Report being entered from a command post using the PRISM software and it is plotted on the map. An alert is issued using PRISM at the same time.
 – The Message911™ software is utilized to automatically notify residents of the community to stay indoors.
 – The progress of First Responders moving towards the incident is tracked on the PRISM map using the LunarEye™ integration.
 – Terrorists are seen leaving the area and an alert is issued using PRISM to state and local law enforcement agencies.
 – The state/local law enforcement officials track the terrorist, while collaborating using the PRISM tool. Collaboration facilitates synchronization of law enforcement actions as they move in on the terrorist.
 – The terrorist is detained and all responding officials are alerted to the capture via a PRISM alert.
QUESTIONS?