Development of a Framework for Multimodal Research: Creation of a Bibliographic Database

by Michael D. Coovert, Ashley A. Gray, Linda R. Elliott, and Elizabeth S. Redden

ARL-TR-4068 March 2007

Approved for public release; distribution is unlimited.
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

DESTRUCTION NOTICE—Destroy this report when it is no longer needed. Do not return it to the originator.
Development of a Framework for Multimodal Research: Creation of a Bibliographic Database

Michael D. Coovert and Ashley A. Gray
University of South Florida

Linda R. Elliott and Elizabeth S. Redden
Human Research & Engineering Directorate, ARL

Approved for public release; distribution is unlimited.
The purpose of this report is to describe the development of a framework to enable classification, evaluation, and comparison of multimodal display research, based on task demands, display characteristics, research design, and individual differences. In this report, we describe the process by which a bibliographic database was developed and organized. First, the framework was specified, which then guided the identification and review of research and theory-based articles that were included in the bibliography. The results of the overall effort, the multimodal framework and article tracking sheet, bibliographic database, and searchable multimodal database make substantial and valuable contributions to the accumulation and interpretation of multimodal research. References collected in this effort are listed in the appendix.
Contents

List of Figures iv

1. Introduction 1

2. Method 2
 2.1 Development of the Framework ... 2
 2.2 Literature Review ... 7
 2.3 Cognitive Theory Objectives .. 7
 2.4 Multimodal Database ... 7

3. Implications/Applications/Future Directions 8

4. References 10

Appendix A. Multimodal References in Bibliographic Database 11

Distribution List 88
List of Figures

Figure 1. Initial framework (Elliott & Redden, 2005) ... 3
Figure 2. Article tracking sheet ... 4
1. Introduction

Present-day Soldiers receive an unprecedented information flow from numerous sources in order to execute network-centric warfare. Such information overload can result in extremely high cognitive workload, which can subsequently reduce situational awareness and lower the quality of performance. This problem can be conceptualized as a multi-tasking issue or merely as a processing limitation. Consequently, information providers are challenged with identifying ways to disseminate and convey information as efficiently as possible so that a Soldier’s comprehension and decision making are optimized, while overload and distraction are minimized.

A promising conceptual framework for the information overload problem is Wickens’ (2002) Multiple Resource Theory (MRT). The premise of MRT is that different resources exist for processing different modalities of input (i.e., different cognitive resources exist for processing visual, audio, and tactile information). Therefore, when information is presented from different modalities, the performance decrement attributable to information overload should be smaller than when information is presented from a single modality to communicate the same amount of information. Simply stated, MRT proposes that (a) people have several independent capacities with resource properties; (b) some resources can be more easily used in tandem, while other combinations are more difficult and would be performed more sequentially; (c) tasks using compatible resources can usually be performed together; and (d) competition for the same sensory modality can produce interference. MRT explicates these capacities and contingencies (Wickens, 2002).

As an example, until recently, Soldiers received information primarily through visual presentation (map, compass, computer screen). When a large amount of information is presented solely through the visual modality, cognitive overload becomes problematic and can have negative effects on performance. MRT advises reducing the volume of information presented in one mode (visually) by offloading to one or more other modes (e.g., audio, tactile modes).

Numerous researchers have approached the information overload problem with MRT as the theoretical rationale (explicitly or implicitly) for using multiple modes of presentation to reduce workload (Wickens, 2002). In order to benefit from the vast amount of research on this topic, the research needs to be accumulated and classified on multiple dimensions such as the type of task and the demands associated with their use. Organization of the multimodal literature is warranted to support the application of research findings to display design. There is interest in determining the extent to which type of display modality can explain variance in performance and impact the use of cognitive resources.

The purpose of this research was to develop a framework to enable classification, evaluation, and comparison of multimodal display research based on task demands, display characteristics, research design and individual differences. In this report, we describe the process by which a bibliographic database was developed and organized. First the framework was specified, which then guided the
identification and review of research and theory-based articles that were included in the bibliography.

The purpose of this research was to develop a framework to enable classification, evaluation, and comparison of multimodal display research based on task demands, display characteristics, research design, and individual differences. In this report, we describe the process by which a bibliographic database was developed and organized. First the framework was specified, which then guided the identification and review of research and theory-based articles that were included in the bibliography. This effort then led to meta-analytical comparisons of effect size and direction across empirical investigations (Burke et al., 2006).

2. Method

Elliott and Redden (personal communication, 2005) developed a framework to organize investigation and research experiments. This initial framework was refined and augmented by the research group at University of South Florida (Coovert, Gray, Elliott, Redden, 2006). The resulting multimodal framework represents the culmination of an extensive dialogue between the multimodal literature and the preliminary framework. The following sections describe the development of the multimodal framework and development of the multimodal database.

2.1 Development of the Framework

The multimodal framework (2005) (see figure 1) was a preliminary step to understanding the research on multimodal information processing. The use of the initial framework in reviewing research articles required deliberate consideration and consistent description of several study characteristics. The first step was to examine each of the initial framework components for inclusion in the multimodal framework (see figure 1 for original components). It was determined that the framework could benefit from further development to make it more comprehensive (new components to address research design, theory, results, conclusions, and coding of variables for meta-analytic purposes), as well as from modifications of the existing components to improve clarity and focus. The revised multimodal framework was developed to accommodate additional components in the form of the article tracking sheet (see figure 2).

Since the multimodal framework was intended to guide the review of research literature, we decided that the format should be conducive to the review of an article. The initial framework (see figure 1) existed as an electronic spreadsheet (columns were components, rows were research studies), whereas the article tracking sheet took the form of a five-page Word¹ document, designed to accompany a research article. The article tracking sheet encompassed some of the initial, several modified, and some new framework component fields, which were based on a preliminary literature review.

¹Word is a trademark of Microsoft Corporation.
Figure 1. Initial framework (Elliott & Redden, 2005).
<table>
<thead>
<tr>
<th>Multimodal Typology: Article Tracking Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Researcher______________________________ Today’s Date__________________</td>
</tr>
<tr>
<td>Article Title____________________________</td>
</tr>
<tr>
<td>Article Authors__________________________</td>
</tr>
<tr>
<td>In what country was the study conducted? ________________________________</td>
</tr>
<tr>
<td>What is the publication type?</td>
</tr>
<tr>
<td>_____Journal Article _____Tech Report _____Dissertation _____Unpublished Work</td>
</tr>
<tr>
<td>_Conference Proceedings Book Chapter Other</td>
</tr>
<tr>
<td>Are multiple studies described? _____Yes _____No</td>
</tr>
<tr>
<td>What is the study type?</td>
</tr>
<tr>
<td>_____Lab Experiment _____Field Study _____Literature Review</td>
</tr>
<tr>
<td>_Theory Evaluation Study Other</td>
</tr>
<tr>
<td>Research Problem (What question is the study trying to answer? What is the goal of the study?)</td>
</tr>
<tr>
<td>__</td>
</tr>
<tr>
<td>Is the study related to virtual reality? _____Yes _____No</td>
</tr>
<tr>
<td>What is the theoretical basis of the study?</td>
</tr>
<tr>
<td>_____None _____Wickens’ MRT _____Multiple theories _____Other</td>
</tr>
<tr>
<td>If theoretical basis is “other,” “multiple,” or requires more information, elaborate:________________________</td>
</tr>
<tr>
<td>__</td>
</tr>
<tr>
<td>What are the IVs?________________________</td>
</tr>
<tr>
<td>__</td>
</tr>
<tr>
<td>What are the DVs? (ex. Number of errors, decision making time, subjective cognitive load, etc?)__________</td>
</tr>
</tbody>
</table>

Figure 2. Article tracking sheet.
Figure 2 (continued).
Elaborate on above question including any conditional circumstances (if augmenting, is augmented info redundant or different?):

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the device offloading information for the primary task?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the device offloading information for the secondary task?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Is the device of interest:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tactile?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes/Describe other devices that are being used for comparison:

Are multiple modes of input from a device/devices being utilized simultaneously for the same task?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Are multiple modes of input from a device/devices being utilized for different tasks?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Does the article address the extent to which the device reduces the need to train to the point of automaticity? (Or is it relevant to automaticity?)

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes on relevance to automaticity, if applicable:

Is data fusion or information fusion mentioned?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Is situational awareness mentioned or relevant?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Does the article quantify task demand/conflict/interference values or mention IMPRINT?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes on relevance to IMPRINT, if applicable:

Is the article relevant to Wickens' MRT?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes on relevance to Wickens' MRT, including any deficiencies (important material that can't be explained by Wickens' theory):

Does the article address any individual differences (e.g., in learning styles, experience, training, age, gender, etc.)?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What individual differences are addressed, and how do they tie in?

Is the research completed?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Describe any relevant notes on the rigor of the study, and if there are any major flaws to note:

What official keywords are reported by the article authors?

What other keywords do you think describe this article?

Guiding Principle Notes (i.e., for possible guiding principles, take-home messages to keep track of, etc):

Other General Notes:

Figure 2 (continued).
2.2 Literature Review

In an effort to locate articles spanning a variety of research domains, databases employed for the literature search included ACM (Association for Computing Machinery; http://www.acm.org/), IEEE (Institute of Electrical and Electronics Engineers; http://www.ieee.org/portal/site), PsycInfo (http://www.apa.org/psycinfo/), Web of Science (http://scientific.thomson.com/products/wos/), DTIC (Defense Technical Information Center; http://www.dtic.mil/), and CSA (http://www.csa.com/). A number of keywords were applied to each database to define the searches (e.g., multi-modal, visual, tactile, audio, haptic, interface, display, dual task, multitask). The abstracts of articles returned by the databases were examined, and approximately 900 references that were initially deemed relevant were loaded into an on-line bibliographic management software (www. Refworks.com) for review. These references are listed in appendix A. Readers wishing to import references into their own Refworks or other bibliographic management software can contact the ARL point of contact (Dr. Elizabeth Redden) or Dr Michael Coovert, University of South Florida, to request an import file.

2.3 Cognitive Theory Objectives

One of the objectives for the literature review was to identify and review articles regarding theory of multitasking and multiple resources. Wicken’s MRT served as a foundation for the multimodal framework, and therefore, articles that discussed or tested MRT concepts were coded specifically for easy retrieval. In addition, it was critical to remain familiar with other related cognitive issues; thus, a cognitive subcommittee of project members was formed. The subcommittee members reviewed literature (mentioned in previous section), which addressed cognitive issues more directly, and they provided summaries and presentations to the other project members during the literature review. As the review progressed, the committee noted that some important issues were not adequately addressed by Wickens’ MRT (or any other theory). Although an in-depth analysis and application of these “deeper issues” was outside the scope of the present project, several topics were examined in more detail: parallel versus serial processing; individual differences such as user preferences and brain hemisphere dominance; automaticity; and cross-modal links. These four examples have considerable theoretical potential to interact with the relationship between multimodal information display and user performance. Therefore, they offer interesting directions for future research, especially regarding their integration with the predictions of Wickens’ MRT.

2.4 Multimodal Database

Although the new article tracking sheet was useful for understanding the literature and coding articles according to the multimodal framework, the paper format was not conducive to queries or comparison of components across articles. Consequently, an Access2 database was developed to provide an electronic version of the article tracking sheets for reviewed articles.

2Access is a registered trademark of Microsoft Corporation.
Approximately 450 articles were reviewed and the respective article tracking sheets were entered into the database for each. The multimodal database includes all components present on the article tracking sheet. It supports queries, sorting, and filters as well as side-by-side comparison of studies or experiments for all multimodal framework fields. Furthermore, because of its versatile features, the database is essentially capable of answering multimodal research questions, such as

1. What mode of information display works best for driving?
2. Regarding alerts or interruptions, are multimodal displays better than unimodal displays?
3. Is there general support for Wickens’ MRT?

The multimodal database is an Access-based deliverable that can be made available upon request to the ARL advanced objective manager (Dr Elizabeth Redden).

3. Implications, Applications, and Future Directions

The primary purpose of this research was to develop a framework to enable classification, evaluation, and comparison of multimodal display research based on task demands, display characteristics, research design, and individual differences. The identification of guiding principles for the design of multimodal information display was the second objective and is described in a separate report. The results of this effort, the multimodal framework and article tracking sheet, bibliographic database, and searchable multimodal database make substantial and valuable contributions to the accumulation and interpretation of multimodal research. References collected in this effort are listed in appendix A.

Possibly the most urgent future direction to address is the inconsistent use of terms in the multimodal literature. The most obvious nuisance involves the labeling of modalities. For instance, a number of articles do not consider a display to have a “visual modality” if the visual information exists in the natural environment. Other research operates on the premise that if visual cognitive resources are used to process information, then the term “visual modality” is appropriate, regardless of whether the information is displayed on a device or in the natural environment. This simple distinction presents a considerable obstacle to the formation of a knowledge base for the effects of multi-modal or unimodal displays where the “visual” modality is involved. A number of other critical terms are also used inconsistently (e.g., “multimodal” and “augment”), presumably because of the variety of research domains across which multimodal research takes place (e.g., human-computer interaction, psychology, engineering). A concerted effort to amass a glossary of multimodal and display design terms would offer a significant contribution toward improving the consistency of future research.
Another crucial objective for multimodal research is to complement the present qualitative effort with a quantitative examination of the effects of display modality on human performance. There are a number of important multimodal research questions worthy of meta-analysis, and their evaluation would not only offer empirical support for the guiding principles, but it would also reveal meaningful directions for future research.
4. References

Appendix A. Multimodal References in Bibliographic Database

Aghdaee, S. M.; Zandvakili, A. Adaptation to Spiral Motion: Global But Not Local Motion Detectors are Modulated by Attention. *Vision Research* 2005, 45 (9), 1099-1105.

Arsenault, R.; Ware, C. The Importance of Stereo and Eye-Coupled Perspective for Eye-Hand Coordination in Fish Tank VR. *Presence: Teleoperators and Virtual Environments* 2004, 13 (5), 549-559.

Békésy, G. V. Similarities Between Hearing and Skin Sensations. *Psychol Rev* 1959, 66 (1), 1-22.

Békésy, G. V. Sensations of the Skin Similar to Directional Hearing, Beats, and Harmonics of the Ear. *J Acoust Soc Am* 1957, 29.

Davis, B. M. *Effect of Tactical Navigation Display Modality on Navigation Performance, Situation Awareness, and Mental Workload*; U.S. Army Research Laboratory.

Hillis, J. M.; Ernst, M. O.; Banks, M. S.; Landy, M. S. Combining Sensory Information: Mandatory Fusion Within, But Not Between, Senses. *Science 2002*, 298 (5598), 1627-1630.

Liu, Y. Effects of Taiwan In-Vehicle Cellular Audio Phone system on Driving Performance. *Safety Science* 2003, 41 (6), 531-542.

Lohse, G. L. Role of Working Memory on Graphical Information Processing. Behavior & Information Technology 1997, 16 (6), 297-308.

Mazzone, A.; Spagno, C.; Kunz, A. A Haptic Feedback Device Based on an Active Mesh.

McKinley, R. A.; Gallimore, J.; Lanning, C.; Simmons, C. Tactile Cueing for Target Acquisition and Identification; Air Force Research Laboratory.

Spence, C. Multisensory Attention and Tactile Information-Processing. *Behavioural Brain Research* 2002, 135 (1), 57-64.

Tvaryanas, A. P. Visual Scan Patterns During Simulated Control of an Uninhabited Aerial Vehicle (UAV). *Aviation, Space, and Environmental Medicine* 2004, 75 (6), 531-538.

<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>ORGANIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (PDF Only)</td>
<td>DEFENSE TECHNICAL INFORMATION CTR DTIC OCA 8725 JOHN J KINGMAN RD STE 0944 FORT BELVOIR VA 22060-6218</td>
</tr>
<tr>
<td>1</td>
<td>US ARMY RSRCH DEV & ENGRG CMD SYSTEMS OF SYSTEMS INTEGRATION AMSRD SS T 6000 6TH ST STE 100 FORT BELVOIR VA 22060-5608</td>
</tr>
<tr>
<td>1</td>
<td>DIRECTOR US ARMY RESEARCH LAB IMNE ALC IMS 2800 POWDER MILL RD ADELPHI MD 20783-1197</td>
</tr>
<tr>
<td>2</td>
<td>DIRECTOR US ARMY RESEARCH LAB AMSRD ARL CI OK TL 2800 POWDER MILL RD ADELPHI MD 20783-1197</td>
</tr>
<tr>
<td>1</td>
<td>ARMY RSCH LABORATORY - HRED ATTN AMSRD ARL HR M DR M STRUB 6359 WALKER LANE SUITE 100 ALEXANDRIA VA 22310</td>
</tr>
<tr>
<td>1</td>
<td>ARMY RSCH LABORATORY - HRED ATTN AMSRD ARL HR ML J MARTIN MYER CENTER RM 2D311 FT MONMOUTH NJ 07703-5601</td>
</tr>
<tr>
<td>1</td>
<td>ARMY RSCH LABORATORY - HRED ATTN AMSRD ARL HR MZ A DAVISON 199 E 4TH ST STE C TECH PARK BLDG 2 FT LEONARD WOOD MO 65473-1949</td>
</tr>
<tr>
<td>1</td>
<td>ARMY RSCH LABORATORY - HRED ATTN AMSRD ARL HR MD T COOK BLDG 5400 RM C242 REDSTONE ARSENAL AL 35898-7290</td>
</tr>
<tr>
<td>1</td>
<td>COMMANDANT USAADASCH ATTN ATSA CD ATTN AMSRD ARL HR ME MS A MARES 5800 CARTER RD FT BLISS TX 79916-3802</td>
</tr>
<tr>
<td>1</td>
<td>ARMY RSCH LABORATORY - HRED ATTN AMSRD ARL HR MO J MINNINGER BLDG 5400 RM C242 REDSTONE ARSENAL AL 35898-7290</td>
</tr>
<tr>
<td>1</td>
<td>ARMY RSCH LABORATORY - HRED ATTN AMSRD ARL HR MM DR V RICE BLDG 4011 RM 217 1750 GREELEY RD FT SAM HOUSTON TX 78234-5094</td>
</tr>
<tr>
<td>1</td>
<td>ARMY RSCH LABORATORY - HRED ATTN AMSRD ARL HR MG R SPINE BUILDING 333 PICATINNY ARSENAL NJ 07806-5000</td>
</tr>
<tr>
<td>1</td>
<td>ARL HRED ARMC FLD ELMT ATTN AMSRD ARL HR MH C BURNS BLDG 1467B ROOM 336 THIRD AVENUE FT KNOX KY 40121</td>
</tr>
<tr>
<td>1</td>
<td>ARMY RSCH LABORATORY - HRED AVNC FIELD ELEMENT ATTN AMSRD ARL HR MJ D DURBIN BLDG 4506 (DCD) RM 107 FT RUCKER AL 36362-5000</td>
</tr>
<tr>
<td>1</td>
<td>ARMY RSCH LABORATORY - HRED ATTN AMSRD ARL HR MK MR J REINHART 10125 KINGMAN RD FT BELVOIR VA 22060-5828</td>
</tr>
<tr>
<td>1</td>
<td>ARMY RSCH LABORATORY - HRED ATTN AMSRD ARL HR MV HQ USAOTC S MIDDLEBROOKS 91012 STATION AVE ROOM 111 FT HOOD TX 76544-5073</td>
</tr>
<tr>
<td>1</td>
<td>ARMY RSCH LABORATORY - HRED ATTN AMSRD ARL HR MY M BARNES 2520 HEALY AVE STE 1172 BLDG 51005 FT HUACHUCA AZ 85613-7069</td>
</tr>
<tr>
<td>1</td>
<td>ARMY RSCH LABORATORY - HRED ATTN AMSRD ARL HR MP D UNGVARSKY BATTLE CMD BATTLE LAB 415 SHERMAN AVE UNIT 3 FT LEAVENWORTH KS 66027-2326</td>
</tr>
<tr>
<td>NO. OF COPIES</td>
<td>ORGANIZATION</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>ARMY RSCH LABORATORY - HRED NEAR HRED J HANSBERGER JOINT FUTURES LAB 115 LAKEVIEW PARKWAY SUITE B SUFFOLK VA 23435</td>
</tr>
<tr>
<td>1</td>
<td>ARMY RSCH LABORATORY - HRED ATTN AMSRD ARL HR MQ M R FLETCHER US ARMY SBCCOM NATICK SOLDIER CTR AMSRD NSC SS E BLDG 3 RM 341 NATICK MA 01760-5020</td>
</tr>
<tr>
<td>1</td>
<td>ARMY RSCH LABORATORY - HRED ATTN AMSRD ARL HR MY DR J CHEN 12423 RESEARCH PARKWAY ORLANDO FL 32826</td>
</tr>
<tr>
<td>1</td>
<td>ARMY RSCH LABORATORY - HRED ATTN AMSRD ARL HR MS MR C MANASCO SIGNAL TOWERS 118 MORAN HALL FORT GORDON GA 30905-5233</td>
</tr>
<tr>
<td>1</td>
<td>ARMY RSCH LABORATORY - HRED ATTN AMSRD ARL HR MU M SINGAPORE 6501 E 11 MILE RD MAIL STOP 284 BLDG 200A 2ND FL RM 2104 WARREN MI 48397-5000</td>
</tr>
<tr>
<td>1</td>
<td>ARMY RSCH LABORATORY - HRED ATTN AMSRD ARL HR MF MR C HERNANDEZ BLDG 3040 RM 220 FORT SILL OK 73503-5600</td>
</tr>
<tr>
<td>10</td>
<td>ARMY RSCH LABORATORY - HRED ATTN AMSRD ARL HR MW E REDDEN BLDG 4 ROOM 332 FT BENNING GA 31905-5400</td>
</tr>
<tr>
<td>1</td>
<td>ARMY RSCH LABORATORY - HRED ATTN AMSRD ARL HR MN R SPENCER DCSFDI HF HQ USASOC BLDG E2929 FORT BRAGG NC 28310-5000</td>
</tr>
<tr>
<td>1</td>
<td>ARMY G1 ATTN DAPE MR B KNAPP 300 ARMY PENTAGON ROOM 2C489 WASHINGTON DC 20310-0300</td>
</tr>
</tbody>
</table>

89