AFRL-VA-WP-TP-2006-345

OBSERVER DESIGN FOR A CLASS OF MIMO NONLINEAR SYSTEMS (PREPRINT)

Hao Lei, Jianfeng Wei, Wei Lin, and R.M. Kolacinski

JUNE 2006

Approved for public release; distribution is unlimited.

STINFO COPY

This work was funded in whole or in part by Department of the Air Force contract FA8650-05-M-3540. The U.S. Government has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license to use, modify, reproduce, release, perform, display, or disclose the work by or on behalf of the U.S. Government.

AIR VEHICLES DIRECTORATE
AIR FORCE MATERIEL COMMAND
AIR FORCE RESEARCH LABORATORY
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542
NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Wright Site (AFRL/WS) Public Affairs Office and is available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-VA-WP-TP-2006-345 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

*//Signature//
JAMES H. MYATT, Ph.D.
Senior Aerospace Engineer
Control Design and Analysis Branch
Air Vehicles Directorate

//Signature//
DEBORAH S. GRISMER, Ph.D.
Chief
Control Design and Analysis Branch
Air Vehicles Directorate

//Signature//
JEFFREY C. TROMP, Ph.D.
Senior Technical Advisor
Control Sciences Division
Air Vehicles Directorate

This report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks.
REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE
June 2006

2. REPORT TYPE
Conference Paper Preprint

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE
OBSERVER DESIGN FOR A CLASS OF MIMO NONLINEAR SYSTEMS (PREPRINT)

5a. CONTRACT NUMBER
FA8650-05-M-3540

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
0605502

5d. PROJECT NUMBER
A08W

5e. TASK NUMBER

5f. WORK UNIT NUMBER
OC

6. AUTHOR(S)
Hao Lei, Jianfeng Wei, and Wei Lin (Case Western Reserve University)
R.M. Kolacinski (Orbital Research, Inc.)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Case Western Reserve University
Dept. of Electrical Engineering and Computer Science
10900 Euclid Avenue
Cleveland, OH 44106
Orbital Research, Inc.
4415 Euclid Avenue, Suite 500
Cleveland, OH 44103-3733

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Vehicles Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson Air Force Base, OH 45433-7542

10. SPONSORING/MONITORING AGENCY ACRONYM(S)
AFRL-VA-WP

11. SPONSORING/MONITORING AGENCY REPORT NUMBER(S)
AFRL-VA-WP-TP-2006-345

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
This work was funded in whole or in part by Department of the Air Force contract FA8650-05-M-3540. The U.S. Government has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license to use, modify, reproduce, release, perform, display, or disclose the work by or on behalf of the U.S. Government. This paper was submitted to the Proceedings of the 6th World Congress on Intelligent Control and Automation (WCICA), published by IEEE.

PAO Case Number: AFRL/WS 06-0892 (cleared April 4, 2006).

14. ABSTRACT
Under the boundedness and observability conditions, we present a globally convergent observer for a class of multi-output nonlinear systems which covers the blocktriangular observer forms studied previously in the literature. The result presented in this paper incorporates and generalizes the earlier work on the observer design for single-output observable systems. Extensions to detectable systems and controlled systems are also considered. Examples are given to illustrated the validity of proposed method.

15. SUBJECT TERMS
nonlinear systems, dynamic high-gain observers, universal control, observability and detectability, boundedness

16. SECURITY CLASSIFICATION OF:
- a. REPORT Unclassified
- b. ABSTRACT Unclassified
- c. THIS PAGE Unclassified

17. LIMITATION OF ABSTRACT:
SAR

18. NUMBER OF PAGES
12

19a. NAME OF RESPONSIBLE PERSON (Monitor)
James H. Myatt

19b. TELEPHONE NUMBER (Include Area Code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18
Observer Design for a Class of MIMO Nonlinear Systems

Hao Lei, Jianfeng Wei and Wei Lin
Dept. of Electrical Engineering and Computer Science
Case Western Reserve University
Cleveland, OH 44106, USA

R. M. Kolacinski
Orbital Research, Inc.
Cleveland, OH 44103 USA

Abstract—Under the boundedness and observability conditions, we present a globally convergent observer for a class of multi-output nonlinear systems which covers the block-triangular observer forms studied previously in the literature. The result presented in this paper incorporates and generalizes the earlier work on the observer design for single-output observable systems. Extensions to detectable systems and controlled systems are also considered. Examples are given to illustrate the validity of proposed method.

Index Terms—Nonlinear systems, dynamic high-gain observers, universal control, observability and detectability, boundedness.

I. INTRODUCTION

In this paper, we are interested in the problem of global observer design for a multi-output nonlinear system in the observable canonical form

\[
\begin{aligned}
\dot{x}_{i1} &= x_{i2} \\
\dot{x}_{i2} &= x_{i3} \\
&\vdots \\
\dot{x}_{i,k_i-1} &= x_{i,k_i} \\
\dot{x}_{i,k_i} &= f_i(x), \quad i = 1, 2, \ldots, p \\
y &= (y_1, y_2, \ldots, y_p)^T = (x_{11}, x_{21}, \ldots, x_{p1})^T
\end{aligned}
\]

(1.1)

where \(x = (x_1, x_2, \ldots, x_p)^T \), \(x_i = (x_{i1}, x_{i2}, \ldots, x_{ik_i})^T \), \(k_i \)'s are suitable integers satisfying \(\sum_{i=1}^{p} k_i = n \). Without loss of generality, suppose \(1 \leq k_1 \leq k_2 \leq \cdots \leq k_p \leq n \).

In [3], Gauthier and Bornard illustrated that under a uniform observability condition, the autonomous system

\[
\begin{aligned}
\dot{z} &= f(z) \\
y &= h(z)
\end{aligned}
\]

(1.2)

is transformed into the canonical form (1.1) by the following change of coordinates

\[
x = \Phi(z) = (h_1(z), \ldots, L_1^{k_1} h_1(z), \ldots, h_p(z), \ldots, L_1^{k_p} h_p(z))^T
\]

This work was supported in part by the NSF under grants DMS-0203387 and ECS-0400413, and in part by the AFRL Grant FA8650-05-M-3540. Corresponding author: Professor Wei Lin. linwei@nonlinear.cwru.edu

where \(z \in \mathbb{R}^n \) and \(y \in \mathbb{R}^p \) are the system state and output, respectively. The vector fields \(f : \mathbb{R}^n \to \mathbb{R}^n \) and \(h : \mathbb{R}^n \to \mathbb{R}^p \) are smooth, with \(n \geq p \geq 1 \).

For the autonomous system (1.2), a common approach for the observer design is to find a change of coordinates and an output injection so that (1.2) can be transformed into the so-called observer form. The approach was first introduced by Krener and Isidori [10] and Bestle and Zeitz [1], in the single-output case (i.e., \(p = 1 \)), and then was generalized to the multi-output case by Krener and Respondek [12], Xia and Gao [21] and to discrete-time nonlinear systems by Lin and Byrnes [18]. More recent extensions can be found in the papers by Kazantzis and Kravaris [7], and Krener and Xiao [13].

The observer form based design method was further extended by Rudolph and Zeitz [19] to multi-output autonomous systems with a block triangular observer form, which essentially requires \(f_i(x) \) in (1.1) to have certain triangular structure. In the work [20], an explicit form of nonlinear observer was presented by Shim et al. for a class of multi-output multi-input (MIMO) nonlinear systems in a block triangular form. However, it is required that the bounds of the control inputs and system states be known. The nonlinearities of the systems are assumed to be Lipschitz with a known Lipschitz constant. In the paper by Krener and Kang [11], a step-by-step, local observer design method was developed for MIMO nonlinear control systems which are also in a block-triangular form. An interesting feature of the paper [11] is that the observer gains are nonlinear functions of the estimated states and recursively designed.

In this work, we consider the observer design for the observable canonical form (1.1) which does not have a block-triangular structure, because the nonlinearities \(f_i(\cdot) \)'s in (1.1) depend on the entire system states and all the sub-blocks of system (1.1) are coupled each other. To remove the block-triangular structure restriction in the previous work, we make the following assumption in this paper.

Assumption 1.1: For every \(x(0) = x_0 \in \mathbb{R}^n \), the corresponding solution trajectory \(x(x_0, t) \) of the observable system (1.1) uniquely exists and is globally bounded on
that is, there is an unknown constant \(C \geq 0 \) depending on the initial condition \(x_0 \), such that

\[
|x_{ij}(x_0, t)| \leq C, \quad i = 1, \ldots, p; \quad j = 1, \ldots, k_i, \quad \forall t \in [0, \infty).
\]

Assumption 1.1 is a mild condition for autonomous systems (without control), because it covers an important class of dynamic systems such as the Van der Pol equation and Duffing oscillator [5], [13] — both of them are unstable at the origin but nevertheless have globally bounded solution trajectories from any initial condition. On the other hand, the boundedness condition excludes the class of nonlinear systems with unbounded solutions or having a finite escape time, and hence is somewhat restrictive. This is, however, a trade-off for removing the block-triangular structure assumption.

With the aid of Assumption 1.1, a universal-like global observer can be designed for the multi-output autonomous system (1.1). Following the spirit of our recent work [16], we propose, in section II, an adaptive observer scheme in which a delicate rescaling technique is employed to deal with the inter-coupling terms \(f_i(x) \)'s in (1.1) that consist of the entire system states. Due to the lack of the bound information of the solution trajectories, a saturation technique [8] is used in the construction of multivariable observers but the saturation threshold is tuned by a universal control law instead of being a prescribed constant. As done in the single-output case, the observer gain needs to be tuned adaptively. As a result, the proposed observer is a dynamic system with dimension of \(n + 2 \).

In addition to the main result presented in section II, we present in section III an extension of the global observer design scheme for a class of detectable systems. In section IV, the problem of global observer design is discussed for a class of systems with control inputs. To illustrate the validity of the results, two examples are given in section V.

Due to the space limitation, the proofs of the main results in the paper are omitted.

II. DYNAMIC HIGH-GAIN OBSERVERS FOR OBSERVABLE SYSTEMS

In this section, we will propose a constructive observer design scheme for the globally observable system (1.2) which satisfies the Assumption 1.1.

To introduce the main result, we first recall the definition of a unit saturation function.

Definition 2.1: A unit saturation function \(\text{sat}(s) \) is defined as

\[
\text{sat}(s) = \begin{cases}
1 & \text{if } s > 1 \\
\frac{s}{s} & \text{if } |s| \leq 1 \\
-1 & \text{if } s < -1
\end{cases}
\]

From the definition, it is not difficult to show that

Lemma 2.2: Given real numbers \(s_1, s_2 \) and \(m > 0 \), suppose that \(|s_1| \leq m \). Then,

\[
|s_1 - msat(s_2/m)| \leq |s_1 - s_2|.
\]

For any \(x \in \mathbb{R}^n \) and \(m > 0 \), define mapping \(\text{sat}_m: \mathbb{R}^n \to [-m, m]^n \) as

\[
\text{sat}_m(x) := (msat(x_1/m), msat(x_2/m), \ldots, msat(x_n/m)).
\]

Now, we are ready to state the main theorem of the paper.

Theorem 2.3: For the multi-output system in observer canonical form (1.1), suppose the Assumption 1.1 holds. Then, there exists a global observer. In particular, a globally convergent observer can be constructed as

\[
\dot{x}_{i1} = \dot{x}_{i2} + (MN)a_{i1}(y_t - \hat{x}_{i1}) \\
\dot{x}_{i2} = \dot{x}_{i3} + (MN)^2a_{i2}(y_t - \hat{x}_{i1}) \\
\vdots \\
\dot{x}_{i,k_i-1} = \dot{x}_{i,k_i} + (MN)^{k_i-1}a_{i,k_i}(y_t - \hat{x}_{i1}) \\
\dot{x}_{i,k_i} = f_i(\text{sat}_N(\hat{x})) + (MN)^{k_i}a_{i,k_i}(y_t - \hat{x}_{i1}) \\
N = \gamma \sum_{i=1}^p \frac{(y_t - \hat{x}_{i1})^2}{(MN)^{k_i-1} + \alpha(i)}, \quad N(0) = 1
\]

\[
M = -M + \Delta(N), \quad M(0) = 1 \tag{2.3}
\]

where \(a_{ij} > 0, i = 1, \ldots, p; j = 1, \ldots, k_i \) are the coefficients of the Hurwitz polynomials \(p_i(s) = s^{k_i} + \sum_{j=1}^{k_i} a_{ij} s^{k_i-j} \), \(\gamma \geq 1 \) is a prescribed constant, and \(\Delta(N) \geq 1 \) is a smooth function which can be determined explicitly.

Moreover, all the states of the closed-loop system (1.1)-(2.3) are well-defined and bounded on \([0, \infty) \), and

\[
\lim_{t \to \infty} |x(x_0, t) - \dot{x}(\hat{x}_0, t)| = 0, \quad \forall (x_0, \hat{x}_0) \in \mathbb{R}^n \times \mathbb{R}^n.
\]

Remark 2.4: (2.3) is a universal-like high-gain observer that is motivated by the works [22], [6] and [15]. Different from the traditional high-gain observer [4] [9], the observer gain of (2.3) is composed of two parts. One is the moving saturation level \(N(t) \) which needs to be tuned in a manner similar to the one in [15], [16]. The other one is \(M(t) \), which is used to recover the offset of \(f_i(\text{sat}_N(\hat{x})) \) from \(f_i(x) \), to be updated through a linear ODE driven by a nonlinear function of \(N(t) \). The introduction of non-constant gains \(N(t) \) and \(M(t) \) enables us to deal with issue of the unknown bound of the solution trajectories of the observable system (1.1) or (1.2).

It should be mentioned that \(\Delta(N) \) in the observer (2.3) can be calculated directly based on the observable system (1.1), in particular, by the nonlinear functions \(f_i(x) \)'s. To make this point clear, we introduce the following technical lemma.

Lemma 2.5: (Refer to [17]) Let \(g: \mathbb{R}^n \to \mathbb{R} \) be a \(C^1 \) real-valued function. Then, there exist two smooth functions \(\alpha, \beta : [0, +\infty) \to [1, +\infty), \) such that \(\forall x, z \in \mathbb{R}^n, \)

\[
|g(x) - g(z)| \leq \alpha(||x||)\beta(||z||)\sum_{i=1}^n |x_i - z_i| \tag{2.4}
\]

Using the inequality (2.4), \(|f_i(x) - f_i(\text{sat}_N(\hat{x}))| \) can be estimated as follows. By Assumption 1.1, \(||x(x_0, t)|| \leq C, \forall t \geq 0 \). Since \(||\text{sat}_N(\hat{x})|| \leq N \), by Lemma 2.5, for each
As a consequence, we have the following conclusion.

$$\Delta(N) = \beta^2(N) \geq 1.$$ \hspace{1cm} (2.6)

In the next subsection, it will be shown that such a choice of $\Delta(N)$ suffices to ensure the dynamic system (2.3) being a globally convergent observer of system (1.1).

To sum up, a global observer for the observable system (1.1) with bounded solution trajectories can be constructed in three steps:

- **Step 1.** Pick a suitable $\gamma > 0$ and choose constants $a_{ij} > 0$, $i = 1, \cdots, p$, $j = 1, 2, \cdots, k_i$, such that $p_i(s) = s^{k_i} + \sum_{j=1}^{k_i} a_{ij} s^{k_i-j}$ is Hurwitz.

- **Step 2.** Use inequality (2.5) to estimate $|f_i(x) - f_i(sat_N(\hat{x}))|$ and find $\beta(N) \geq 1$. Then, compute $\Delta(N) = \beta^2(N)$.

- **Step 3.** With the obtained parameters γ, a_{ij}'s, and $\Delta(N)$, design the observer (2.3).

Remark 2.6: It is worth pointing out that the dynamic update law of M can be modified as $\dot{M} = -\sigma M + \Delta(N)$, $\sigma > 0$, $\Delta(N) \geq \sigma$ without affecting the argument in the above proof. A bigger σ makes the convergence of M faster and the gain $L = MN$ smaller, however, the convergence of the estimation slower.

Using Theorem 2.3, it is easy to obtain a corollary which is devoted to the design of a global observer for observable systems in a lower-triangular form:

$$\begin{align*}
\dot{z}_{i1} &= z_{i2} + f_i(z_1) \\
\dot{z}_{i2} &= z_{i3} + f_i(z_1, z_2) \\
&\quad \vdots \\
\dot{z}_{i,k_i-1} &= z_{i,k_i-1} + f_i(z_1, z_2, \cdots, z_{k_i-1}) \\
\dot{z}_{i,k_i} &= f_i(z_i) \\
y &= z_1
\end{align*}$$ \hspace{1cm} (2.7)

where $1 < k_i \leq \cdots \leq k_p$ and $\sum_{i=1}^{p} k_i = n$, $z_i = (z_{i1}, z_{i2}, \cdots, z_{i p_i})^T$ if $1 \leq i \leq k_1$, $z_i = (z_{i1}, z_{i2}, \cdots, z_{ip_i})^T$ if $k_i < i \leq k_p$, $l = 1, \cdots, p-1$; $z = (z_1, \cdots, z_p)$ are states and $y = z_1 = (z_{11}, z_{21}, \cdots, z_{p1})^T \in \mathbb{R}^p$ are the outputs. $f_i(\cdot)$, $i = 1, \cdots, p$, $j = 1, \cdots, k_i$ are smooth functions with $f_i(0, \cdots, 0) = 0$.

Due to the lower-triangular structure, one can explicitly construct a global change of coordinates $x = \Psi(z)$ which renders system (2.7) globally diffeomorphic to system (1.1). As a consequence, we have the following conclusion.

Corollary 2.7: Assume that all the solution trajectories of the lower-triangular system (2.7) from any initial condition are well-defined and bounded on $[0, +\infty)$. Then, a globally convergent observer exists and can be explicitly constructed.

III. **GLOBAL OBSERVER DESIGN FOR DETECTABLE SYSTEMS**

This section is devoted to the design of global observers for a class of detectable nonlinear systems. Consider a class of autonomous systems of the form

$$\begin{align*}
\dot{y} &= A\eta + \Psi(y) \\
\dot{x}_{i1} &= x_{i2} \\
&\quad \vdots \\
\dot{x}_{i,k_i-1} &= x_{i,k_i} \\
\dot{x}_{i,k_i} &= f_i(x), \quad i = 1, 2, \cdots, p \\
y &= (y_1, y_2, \cdots, y_p)^T = (x_{11}, x_{21}, \cdots, x_{p1})^T
\end{align*}$$ \hspace{1cm} (3.1)

where $\eta \in \mathbb{R}^{n-r}$ and $z \in \mathbb{R}^r$ are the system states, $y \in \mathbb{R}^p$ are the outputs, and $1 < k_1 \leq k_2 \leq \cdots \leq k_p$, $\sum_{i=1}^{p} k_i = r$, $\Psi(y)$ is a continuous function and $f_i(\cdot)$'s are smooth functions vanishing at origin.

Clearly, the state $\eta \in \mathbb{R}^{n-r}$ is unobservable from the output y. This is because η has no influence on the system output. However, if the matrix A_u is Hurwitz, one can still design a global observer for the autonomous system (3.1) under the condition that the x-subsystem is bounded.

Theorem 3.1: Suppose the x-subsystem of (3.1) satisfies the bounded assumption in the sense of Assumption 1.1, and A_u is a Hurwitz matrix. Then, a global observer can be constructed for the system (3.1) in the following way:

$$\begin{align*}
\dot{\hat{y}} &= A_u\hat{y} + \Psi(y) \\
\dot{\hat{x}}_{i1} &= \hat{x}_{i2} + (MN)a_{i1}(y_i - \hat{x}_{i1}) \\
&\quad \vdots \\
\dot{\hat{x}}_{i,k_i-1} &= \hat{x}_{i,k_i} + (MN)a_{i,k_i-1}(y_i - \hat{x}_{i1}) \\
\hat{x}_{i,k_i} &= f_i(sat_N(\hat{x})) + (MN)^{k_i}a_{i,k_i}(y_i - \hat{x}_{i1}) \\
\hat{N} &= \gamma \sum_{i=1}^{p} \left(m_i - \hat{x}_{i1} \right)^2, \quad N(0) = 1 \\
\hat{M} &= -\hat{M} + \Delta(N), \quad M(0) = 1
\end{align*}$$ \hspace{1cm} (3.2)

where $a_{ij} > 0$, $i = 1, \cdots, p$, $j = 1, \cdots, k_i$ are the coefficients of the Hurwitz polynomials $h_i(s) = s^{k_i} + \sum_{j=1}^{k_i} a_{ij} s^{k_i-j}$, $\gamma \geq 1$ is a prescribed constant.

The observer (3.2) guarantees that all the states of the closed-loop system (3.1)-(3.2) are well-defined and bounded on $[0, +\infty)$. In addition, $\lim_{t \to +\infty} [\hat{y}(\eta_0, t) - \hat{y}(\eta_0, t)] = 0$, $\lim_{t \to +\infty} [x(x_0, t) - \hat{x}(x_0, t)] = 0$, $\forall (\eta_0, x_0) \in \mathbb{R}^n$, $(\hat{\eta}_0, \hat{x}_0) \in \mathbb{R}^n$.

Remark 3.2: Theorem 3.1 suggests that, in terms of observer design, the observability is not a necessary condition. This is similar to the linear case, i.e., an unobservable yet detectable system still permits the existence of an observer.

Remark 3.3: Theorem 3.1 remains true if the unobservable sub-system is replaced by

$$\begin{align*}
\dot{\hat{y}} &= \varphi(y)(A_u\hat{y} + \Psi(y)), \quad \varphi(y) > 0
\end{align*}$$ \hspace{1cm} (3.3)
In this case, one can still design a global observer using a manner similar to the one suggested in Theorem 3.1, with a slight modification.

IV. OBSERVERS FOR A CLASS OF NONLINEAR SYSTEMS WITH CONTROL INPUTS

We now discuss briefly the observer design problem for the following multi-output multi-input (MIMO) nonlinear system

\[
\begin{align*}
\dot{x}_{i1} &= x_{i2} + g_{i1}(y, u) \\
\dot{x}_{i2} &= x_{i3} + g_{i2}(x, u) \\
&\vdots \\
\dot{x}_{i,k_i-1} &= x_{i,k_i} + g_{i,k_i-1}(x, u) \\
\dot{x}_{i,k_i} &= f_i(x) + g_{i,k_i}(x, u) \\
y &= (x_{11}, x_{21}, \ldots, x_{p1})^T
\end{align*}
\]

(4.1)

where \(x_i = (x_{i1}, x_{i2}, \ldots, x_{ik_i})^T, x = (x_1, \ldots, x_p)^T \in \mathbb{R}^n, u \in \mathbb{R}^m\) and \(y \in \mathbb{R}^p\) are the system state, input and output, respectively, \(k_1 \leq k_2 \leq \cdots \leq k_p, \sum_{i=1}^p k_i = n\). The functions \(g_{ij}(\cdot)\) and \(f_i(\cdot)\) are smooth with \(g_{ij}(0,0) = 0\) and \(f_i(0) = 0\).

We assume that the function \(g_{ij}(x, u) := g_{ij}(y, \bar{x}, u)\), with \(x = (y^T, \bar{x}^T)^T\) and \(\bar{x} = \text{col}(x_{ij}, i = 1, \ldots, p; j = 2, \ldots, k_i) \in \mathbb{R}^{n-p}\), satisfies the following condition.

Assumption 4.1: For \(i = 1, \ldots, p\) and \(j = 2, \ldots, k_i\),

\[|g_{ij}(y, \bar{x}, u) - g_{ij}(y, \bar{x}, u)| \leq c(x, u)(\sum_{s=1}^i \sum_{l=2}^j |x_{sl} - \hat{x}_{sl}|)\]

where \(\hat{x} = \text{col}(\hat{x}_{ij}, i = 1, \ldots, p; j = 2, \ldots, k_i) \in \mathbb{R}^{n-p}\), and \(c(\cdot, \cdot) \geq 0\) is a smooth function.

Assumption 4.2: For any control input \(u(t)\) in the compact set \(U \subset \mathbb{R}^m\) and any initial condition \(x_0 \in \mathbb{R}^n\), the corresponding solution trajectory \(x_u(x_0, t)\) of the controlled system (4.1) is well-defined over the interval \([0, +\infty)\) and \(x_u(x_0, t)\) is globally bounded, i.e.

\[\|x_u(x_0, t)\| \leq C.\]

1. In [20], a nonlinear observer was presented for a class of MIMO nonlinear systems. The system studied there is of a block triangular form. Moreover, it is required that the bounds of the system input and state be known. The system nonlinearities are assumed to satisfy a Lipschitz condition with a known Lipschitz constant.

2. In [11], a step-by-step local observer design method was proposed for a class of multi-input multi-output nonlinear control systems. The systems under consideration are also in a block-triangular form, and the observer gains are nonlinear functions of the estimated states. Due to the local design feature, the boundedness property is automatically satisfied.

3. Assumption 4.2 basically requires that all the solution trajectories do not blow up under bounded control. It contains, for instance, bounded-input/bounded-state (BIBS) systems. It should be noticed that a key feature of the proposed observer does not need the bound information of the solution trajectories.

Under the two assumptions above, we can design a global observer for the MIMO system (4.1) by following the spirit of observer design method in section II.

Theorem 4.3: For the MIMO nonlinear control system (4.1), suppose Assumptions 4.1 and 4.2 hold. Then, a global observer can be designed for the controlled systems (4.1) as

\[
\begin{align*}
\dot{x}_{i1} &= \dot{x}_{i2} + (MN)a_{i1}(y_i - \hat{x}_{i1}) + g_{i1}(y, u) \\
\dot{x}_{i2} &= \dot{x}_{i3} + (MN)^2a_{i2}(y_i - \hat{x}_{i1}) + g_{i2}(y, \hat{x}, u) \\
&\vdots \\
\hat{x}_{i,k_i} &= f_i(\text{sat}_N(\hat{x})) + (MN)^{k_i}a_{i,k_i}(y_i - \hat{x}_{i1}) + g_{i,k_i}(y, \hat{x}, u) \\
\hat{N} &= \gamma \sum_{i=1}^p \left(\frac{y_i - \hat{x}_{i1}}{(MN)^{k_i}}\right)^2, \quad N(0) = 1 \\
\hat{M} &= -M + \Delta(N), \quad M(0) = 1
\end{align*}
\]

(4.2)

where \(a_{ij} > 0, i = 1, \ldots, p; j = 1, \ldots, k_i\) are the coefficients of the Hurwitz polynomials \(s^{k_i} + \sum_{j=1}^{k_i} a_{ij}s^{k_i-j}\), \(\gamma \geq 1\) is a prescribed constant, and \(\Delta(N) \geq 1\) is a smooth function which can be determined explicitly. Moreover, all the states of the closed-loop system (4.1)-(4.2) are well-defined and bounded on \([0, \infty)\). In addition,

\[
\lim_{t \to \infty}[x(x_0, t) - \hat{x}(\hat{x}_0, t)] = 0, \quad \forall (x_0, \hat{x}_0) \in \mathbb{R}^n \times \mathbb{R}^n.
\]

The proof of this theorem can be carried out by modifying suitably the argument of Theorem 2.3. The boundedness property of \(x\) and \(u\) has to be used, but the bound can be unknown.

V. EXAMPLES AND SIMULATIONS

In this section, we give two examples to illustrate the applications of the observer design methods proposed in this paper.

Example 5.1: Consider the two-output observable autonomous systems

\[
\begin{align*}
\dot{x}_{11} &= x_{12} \\
\dot{x}_{12} &= -x_{11} - x_{12}^3 + x_{23} + x_{21}^3 \\
\dot{x}_{21} &= x_{22} \\
\dot{x}_{22} &= x_{23} \\
\dot{x}_{23} &= -3x_{21}x_{22} - x_{22} - x_{12} \\
y &= (y_1, y_2)^T = (x_{11}, x_{21})^T
\end{align*}
\]

(5.1)

This system is of the form (1.1). Choosing Lyapunov function \(V(x) = \frac{1}{2}[x_{11}^2 + x_{12}^2 + \frac{1}{2}x_{21}^2 + x_{23}^2 + (x_{21} + x_{23})^2]\), one can see that the derivative of \(V(x)\) along the trajectories of (5.1) satisfies \(V = -x_{12}^2 \leq 0\), which implies that the system is stable but not asymptotically stable. Hence, all the solutions trajectories of (5.1) are globally bounded, and the design method proposed in Theorem 2.3 can be applied.

To find the function \(\Delta(N)\), we first compute \(\beta_1(N)\) and \(\beta_2(N)\) from \(f_1(x) = -x_{11} - x_{12}^3 + x_{23} + x_{21}^3\) and \(f_2(x) = \)
\(-3x_{21}x_{22} - x_{22} - x_{11}\). By the mean value theorem, there is a \(\xi \in \mathbb{R}^5\) between \(x\) and \(\text{sat}_N(\hat{x})\), such that

\[
|f_1(x) - f_1(\text{sat}_N(\hat{x}))| = \left| \frac{2}{\partial x_{11}} f_1(\xi)(x_{11} - N\text{sat}(\hat{x}_{11})/N) \right|
\]

\[
+ \sum_{i=1}^{3} \frac{3}{\partial x_{2i}} f_1(\xi)(x_{2i} - N\text{sat}(\hat{x}_{2i})/N) \leq (2 + 3\xi_{12}^2 + 3\xi_{21}^2) \cdot \left(\sum_{i=1}^{2} |x_{1i} - N\text{sat}(\hat{x}_{11})/N| \right)
\]

\[
+ \sum_{i=1}^{3} |x_{2i} - N\text{sat}(\hat{x}_{2i})/N| \leq (4 + 6(C + N)^2) \cdot \left(\sum_{i=1}^{2} |x_{1i} - N\text{sat}(\hat{x}_{11})/N| \right)
\]

\[
+ \sum_{i=1}^{3} |x_{2i} - N\text{sat}(\hat{x}_{2i})/N| \leq 6(C^2 + 1)(N^2 + 1) \left(\sum_{i=1}^{2} |x_{1i} - N\text{sat}(\hat{x}_{11})/N| \right)
\]

\[
+ \sum_{i=1}^{3} |x_{2i} - N\text{sat}(\hat{x}_{2i})/N| = \frac{8}{M^2 + N^4} |(x_{11} - \hat{x}_{11})^2 + M^2 N^2 (x_{21} - \hat{x}_{21})^2|
\]

Thus, \(\beta_1(N) = N^2 + 1\).

Similarly, it is deduced from \(f_2(x)\) that \(\beta_2(N) = N^2 + 1\). Hence, \(\beta(N) = \beta_1(N) + \beta_2(N) = 2N^2 + 2\) and \(\Delta(N) = \beta^2(N) = 4(N^2 + 1)^2\). Choose \(a_{11} = a_{12} = a_{21} = a_{23} = 1, a_{22} = 3, \gamma = 8\). Then, the observer for the autonomous system (5.1) can be designed as

\[
\dot{x}_{11} = \dot{x}_{12} + MN(x_{11} - \hat{x}_{11})
\]

\[
\dot{x}_{12} = -N\text{sat}(\hat{x}_{11}) - N^3\text{sat}(\hat{x}_{12}) + N\text{sat}(\hat{x}_{23})
\]

\[
+ N^3\text{sat}(\hat{x}_{21}) + M^2 N^2 (x_{11} - \dot{x}_{11})
\]

\[
\dot{x}_{21} = \dot{x}_{22} + MN(x_{21} - \dot{x}_{21})
\]

\[
\dot{x}_{22} = \dot{x}_{23} + 3M^2 N^2 (x_{21} - \dot{x}_{21})
\]

\[
\dot{x}_{23} = -3N^3\text{sat}(\hat{x}_{21})\text{sat}(\hat{x}_{22}) - N\text{sat}(\hat{x}_{21})
\]

\[
- N\text{sat}(\hat{x}_{21}) + N^3\text{sat}(x_{21} - \dot{x}_{21})
\]

\[
\dot{N} = \frac{8}{M^2 + N^4} (x_{11} - \dot{x}_{11})^2 + M^2 N^2 (x_{21} - \dot{x}_{21})^2
\]

\[
\dot{M} = -M + 4(N^2 + 1)^2
\]

(5.2)

\(N(0) = 1, \quad M(0) = 1\)

Fig. 1 illustrates the transient response of the observer (5.2) and the system (5.1) starting from the initial conditions \((x^{0}_{11}, x^{0}_{12}, x^{0}_{21}, x^{0}_{22}, x^{0}_{23}, \dot{x}^{0}_{11}, \dot{x}^{0}_{12}, \dot{x}^{0}_{21}, \dot{x}^{0}_{22}, \dot{x}^{0}_{23}) = (2, 2, 2, -2, 4, 3, 1, 1, -2, 2, -2, 4, 3, 1, 1, -2, 2, -2, 4, 3, 1, 1, -2, 2)\).
For the closed-loop system, we can design a global observer of the form
\[
\dot{\hat{\rho}} = \dot{v} + 6MN(\rho - \hat{\rho}), \quad \hat{\rho}(0) > 0
\]
\[
\dot{\hat{\phi}} = \hat{\omega} + MN(\phi - \hat{\phi})
\]
\[
\dot{\hat{\omega}} = -\frac{1}{N\text{sat}(\frac{\hat{\omega}}{N})} (2N^2\text{sat}(\frac{\hat{\phi}}{N})\text{sat}(\frac{\hat{\omega}}{N}) + \text{sat}(\frac{\hat{\omega}}{N}) + (MN)^2(\phi - \hat{\phi})
\]
\[
\dot{\hat{N}} = \frac{5}{(MN)^2} ((\rho - \hat{\rho})^2 + (\phi - \hat{\phi})^2), \quad N(0) = 1
\]
\[
\dot{\hat{M}} = -M + (N^2 + 1)^2, \quad M(0) = 1 \quad (5.4)
\]

Figure 3 illustrates the simulation results of the closed-loop system and the observer (5.4) starting from the initial conditions \((\rho^0, \phi^0, \omega^0, \rho^0, \phi^0, \omega^0) = (2, -1, 3, 1, 4, 2, 1, 2)\)

VI. CONCLUSIONS

Under the global boundedness and observability conditions, we have shown that a globally convergent observer can be explicitly designed for the multi-output autonomous system (1.1) or (1.2) without requiring a block-triangular structure nor imposing restrictions on the coupling relations between each sub-block. The constructed observer is of high-gain type but different from the traditional one [9] in the sense that the observer gains here are composed of two time-varying components \(M(t)\) and \(N(t)\), both of them must be adaptively updated in order to deal with the issue of the unknown bound of the solution trajectories. The gain update law is reminiscent from the recent work [15] on universal output feedback control of nonlinear systems with unknown parameters. It was also showed that the proposed observer design technique can be extended to a class of detectable systems and multi-input/multi-output (MIMO) nonlinear systems with bounded solution trajectories, such as bounded-input/bounded-state (BIBS) systems.

REFERENCES

[20] H. Shim, Y.I. Son and J.H. Seo, Saturation technique for constructing universal output feedback control of nonlinear systems with bounded solution trajectories, such as bounded-input/bounded-state (BIBS) systems.