FLOOR CONTROL FOR ACTIVITY COORDINATION IN NETWORKED MULTIMEDIA APPLICATIONS*

H.-Peter Dommel • J.J. Garcia-Luna-Aceves

peter@cse.ucsc.edu • jj@cse.ucsc.edu

Baskin Center for Computer Engineering & Information Sciences
University of California, Santa Cruz, CA 95064

Abstract — Collaboration in networked multimedia applications requires means to coordinate the activities of a dynamically aggregating set of distributed users, working with various multimedia data on heterogeneous platforms. A floor denotes a control right over a shared resource within a collaborative workspace. Floor control, similar to concurrency control for databases, is gradually being integrated into shared applications to orchestrate the access and dynamic process of joint work on shared data, supporting or substituting a human conference chair.

This paper presents a comprehensive view on floor control, analyzing requirements for protocols with respect to the variety of shared tools, describing an architecture to meet these requirements, and finally placing our work in the context of previous efforts.

Keywords — Floor control, collaborative multimedia computing, Computer-Supported Cooperative Work (CSCW).

1. Introduction

For multimedia applications, a gradual shift from standalone to networked environments can be observed. Internet applications demonstrate a popular demand for online sharing of information. However, data sharing occurs mostly on static results from finalized work efforts. The new trend of dynamic collaboration in on-going work by means of a set of integrated applications among members of a workgroup allows for an extension of the prevalent WYSIWIS-paradigm (What You See Is What I See) to a selective WYSIWISH-paradigm (What You See Is What I Share). The scope of local platforms and applications is enhanced to local-area or wide-area collaborative online meetings and man-machine interactivity is extended to a man-machine-man collaborability as a new dimension on top of compatibility, interoperability, and portability.

Simple models of groupware have been implemented a decade ago. New shared environments with increasing functionality and complexity allow for multipoint, multiparty, multi-channel, and multimedia communication. For such teleconferencing applications, new protocols for managing the formation of online meetings, called sessions, and for handling the variety of multimedia streams in collaborative work are needed.

In comparison to the quality of face-to-face meetings, computer-mediated remote interaction has several drawbacks: there is no contextual view of the meeting scenario, “flat” user interfaces are used for mediation between parties, often reducing the full quality of the presented information, and social conventions conveyed in personal presence via visual cues, deictic and mimic gestures are mostly not applicable.

Especially for large sessions with fluctuating membership, a mechanism has to be introduced to support or replace a chairperson in assigning activity permissions to specific participants within the open shared workspace. Of course, the ultimate test is the acceptance by users, making the Quality-of-Service (QoS) of such a mechanism a function of system and usability parameters in order to achieve telepresence.

Floor control, targeted at the application-level, extends the notion of database concurrency control to online shared multimedia objects, but relates to distributed access control [25] for files and admission control for transmission channels as well. Floor control in CSCW is a metaphor for “assigning the floor to a speaker”, which is applicable not only to voice-channels, but more generally to any kind of sharable resource within conferencing and collaboration environments.

Conceptually it is a dynamic counterpart to version control, as applied in software engineering, and analogies can also be found in many real-world problems requiring mutual exclusion, cf. ground control in traffic studies, or semaphors and monitors in parallel processing.

A floor is an individual temporary access or manipulation permission for a specific shared resource, e.g., a telepointer or voice-channel, allowing for concurrent and conflict-free resource access by several conference members. Through floors, race conditions for resources in shared

*This work was supported in part by the Office of Naval Research (ONR) under contract N-00014-92-J-1807.
Floor Control for Activity Coordination in Networked Multimedia Applications

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td></td>
<td>00-00-1995 to 00-00-1995</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor Control for Activity Coordination in Networked Multimedia Applications</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of California at Santa Cruz, Department of Computer Engineering, Santa Cruz, CA, 95064</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
work can be mitigated or, ideally, prevented a priori. We discuss important requirements for floor control protocols and a basic architecture to allow for adaptive control of sharing any kind of multimedia resource within distributed collaborative groups.

2. Requirements for Floor Control

For the design of floor control services the systems' as well as the users' perspective are equally important [6], since floor control is an user-endorsed system aid. The following service criteria are crucial:

- **distributed server control** for individual applications and tracking of floors for the sake of *scalability* [24] in large workgroups, *resilience* in case of drop-outs and site-crashes, *efficiency* with respect to *multipoint* control message traffic and *responsiveness* in floor attribution,
- **correctness** with respect to *liveness*, i.e., deadlock-freedom in floor-assignment,
- **fairness**, designating a reliable and balanced floor policy for all users, although preemption must be possible to override automatic by manual floor assignment,
- **adaptability** with respect to heterogeneous platforms and varying user preferences as well as *extensibility* for new types of shared resources,
- **security** despite *floor transparency*, i.e., specific conferees can intelligibly access any otherwise secured resource in a collaborative domain,
- **usability** for the sake of *acceptance* and *seamlessness* [26] of the intra- and inter-application integration of different media with semantic and temporal synchronization of collaborating sites.

A floor control mechanism has to accommodate a variety of parameters characterizing a teleconferencing or collaboration scenario facilitated by some *session control service* [9]:

Session parameters entail the number of collaborators, their aggregation into (sub)groups, and roles (chair, floor holder etc.) determining their capabilities. Also, their interconnectivity (1-1, m-n), sharing distribution range (local, wide-area, global) and link-types ((un)restricted, bi- or unidirectional) are crucial. For applications to scale beyond a few participants, all communication must be multicast. Resources vary with the applications involved, encompassing telepointers, customized widgets, files, events, windows and views, video and audio channels, still and motion image sequences, virtual spaces, and further software or hardware components. Floors are characterized in configuration (preassigned statically or relocated dynamically), authorization (primary or feedback rights), instantiation (single, or for media like voice with possibly several concurrent speakers, multiple), policy (automatic or chair-guided), and longevity (usage bounded by time, event-occurrence, resource-demand, etc.). These parameters together configure single floors in a causal chain and determine control of the sharing process.

As of now there is no comprehensive notion of QoS in multimedia environments, comprising “hard” network and system parameters like transmission delay bounds as well as “soft” user-related parameters such as turn-taking behavior. The floor control protocol must to entail QoS guarantees at the endsystem level [11] based on the QoS of lower levels, e.g., switching capacity, or buffer space in ATM cross connects. TCP is insufficient, in that its socket abstraction does neither provide resource allocation obeying QoS parameters, nor real-time delivery guarantees or multiparty communication. Work on multimedia real-time protocols is meant to solve these shortcomings.

A floor control protocol has to ensure that conflicts on resources are avoided via an assignment policy that is viable for all users, preventing inconsistencies in the shared work process through mutual exclusion. However, since manual floor control can interfere and inconsistencies in shared data states are possible, a synchronization or regeneration mechanism for making remote sites consistent is needed as well. Negotiation of a floor for a shared object is not only a matter of its availability, but also of the prospect to have sufficient resources available to satisfy the activity. Furthermore, some media like voice and video streams require strict real-time delivery and synchronization, but tolerate some lossiness, whereas textual or graphical objects, e.g., in a collaborative whiteboard, are lossless, but can incur some delay. Floor control has to adapt to these timeliness requirements. We present now briefly a principal architecture to attain floor control of shared multimedia objects and activities, and outline a protocol observing the above specifications.

3. Floor Control Protocol Realization

The requirements motivate an implementation where a floor daemon on each node in a collaboration graph controls local floor assignment of locally owned, but shared resources, synchronizing with remote nodes. It
interfaces with a session control protocol, which orches-
trates sites to reach consensus on group membership
[21] and channel establishment. An object-oriented model
fosters distinction between private and public
data, as well as object linking and inheritance in hier-
archical session control [22]. Floors can not only attach
to media, but also to sessions, permitting or refusing
to join certain meetings. A principal protocol stack is
depicted in Figure 1. Session control focuses on gen-
eral facilitation of online meetings, whereas the floor
control addresses aspects of work coordination, author-
ization and resource sharing.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>application, X</td>
<td>resource coupling, sharing interface</td>
</tr>
<tr>
<td>floor control</td>
<td>authorization, access, activity coordination</td>
</tr>
<tr>
<td>session control</td>
<td>orchestration, authentication, synchronization</td>
</tr>
<tr>
<td>network</td>
<td>reliable end-to-end-services</td>
</tr>
</tbody>
</table>

Figure 1: Basic floor control architecture.

We distinguish between the contributor or floor con-
troller of a specific resource, the person with tempo-
rary activity rights on that resource, called the floor
holder, and regular session attendees as collaboration
bystanders and tentative floor holders. Floor control
principles are based on standard concurrency control
like two-phase locking, but must accommodate the in-
teractive nature of collaboration between users. Re-
source dependency detection, resource reservation, and
dynamic voting on a floor holder are currently em-
ployed techniques, based on active token passing or
passive resource-activity sensing to achieve mutual ex-
clusion between critical work on shared data. Furth-
ermore, different policies, i.e., scheduling and queueing
techniques for floors requests, need to be offered with-
in the same floor control mechanism on all sites to allow
for adaptation to different resources. Examples are
chair-guidance, round-robin, demand-intensity, first-
come-first-served, and least-recently-served.

The resource-adaptive protocol FACE (Floor Assign-
ment in Collaborative Environments) [7] operates on
the above premises. FACE features contention avoid-
ance without predefined token scheduling, and allows
for automatic or chair-guided conference facilitation. It
frees 4 floor states, designating local or remote floor
attribute, and it is adaptive by using resource type
descriptors incorporated in message packets to check for
usage authorization of different kinds of media. A
基本 premise is that no failures occur on links. To en-
sure fault tolerance, a fifth protocol state characterizes
exceptions like site-crashes and link-failures, inciting
a distributed election algorithm to regenerate a stable
scenario, if necessary by determining new controllers
and holders for orphaned floors. The control packets
sent between sites contain identifiers on the session,
host, group and subgroup, the collaboratee and role
within the session, the application with adjunct shared
resources, and finally, the specific floor. Selection of a
floor holder is multicast to involved sites based on the
request label and the used assignment policy.

Since a large set of conferencing parameters has to
be tracked on every site for all users and resources,
each workstation must have the computing resources
to deal with the protocol and interoperability over-
head implied by the usage of heterogeneous platforms.
For standardization and extensibility, an application-
programmers-interface (API), as outlined in Figure 2,
is needed.

User-interfaces designed for standalone work or mere
replication of views have to be redesigned for true in-
formation sharing. One approach, based on a modifi-
cation of X, is to drag-and-share in a “virtual shared
desktop”. With this paradigm a resource becomes pub-
lic across connected sites, if it is declared as shared
by dragging it into a symbolic “sharing-pool window”,
making it visible and ready for coupling to involved
sites. For every user, a pull-down list of his moment-
ary public resources must be available. A more so-
plicated representation can be based on a semantic
net with zoom-in capabilities [23], reflecting the hier-
archical nature of the session model and allowing for
entering and leaving of specific sessions and levels via
the GUI (graphical user-interface). Floor states can
be depicted by visual or auditory cues, e.g., coloring a
shared objects in red depicts a used floor and locked
resource. Floor policies, usage allowance time etc., must
be adjustable in menus and presetable in configura-
tion files. To allow for replay of tool usage and moni-
toring, a logging mechanism is useful. Automatic floor
migration can be triggered based on time or events, or
via periphery, e.g. mouse-buttons or data-glove ges-
tures. Overall, user-acceptance can be fostered via
non-intrusiveness of floor assignment, accessibility and
transparency in the GUI.
4. Related Work

Roots of floor control research in the context of CSCW and Computer-Mediated-Communication (CMC) can be found in cognitive research on turn-taking behavior in conversations in order to increase the quasi-face-to-face effectiveness of CMC [16, 19]. Looking at the variety of groupware [18], existing systems can be coarsely categorized in two groups:

1. systems supporting face-to-face meetings in real-world conferencing, e.g., via a camera-based DigitalDesk [27], Clearboards [13] as digitizer-screens allowing for local work with awareness of remote gestures and processes, TeamWorkStations [14], merging real desktop activities with computer-represented data via a camera interface and translucent overlay, or media-monitored meeting rooms in MediaSpaces [2]. Such testbeds have served as “catalysts” for studies in remote communication with “manual” floor negotiation.

2. systems “virtualizing” and substituting face-to-face meetings, allowing for entirely computer-based conference conduction in distributed sessions. Within this paradigm, we can identify three major categories, mentioning a few systems among many existing ones, which were significantly innovative with respect to floor control:

 • Collaboration-unaware systems focus on window synchronization, making sharing an interface-oriented add-on to the application with floor control as a “spy-mechanism” to trace and filter collaborative requests:
 Colab [26] was one of the first collaborative systems, addressing floor control as a conflict resolution strategy based on a dynamic voting scheme. Sharing is based on verbally coordinated and unsynchronized broadcasts and the floor, symbolized by a busy signal, warns graphically about editing-conflicts. Timestamps and two-phase file locking were employed. Automatic reservation-based and manual floor-passing are distinguished for MPCAL and RTCAL, collaborative editing and real-time calendar systems [12]. The VConf system [15] utilizes floor control via a “conference manager” interfacing with a user front-end and an agent mediating the I/O between shared data. A centralized real-time conferencing approach is favored in MMConf [4], where floor-controlled telepointers connect simultaneous remote activities. Floors are assigned in sequence via token, and each site has one floor manager, communicating with other managers about floor passing. The employed protocol is unsafe, since applications can refuse to relinquish the floor, or the floor can be in transit, not held by any manager, forcing re-transmissions of a request. If the apparent floor holder’s site becomes inaccessible, the least-recently created remaining manager regenerates the floor token based on an out-of-date record. JVTOS [5] integrates session control with a fixed set of floor passing policies on telepointers. A distributed activity-sensing floor control algorithm was realized in CECED [3], based on a pseudo X-server that multiplexes data from tapped multicast links to selected sites.

 • Collaboration-aware systems feature inherent support of resource-linking and collaborative activities: MarkUp (co-authoring-review system, where collaborative changes to a document are merged after modification – every collaborator has a floor and efforts are integrated a posteriori), Share (screen sharing with different floor control modes), Shdr (shared drawing with a chalk-passing mechanism for floor-migration), Sketchpad (multiuser sketchpad with separate labeled pointers per user), Talkshow (multiuser whiteboard with differently colored pens), XT-confer (groupware-toolkit with “open” or “closed” floors and automatic selective sharing for different media), and YarnDemo (chair-guided conferencing with user-competition for the floor after each contribution). Public-domain conferencing for the MBone (virtual internet Multicast IP Backbone) [10] includes the video tool vic, the whiteboard wb, and the visual audio tool vat, which supports voice-activated floor switching. Some coherency for these independent and experimental tools is provided via integration into the session control directory.

 • Collaboration-transparent [17] systems are dedicated applications using generic conferencing tools for text, video and audio conferencing as enrichments to their inherent collaboration architecture, making them a hybrid of the first two categories. Examples are collaborative visualization systems like Shasta for medical imaging [1], and C Spray for marine sciences [20]. Both systems supply a notion of floor control within asymmetric workspaces, with the latter system serving as our testbed for floor control issues. Recently, the conceptual integration of floor control within intelligent-agent architectures has been proposed [8].

Drawbacks of current systems are that floor control is still in its infantile stage. Long-haul networks or large-scale conferencing are not supported, many performance problems can be observed with higher volume data collaboration, data inconsistencies across coupled sites can occur, and sharing focuses only on few media with simplistic floor policies.
5. Conclusion and Perspective

Existing systems show the many faces of floor control. There is a lack of software designed to coordinate and control various interrelated media and research on floor control is intended to alleviate this. “Every access to every (shared) object should be checked for current authority” is the axiom of total mediation [25], however, only few applications in the current spectrum of CSCW software feature a notion of floor control for any type of shared object. Future research needs to integrate results from both the systems level as well as human factors, looking at a message ordering semantics for multicasting as well as at user-modeling and interface issues. Graphical user interfaces will have to be extended towards shared multimedia presentation capabilities and incorporate a notion of a “panoramic view” of conference surroundings to approximate face-to-face meeting quality. Not only will future multiprotocol suites for collaboration have to be self-adapting to the heterogeneity of platforms and software environments, but display degrees of “learnability” towards the users served and the services to be provided.

Our approach is not intended as a “panacea” for conferencing environments and any kind of media, but as another integrating step towards a more flexible, comprehensive and rich notion of collaboration, where groupwork is facilitated and secured. Currently we work on implementing an API to realize an increasing subset of a full-fledged floor control service within the BayLink ATM-testbed, supporting collaboration between marine scientists, providing information service to schools and museum visitors, and experimenting with distance learning between our university and its remote extension facility.

In the long run, floor control, as an essential concept of collaborability, will be an integral part of collaborative software. More challenges wait in the form of ubiquitous computing where users will join sessions via faulty links from wireless hand-held devices or mobile video terminals.

References

