AIR FORCE RESEARCH LABORATORY

HCI Design Patterns for C2: A Vision for a DoD Design Reference Library

Terry Stanard
Jeffrey L. Wampler
Kendall Conrad
Human Effectiveness Directorate
Wright-Patterson AFB OH

Glenn Osga
Space and Navel Warfare Systems Ctr
San Diego CA

March 2006

20061128056

Air Force Research Laboratory
Human Effectiveness Directorate
Warfighter Interface Division
Cognitive Systems Branch
Wright-Patterson AFB OH 45433
HCI Design Patterns for C2: A Vision for a DoD Design Reference Library

March 2006

Approved for public release; distribution is unlimited. Cleared by AFRL/WS-06-0802 on 29 March 2006.
HCI Design Patterns for C2: A Vision for a DoD Design Reference Library

24 January 2006

Terry Stanard, PhD
Jeff Wampler
Kendall Conrad
Human Effectiveness Directorate
Air Force Research Laboratory

Glenn Osga, PhD
User-Centered Design
C2 Technology & Experimentation Division
Space & Naval Warfare Systems Center San Diego
Overview

- **Situation:** Human Computer Interface (HCI) critical factor in efficiency and effectiveness of modern Command and Control (C2)

- **Complication:** Cognitive Systems Engineering (CSE) lacks HCI design methodology

- **Implication:** Expensive custom designs, and uncertain outcomes, marginalizes CSE contributions in Systems Engineering projects

- **Solution:** Reusable HCI design patterns for C2 cognitive work

- **Benefit:** CSE delivers reusable HCI software, meeting affordability goals and assurance of HCI performance
DoD Requirement

- Command & Control (C2)
 - Planning, coordinating, executing, monitoring, replanning

- Network-Centric Operations
 - Increased information access for C2
 - Can increase effectiveness & efficiency
 - But introduces new cognitive demands
 - Human Computer Interface (HCI)
 critical element of system

Net-Centric World

Operator

Distributor subject to limitations on title page
Problem
Gaps in HCI Design & Development

Work Characterization
- Work Analysis
- Work Model(s)

Design Characterization
- Design Concepts
- Design Specification

Implementation Characterization
- Implementation Concepts
- Implementation Specification

Work Description
- Work Summary
- Work Models

Work-centered Storyboards, Scenarios & Demo

Testing
- Final Software Product

Disturbance subjected to limitations on the page

Modified from R. Eggleston
Scientific Objective

Methodology to Reuse HCI Designs

Technology already reused when meets AF requirements, so...

Similar Work

Tailored HCI Reuse
HCI Design Patterns
Assisting Common IT Interactions

History of the Science foundation
- Origin in building architecture (Alexander, 1977)
- Software patterns to share coding approaches
- HCI Design Patterns
 - "...a structured textual or graphical description of a proven solution to a recurring design problem" (Borchers, 2001)
 - Several online pattern libraries (www.welie.com)
 - Framed around common interactions with a class of IT (web, desktop app, mobile device)

Website / Navigation:
"Double-Tab"

Desktop App / File Selection:
"Preview"

Mobile Phone: "Selection"
HCI Design Patterns

Assisting Complex Cognitive Work

Work-Aiding Approach

- HCI design patterns assisting skilled task performance in operational domains
- Frame HCI design patterns around interactions with a "work field"
 - Work Function Types (Eggleston, 2002)
 - Decisions & typical problem cases
 - Collaboration
 - Product development
 - Work management
 - Context: Factors & Constraints
 - Work Field construct
 - Ecological Psychology (e.g., James Gibson, John Flach)
 - Cognitive Systems Engineering (e.g., Jens Rasmussen, Kim Vicente)

Work Functions: Control & monitor AC attitude, heading, & airspeed

Contextual Factors: Keep eyes on the sky, especially takeoff and landing

HCI Solution: Graphical & alphanumeric Information overlays cockpit view window

Work-Aiding HCI Pattern?
Identifying & Validating Patterns
Statistical vs. Content Basis

- Traditional HCI Design Patterns: Statistical validation based on large design sample size

- Work-aiding approach: Reverse engineer the few content-valid, cognitively-based C2 designs
 - Inductively reason HCI design patterns (general) from small number of examples (specific)
 - Decompose HCI design
 - Indirect aiding: Work Field Representations, Traditional HCI design patterns
 - Direct aiding: HCI automation patterns
 - Decompose work
 - Work functions supported by design
 - Work factors & constraints represented in design
 - Build hierarchy of C2 work functions, associate with work-aiding HCI design patterns
Strategic Approach
Work-Aiding HCI Design Patterns

Design Gap

Development Gap

Work Characterization

- Work Analysis
- Work Model(s)
- Work Description

Design Characterization

- Design Concepts
- Prototype
- Design Specification
- Work-centered Storyboards, Scenarios & Demo

Implementation Characterization

- Implementation Concepts
- Implementation Specification
- Testing
- Final Software Product

Modified from R. Eggleston
Facilities

- AMC TACC/XONI Integration Facility – Scott AFB
 - Five HCI development projects to date
 - C2 operator access
- HECS In-House Prototyping Laboratory
 - HCI prototyping and human subject testing
 - Data feeds from AMC
 - Secure room
Technical Objectives

• Models & Methodologies
 - General theory of work
 - Work pattern template
 - Decomposing work-field representation
 - HCI automation pattern catalog
 - Validation, Verification & Accreditation

• Communication & Design Aids
 - Library of C2 work patterns
 - Library of HCI Design Patterns...
 • Re-usable, work-aiding, flexible
 • Associated with C2 work patterns
 - Software modules embedding design patterns
 • Plug-and-play in IDE
 • Tailorable HCI
Technical Objectives

- Models & Methodologies
 - General theory of work
 - Work pattern template
 - Decomposing work-field representation
 - HCI automation pattern catalog
 - Validation, Verification & Accreditation

- Communication & Design Aids
 - Library of C2 work patterns
 - Library of HCI Design Patterns...
 - Re-usable, work-aiding, flexible
 - Associated with C2 work patterns
 - Software modules embedding design patterns
 - Plug-and-play in IDE
 - Tailorable HCI
Inductive Pattern Mining

Case: Air Mobility Mission Management

- Weather Hazard Monitoring (AMC/TACC)
- MAF/CAF Escort Mission Planning & Execution (AMC/TACC & ACC/AOS)

Pattern Reuse
- Geospatial Reference
- Aerial Routes
- Weather Overlays
- Airfield status
- Exception Reporting

Multi-Mission Hazard Summary

Mission Planning Status

Distribution subject to limitations on file page
Vision for Design Tool

• HCI Wizard within an Integrated Development Environment
 - Navigate C2 work function taxonomy
 - Review potential, relevant HCI patterns per work functions
 - Select, assemble, & populate HCI patterns for specific project
 - Output: Notional HCI Design, Skeletal HCI Specification

MS Excel Chart Wizard
Vision for Joint Operations

- DOD Pattern Library
 “Flexible standardization” of HCI in C2
 “Human interoperability” across armed services
 Foundation for C2 training

Enterprise Resource Architecture

Distribution subject to limitations on title page
Value to Stakeholders

- Cognitive Systems Engineering (CSE)
 - Establishes *science of design* through evolutionary C2 pattern development
 - Preserves work-aiding properties of HCI throughout product lifecycle
 - Incorporates legacy HCI guidelines, traditional HCI design patterns

- Systems Engineering
 - CSE delivers *software*: "plug and play" HCI designs developed in an IDE
 - System Engineers can anticipate human performance parameters associated with HCI

- Program Managers
 - Meets *affordability* through software reusability
 - Reduces project risk associated with HCI

- C2 & Net-Centric Ops
 - Assures HCI success in aiding human operator
 - Promotes *human interoperability* across distance, missions
Collaboration
Past, Present, & Future

• Past
 - Northrop Grumman (Co-developed initial work-aiding approach)
 - SRA (Four design patterns for Time Critical Targeting)

• Present & Future
 - SPAWAR
 • DOD Pattern Library
 • Joint design pattern methodology
 - HCI Reuse Case Study (HECS)
 • Global Strike AOC, Barksdale AFB
 - DOD HFE TAG
 - Other DOD Agencies sought
Summary

• **Situation:** Human Computer Interface (HCI) critical factor of Net-Centric Command and Control (C2)

• **Complication:** Cognitive Systems Engineering (CSE) lacks HCI design methodology – “Design Gap”

• **Implication:** Expensive custom designs, and uncertain outcomes, marginalizes CSE contributions in Systems Engineering projects

• **Solution:** Methodology and library of HCI Design Patterns assisting C2 cognitive work

• **Benefit:** CSE delivers reusable HCI software embedded in development environment, meeting affordability goals and advancing human interoperability within joint missions

~ Invitation to Participate ~

Situation

- The concept of Net Centric Ops offers the opportunity for sharing information between distributed warfighters and systems like never before.
- C2 centers are a natural benefactor of NCO since, by design, they coordinate and direct operations that are distributed.

Complication

- However, NCO is a double-edged sword for C2 centers. While it offers information sharing like never before, it creates new task demands of info management with the potential for warfighters to get lost in the sea of data.
- With NCO in C2 centers, the HCI becomes the gateway into the distributed network, with the dual job of accessing and presenting information in useful manner, while filtering out what is irrelevant.
- But currently, there are no established HCI solutions for command and control.
- There is also no standard methodology for translating the cognitive work requirements associated with C2 into work-aiding HCI designs for C2.

Implication

- As a result, each HCI design for C2 tends to be one-of-a-kind solution. One-of-a-kind solutions means longer development time and cost. They also mean there can be no guarantee early in the stages of a design project that the finished product will assist human operators in their work within C2.

Solution

- We advocate developing a library of HCI templates designed specifically to help with C2 operations. The HCI templates can be reused in different HCI design projects where the work requirements are similar.

Personal Introduction

- My name is Terry Stanard, and my background is cognitive systems engineering. Prior to joining the Human Effectiveness directorate, I worked for 6 years at Klein Associates investigating and modeling cognitive work requirements and recommending HCI designs in Army, Navy, and Air Force domains of operation.

More Information

Cognitive systems engineering has collectively amassed enough experience modeling work and designing work-aiding HCLs, that we should be able to build a library of reusable HCI templates for C2. My goal for this presentation is to acquaint you with the problem and our approach, and attract your participation in this effort. Reusable HCI templates can provide HCI designers with proto-designs that are known to assist human operators perform certain C2 work functions. They can reduce the HCI development time and increase assurance of a performance benefit to the HCI.
Summary

HCI Design Patterns for C2 Systems

Design Gap Development Gap

Work Characterization

Design Characterization

Implementation Characterization

Work Analysis

Design Concepts

Implementation Concepts

Work Model(s)

Design Specification

Implementation Specification

Work Aiding

Prototype

Testing

HCI Patterns

Work-centered

Final Software Product

Storyboards, Scenarios & Demo

Distillation subject to limitations on this page

Modified from R. Eggleston
Questions?

Brief Name: Terry Stanard
Phone (com): 312.255.9938
Email: terry.stanard@wpafb.af.mil