A Utility Accrual Scheduling Algorithm for Real-Time Activities With Mutual Exclusion Resource Constraints

Peng Li, Binoy Ravindran, Haisang Wu, and E. Douglas Jensen

Abstract

This paper presents a uni-processor real-time scheduling algorithm called the Generic Utility Scheduling algorithm (which we will refer to simply as GUS). GUS solves an open real-time scheduling problem — scheduling application activities that have time constraints specified using arbitrarily shaped time/utility functions, and have mutual exclusion resource constraints. A time/utility function is a time constraint specification that describes an activity’s utility to the system as a function of that activity’s completion time. Given such time and resource constraints, we consider the scheduling objective of maximizing the total utility that is accrued by the completion of all activities. Since this problem is \(\mathcal{NP}\)-hard, GUS heuristically computes schedules with a polynomial-time cost of \(O(n^3)\) at each scheduling event, where \(n\) is the number of activities in the ready queue. We evaluate the performance of GUS through simulation and by an actual implementation on a real-time POSIX operating system. Our simulation studies and implementation measurements reveal that GUS performs close to, if not better than, the existing algorithms for the cases that they apply. Furthermore, we analytically establish several timeliness and non-timeliness properties of GUS.

Index Terms

Real-time scheduling, time/utility functions, utility accrual scheduling, resource dependency, mutual exclusion, overload management, resource management

Peng Li, Binoy Ravindran, and Haisang Wu are with the Real-Time Systems Laboratory, Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061. E-mail: \{peli2,binoy,hswu02\}@vt.edu.

E. Douglas Jensen is with the MITRE Corporation, Bedford, MA 01730-1420, E-mail: jensen@mitre.org.

This work was supported by the US Office of Naval Research under Grant N00014-00-1-0549, by The MITRE Corporation under Grant 52917, and by QNX Software Systems Ltd. through a software grant.
<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td></td>
<td>00-00-2006 to 00-00-2006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Utility Accrual Scheduling Algorithm for Real-Time Activities With Mutual Exclusion Resource Constraints</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MITRE Corporation, 202 Burlington Road, Bedford, MA, 01730-1420</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
I. INTRODUCTION

Real-time computing is fundamentally concerned with satisfying application time constraints. The most widely studied time constraint is the deadline. A deadline time constraint for an application activity essentially implies that completing the activity before the deadline implies the accrual of some “utility” to the system and that utility remains the same if the activity were to complete anytime before the deadline. With deadline time constraints, one can specify the hard timeliness optimality criterion of “always meet all hard deadlines” and use hard real-time scheduling algorithms [1] to achieve the criterion.

In this paper, we focus on complex, dynamic, adaptive real-time control systems at any level(s) of an enterprise — e.g., in the defense domain, from devices such as multi-mode phased array radars to battle management. Such systems include “soft” as well as hard time constraints in the sense that completing a time-constrained activity at any time will result in some (positive or negative) utility to the system, and that utility depends on the activity’s completion time.

Jensen’s time/utility functions [3] (abbreviated here as TUF’s) allow the semantics of soft time constraints to be precisely specified as the utility to the system that results from the completion of an activity as a function of the activity’s completion time. Figure 1 shows example soft time constraints specified using TUF’s.

![Soft Timing Constraints Specified Using Jensen’s Time-Utility Functions](image)

Fig. 1. Soft Timing Constraints Specified Using Jensen’s Time-Utility Functions

When time constraints are expressed with TUF’s, the scheduling optimality criteria are based on factors that are in terms of maximizing accrued utility from those activities — for example, maximizing the sum [2], or the expected sum [3], of the activities’ attained utilities. We call such criteria Utility Accrual (UA) criteria. In general, other factors may also be included in the optimality criteria, such as resource dependencies and precedence.
Scheduling tasks with non-step TUF’s has been studied in the past, most notably in [3] and [4]. However, to the best of our knowledge, Locke’s Best Effort Scheduling Algorithm [3], called LBESA, is the only algorithm that considers almost arbitrarily shaped TUF’s.

Besides arbitrarily shaped TUF’s, dependencies often arise between tasks due to the exclusive use of shared non-CPU resources. Sharing of resources that have mutual exclusion constraints between deadline-constrained tasks has received significant attention in the past [5], [6]. However, little work has been done for sharing resources (that have mutual exclusion constraints) between tasks that have time constraints expressed using TUF’s. In [2], Clark considers mutual exclusion resource dependencies, but for tasks with only step TUF’s. Furthermore, none of the prior research on step TUF’s [7], [8] and non-step TUF’s [4], [3], [9] consider resource dependencies.

In this paper, we encompass these two task models. That is, we consider the problem of scheduling tasks that have their time constraints specified using arbitrarily shaped TUF’s, and have mutual exclusion resource dependencies. This scheduling problem can be shown to be \(\mathcal{NP} \)-hard. We present a heuristic algorithm for this problem, called the Generic Utility Scheduling algorithm, which we will refer to simply as GUS. GUS has a polynomial-time complexity of \(O(n^3) \) at every scheduling event, given \(n \) tasks in the ready queue.

We study the performance of GUS through simulation and implementation. The simulation studies reveal that GUS performs very close to, if not better than, the best existing algorithms for the cases to which they apply (subsets of the cases considered by GUS). Furthermore, we implement GUS and several other existing algorithms on top of the QNX Neutrino real-time operating system using POSIX API’s. Our implementation measurements reveal the strong effectiveness of the algorithm.

The rest of the paper is organized as follows. We first overview a real-time application to provide the motivating context for soft time constraints in Section II. In Section III, we introduce our task and resource models, and the scheduling objective. Section IV discusses the heuristics employed by GUS and their rationale. Before describing the GUS algorithm, we introduce notations used in the descriptions and GUS’ deadlock handling.
mechanism in Section V. We describe the GUS algorithm in Section VI. Section VII analyzes the computational complexity of GUS. We establish several timeliness and non-timeliness properties of the algorithm in Section VIII and Section IX, respectively. Performance evaluations through simulation and implementation are presented in Sections X and XI, respectively. We compare and contrast past and related efforts with GUS in Section XII. Finally, the paper concludes by describing its contributions and future work in Section XIII.

II. Motivating Application Examples

As an example of real-time control systems requiring the expressiveness and adaptability of soft yet mission-critical time constraints, we summarize an application from the defense domain: a coastal air defense system [10] that was built by General Dynamics (GD) and Carnegie Mellon University (CMU).

Time constraints of two application activities in the GD/CMU coastal air defense system — called radar plot correlation and track database maintenance — have similar semantics. The correlation activity is responsible for correlating plot reports that arrive from sensor systems against a tracking database. The maintenance activity periodically scans the tracking database, purging old and uncorrelated reports so that stale information does not cause errors in tracking.

Both activities have “critical times” that correspond to the radar frame arrival rate: it is best if both are completed before the arrival of next data frame. However, it is acceptable for them to be late by one additional time frame under overloads. Furthermore, the correlation activity has a greater utility to the system during overloads. TUF’s in Figure 2(a) reflect these semantics.

![Utility curves for radar plot correlation and track database maintenance](image-url)
The *missile control activity* of the air defense system provides timely course updates to guide the intercepter such that the hostile targets can be destroyed. However, the frequency and importance of course updates at the desired time depend upon several factors.

As the distance between the target and the interceptor decreases, more frequent course corrections are needed (see arrow 1 in Figure 2(b)). In the meanwhile, it is best to abort a late update and restart course correction calculations with fresh information. Arrow 2 in Figure 2(b) illustrates how this requirement is reflected by a decrease in the utility obtained for completing the course correction activity after the critical time.

The utility of successfully intercepting a target depends upon the “threat potential” of the target. The threat potential depends upon changing parameters such as the distance of the target from the coastline. For example, intercepting a target that has deeply penetrated inside the coastline yields higher utility than a target that is farther away from the coastline. This is reflected by arrow 3 in Figure 2(b) that shows how the function is scaled upward as the threat increases. Figure 2(c) shows how the shape of the TUF dynamically changes.

A more recent application, called AWACS (Airborne WAricing and Control System) surveillance mode tracker system [11] was also built by The MITRE Corporation and The Open Group, and used similar TUF’s for describing time constraints and scheduling (see Figure 3).

![TUF Diagram](image)

Fig. 3. Track Association TUF in MITRE/TOG AWACS

III. Models and Objectives

This section describes the task and resource models, and the optimization objectives of GUS. In describing the models, we outline the scope of the research.
A. Task and Resource Models

We consider the “thread” abstraction—a single flow of execution—as the basic scheduling entity in the system. In this paper, a “thread” is equivalent to a “task” or a “job” in the literature. Furthermore, we assume that one thread can be preempted by another. We denote a thread as T_i.

A thread can be subject to certain time constraints. As Jensen points out in [12], a time constraint usually has a “scope”—a segment of the thread control flow that is associated with a time constraint. We call such a scope as a “scheduling segment.” Following [12], we call a thread a “real-time thread” while it is inside a scheduling segment. Otherwise, it is called a “non-real-time thread,” because no time constraint is imposed here. It is important to note that TUF-driven scheduling is general enough to schedule non-real-time and real-time threads in a consistent manner: the time constraint of a non-real-time thread is modelled as a constant time/utility function whose value (utility) represents its relative importance.

GUS allows disjointed and nested scheduling segments (see Figure 4 for an example). Thus, it is possible that a thread executes inside multiple scheduling segments. If that is the case, GUS uses the “tightest” time constraint for scheduling, which is application-specific (e.g., the earliest deadline for step TUF’s). Therefore, for a real-time thread, the scheduler only uses one time constraint for scheduling purpose at any given time. From the perspective of the scheduler, a scheduling segment corresponds to a real-time thread. Thus, the terms “scheduling segment,” “thread,” and “task” are used interchangeably in the rest of the paper, unless otherwise specified.

1) Basic Assumptions: To model non-CPU resources and resource requests, we make the following assumptions: (A.1) Resources are reusable and can be shared, but have mutual exclusion constraints. Thus, only one thread can be using a resource at any given time; (A.2) Only a single instance of a resource is present in the system; and (A.3) A resource request (from a thread) can only request a single instance of a resource.
Assumption A.1 applies to physical resources, such as disks and network segments, as well as logical resources such as critical code sections that are guarded by mutexes. Assumption A.2 implies that if multiple identical resources or multiple instances of the same resource are available, each identical instance of a resource should be considered as a distinct resource. Furthermore, Assumption A.2 requires that a thread explicitly specifies which resource it wants to access. This is exactly the same resource model as assumed in protocols such as Priority Inheritance Protocol [5] and Priority Ceiling Protocol [5]. Without loss of generality, we make Assumption A.3 mainly for practical reasons. If multiple resources are needed for a thread to make progress, the thread must acquire all the resources through a set of consecutive resource requests.

2) Resource Request and Release Model: During the life time of a thread, it may request one or more shared resources. In general, the requested time intervals of holding resources may be overlapped.

We assume that a thread can explicitly release resources before the end of its execution. Thus, it is necessary for a thread that is requesting a resource to specify the time to hold the requested resource. We refer to this time as HoldTime. The scheduler uses the HoldTime information at run time to make scheduling decisions.

3) Abortion of Threads: There are several reasons to abort a thread. First a thread may have to be aborted to resolve a deadlock. Secondly and more commonly, in case of resource requests, the scheduler may decide to abort the current owner thread and grant the resource to the requesting thread. The motivation for doing so is that executing the latter thread (that became eligible to execute with the granting of the resource) may lead to greater total timeliness utility than executing the former owner thread, in spite of the overhead associated with doing so.

Aborting a thread usually involves necessary cleanup operations by both the system software (e.g., operating system or middleware) and one or more exception handlers in the application (in that order of execution). We refer to the time consumed by this cleanup as AbortTime \(^1\), and say that the thread is executing in ABORT mode during that time.

\(^1\)The POSIX specification [13] uses pthread_cancel() to force a thread terminate. Thread cancellation handlers (similar to exception handlers) should be invoked before the designated thread terminates. Thus, execution times of the cleanup handlers are measured as AbortTime in our model.
Otherwise, the thread is executing in \textit{NORMAL} mode.

Furthermore, some threads cannot necessarily be aborted at arbitrary times, or even cannot be aborted at all. Often, application-specific properties of the controlled physical environment require that the environment’s state be transitioned to a physically safe and stable state before a thread can be aborted. We refer to this aspect of a thread as its “abortability.” For those threads that can be aborted, an application can specify the allowable abortion points.

As an example, the POSIX specification allows two types of abortions (or “cancellation” in POSIX terminology): (1) a thread abortion can take effect any time during the execution of the thread, called “asynchronous cancellation”; and (2) a thread abortion can only happen at some well defined cancellation points, called “deferrable cancellation.”

If a thread can be asynchronously cancelled (or aborted), execution time of its cleanup handler(s) is measured as \textit{AbortTime} in our model. In case that abortions can only happen at well-defined cancellation points, \textit{AbortTime} consists of the execution time of the thread cleanup handler(s) and the execution time from acquiring the resource until the nearest cancellation point. \footnote{This time interval only measures the \textit{upper bound} on the time needed to reach the nearest cancellation point. At run-time, a thread may need less time to reach the nearest cancellation point, because the thread may have held the resource for some amount of time.} The exception is for the case where the nearest cancellation point happens \textit{after} the resource is released. For this case, \textit{AbortTime} should be set to infinity, to indicate that the thread cannot be aborted while it is holding the resource. Likewise, the infinite \textit{AbortTime} can be used for other cases where it simply means that a thread is not abortable, holding a resource or not.

\textbf{B. Time-Utility Functions and A Soft Timeliness Optimality Criterion}

We use Jensen’s time/utility functions to specify the time constraint of a thread. A TUF describes a thread’s contribution to the system as a function of its completion time. We denote the time/utility function of a thread \(T_i \) as \(U_i(.) \). Thus, the completion of a thread \(T_i \) at (absolute) time \(t \) will yield a utility \(U_i(t) \).

A TUF \(U_i, i \in [1,n] \) has an initial time \(I_i \) and a termination time \(TM_i \). Initial time is the earliest time for which the function is defined and termination time is the latest
time for which the function is defined. That is, $U_i(.)$ is defined in the time interval of $[I_i, TM_i]$. Beyond that, $U_i(.)$ is undefined. If the termination time of U_i is reached and the thread has not finished execution (of the scheduling segment) or has not begun to execute, an exception is raised. Usually, the exception causes abortion of the thread. We discuss details of how GUS handles this exception in Section VI-C.

![Utility](image)

Fig. 5. Example Time-Utility Functions

Furthermore, a TUF is allowed to take arbitrary shapes, as shown in Figure 5. For $t \in [I_i, TM_i]$, $U_i(t)$ could be positive, zero, or negative. However, U_i does not need to have zero or negative values — i.e., it may never “touch” the time axis. This kind of TUF’s implies that completion of an activity can always yield some utility to the system no matter when the activity finishes, which is particularly useful for describing non real-time activities. For example, a constant TUF (see Figure 5(c)) can be used for representing a non-time constrained activity: the height of the constant TUF could be used as a way for expressing the activity’s relative importance.

Note that our model does not use the “deadline” notation as in hard real-time computing. However, a deadline time constraint can be specified as a step time/utility function (see Figure 5(b)). That is, completing the activity before the deadline accrues some uniform utility and accrues zero utility otherwise.

Given time/utility functions to describe the time constraints of dependent threads, we consider the soft timeliness optimality criterion of maximizing the total timeliness utility that is accrued by the completion of all threads — i.e., maximize $\sum_{i=1}^{n} U_i(f_i)$, where f_i is the finishing time of thread T_i.

This scheduling problem is NP-hard, as it subsumes the problems of: (1) scheduling dependent tasks with step-shaped time/utility functions; and (2) scheduling independent tasks with non step-shaped, but non-increasing time/utility functions. Both these
scheduling problems have been shown to be \(\mathcal{NP}\)-hard in [2], and in [4], respectively. The GUS algorithm presented here is therefore a heuristic algorithm that seeks to maximize the total accrued utility while respecting all thread dependencies.

IV. Algorithm Rationale

The key concept of GUS is the metric called **Potential Utility Density** (or PUD), which was originally developed in [2]. The PUD of a thread simply measures the amount of value (or utility) that can be accrued per unit time by executing the thread and the thread(s) that it depends upon. The PUD therefore, essentially measures the “return on investment” for the thread. Furthermore, by considering the dependent threads in computing the PUD, we explicitly account for the dependency relationships among the threads.

Since we cannot predict the future, the scheduling events that may happen later such as new thread arrivals, new resource requests, cannot be considered at the time when the scheduler is invoked. Thus, a reasonable heuristic is to use a “greedy” strategy. A good greedy strategy is to select a thread and its dependent threads, whose execution will yield the maximum increase of utility per unit time — i.e., the maximum PUD over others.

To deal with an arbitrarily shaped TUF, our philosophy is to regard it as a user-specified “black box” in the following sense: The black box (or the function) simply accepts a thread completion time and returns a numerical utility value. Thus, we ignore the information regarding the specific shape of TUF’s in constructing schedules.

Therefore, to compute the PUD of a task \(T_i\) at time \(t\), the algorithm considers the expected completion time(s) of \(T_i\) (denoted as \(t_f\)), and possibly the expected finishing times of \(T_i\)’s dependent tasks as well, if they need to be completed to execute task \(T_i\) (in this case, for each task \(T_j\) that is in \(T_i\)’s dependency chain and needs to be completed before executing \(T_i\), \(T_j\)’s expected finishing time is denoted as \(t_j\)). These expected completion times are then fed into individual TUF’s, to compute the sum of the expected utilities by executing these tasks. Once the expected utility \(U_{total} = U_i(t_f) + \sum_{T_j \in T_i.Dep} U_j(t_j)\) is computed, PUD of task \(T_i\) is calculated as \(U_{total}/(t_f - t)\).

\(^3\)In [2], this metric was called **Potential Value Density** (or PVD) then.
It is important to note that GUS does not mimic a deadline-based scheduling algorithm such as EDF, unlike many overload scheduling algorithms such as Dependent Activity Scheduling Algorithm (referred to as DASA here) [2], who mimics EDF to reap EDF’s optimality during under-loads. This is because, for a task model with arbitrarily shaped TUF’s, the deadline of a thread (with an associated TUF) may neither specify its timing urgency nor its relative importance with respect to other threads. Thus, an “optimal” schedule — one that accrues the maximal possible utility — may not be directly related to the thread deadlines. Furthermore, for non-step TUF’s, the notion of an under-load situation in terms of timeliness feasibility does not make sense, as threads can yield different timeliness utility depending upon their completion times.

V. Preliminaries: State Components and Deadlocks

This section first introduces the notations (state components of GUS and a set of auxiliary functions) used in the description of the GUS algorithm. We then discuss GUS’ deadlock handling mechanism in the subsection that follows. The deadlock handling mechanism is invoked upon a scheduling event and before the GUS algorithm is executed.

A. State Components and Auxiliary Functions

State components are used to facilitate the algorithm description and are described as follows:

1) Resource requests and assignments

Each resource in the system is associated with an integer number, denoted as ResourceId. This integer serves as the identifier of the resource and is used by the scheduler and by the application threads. For each resource R, $R.Owner$ denotes the identifier of the thread that is currently holding the resource R. If resource R is not held by any thread (i.e., is free), $R.Owner$ is set to ϕ to indicate this status. We use $Owner(R)$ to denote the task that is currently holding the resource R. A request for a resource is a triple, called $ResourceElement$ that is defined as $(ResourceId, HoldTime, AbortTime)$, where $ResourceId$ refers to the identifier of the requested resource; $HoldTime$ is the time for holding the resource; and $AbortTime$ is the time for releasing the resource by abortion. The $ResourceElement$
triple can also apply to the resource that is currently held by a thread. In that case,
ResourceId is the identifier of the resource that is being held and HoldTime is the
remaining holding time for the resource.
Let function holdTime \((T, R)\) return the holding time that is desired for a resource
\(R\) by a thread \(T\). Similarly, function abortTime \((T, R)\) returns the time that is
needed to release the resource \(R\) by aborting the thread \(T\) (which is holding \(R\)).

2) State components of threads

The current execution mode of a thread is denoted by \(Mode \in \{NORMAL, ABORT\}\)
(see Section III). ExecTime denotes the \(currently\ \text{remaining}\ \)execution time of
a thread. Recall that we assume that a thread will release all resources it ac-
quires before it ends. Thus, it follows that for any resource \(R\) held by a thread \(T\),
\(\text{holdTime}(T, R) \leq \text{ExecTime}\).

AbortTime denotes the \(currently\ \text{remaining}\ \)time to abort a thread. As discussed
previously, AbortTime is always associated with shared resources. Thus, whenever a
thread acquires a shared resource, which is requested as \(\langle R, \text{HoldTime}, \text{AbortTime} \rangle\),
the thread’s AbortTime is increased. Furthermore, we assume that resources are
released in the reverse order that they are acquired if the owner thread is aborted.\(^4\)

\(\text{ReqResource}\) is a ResourceElement triple that describes the resource requested by
a thread. Note that our resource request model does not allow multiple resources to
be requested as part of a single resource request. Thus, for any thread, there is only
one ReqResource component. A thread not requesting any resource is described as
\(\text{ReqResource} = \langle \phi, \phi, \phi \rangle\). We use the function \(\text{reqResource}(T)\) to denote the
identifier of the resource that is currently requested by a thread \(T\).

\(\text{HeldResource} = \{ \langle R_i, \text{HoldTime}_i, \text{AbortTime}_i \rangle \}\) denotes the set of resources that
is currently held by a thread, meaning zero or more resources are held by the thread.

3) The schedule

The output of the scheduling algorithm is an ordered sequence of triples, called
a “schedule.” A schedule consists of zero or more triples of SchedElement =

\(^4\)POSIX specification requires maintaining a stack of cleanup handlers for each thread. These cleanup
handlers are pushed into the stack by invoking pthread_cleanup_push() and can be popped out by using
pthread_cleanup_pop().
(ThreadId, Mode, Time), where ThreadId is the identifier of a thread; Mode is the execution mode of the thread (either NORMAL or ABORT); and Time is the CPU time allocated to the thread for the current execution.

It is possible that one thread appears at several positions within a schedule. This is because the scheduler may decide to execute a thread just long enough (either in NORMAL mode or in ABORT mode) so that the thread releases the resource requested by other threads. The remaining portion of that thread may be scheduled to execute later.

B. Deadlock Handling

To handle deadlocks, we consider a deadlock detection and resolution strategy, instead of a deadlock prevention or avoidance strategy. Our rationale for this is that deadlock prevention or avoidance strategies normally pose extra requirements e.g., resources are always requested in ascending order of their identifiers. Furthermore, some resource access protocols make assumptions on the resource requirements. For example, the Priority Ceiling Protocol [5] assumes the the highest priority of the threads that will access a resource, called “ceiling” of the resource, is known. Likewise, the Stack Resource Policy [6] assumes “preemptive levels” of threads a priori. Such requirements or assumptions, in general, are not practical, due to the dynamic nature of the real-time applications that we are focusing here.

Recall that we are assuming a single-unit resource request model. For such a system, the presence of a cycle in the resource graph is the necessary and sufficient condition for a deadlock. Thus, the complexity of detecting a deadlock can be mitigated by a straightforward cycle-detection algorithm.

The deadlock handling mechanism is therefore invoked by the scheduler whenever a thread requests a resource. Initially, there is no deadlock in the system. By induction, it can be shown that a deadlock can occur if and only if the edge that arises in the resource graph due to the new resource request lies on a cycle. Thus, it is sufficient to check if the new edge produces a cycle in the resource graph.

However, the main difficulty here is to determine a thread to abort such that the loss of utility resulting from the abortion is minimized. Our strategy for this follows:
Algorithm V.1 Deadlock Detection and Resolution in GUS

1: Input: requesting task \(T_i \); the current time \(t \);
2: /* deadlock detection */
3: \(Deadlock := \text{false}; \)
4: \(T_j := \text{Owner}(\text{reqResource}(T_i)); \)
5: while \(T_j \neq \emptyset \) do
6: \(T_j.\text{LossPUD} := U_j(t + T_j.\text{ExecTime}) / T_j.\text{ExecTime}; \)
7: else
8: \(T_j.\text{LossPUD} := 0; \)
9: if \(T_j = T_i \) then
10: \(Deadlock := \text{true}; \)
11: break;
12: else
13: \(T_j := \text{Owner}(\text{reqResource}(T_j)); \)
/* deadlock resolution if any */
14: if \(Deadlock = \text{true} \) then
15: Abort the minimal \(\text{LossPUD} \) task \(Tk \) in the cycle;

For any thread \(T_j \) that lies on a cycle in the resource graph, we compute the utility that the thread can potentially accrue by itself if it were to continue its execution. If the thread \(T_j \) were to be aborted, then that amount of utility is lost. Thus, the loss of utility per unit time by aborting a thread \(T_j \) called \(\text{LossPUD} \), can be determined as \(U_j(t + T_j.\text{ExecTime}) / T_j.\text{ExecTime} \). Once the \(\text{LossPUD} \)'s of all threads that lie on the cycle are computed, the algorithm then aborts the thread whose abortion will result in the smallest loss of utility.

The deadlock detection and resolution algorithm is shown in Algorithm V.1.

VI. THE GUS ALGORITHM

A description of the GUS algorithm at a high-level of abstraction is shown in Algorithm VI.1. The algorithm accepts an unordered task list and produces a schedule. Recall that a schedule is an ordered sequence of \(\langle \text{ThreadId}, \text{Mode}, \text{Time} \rangle \) triples. The format of the GUS schedule differs a simple ordered list of thread (or task) identifiers in the following two ways: (1) any given thread must execute in a certain mode, either \(\text{NORMAL} \) or \(\text{ABORT} \); and (2) a thread may be split into several segments within the same schedule, where each segment executes for some designated time \(\text{Time} \).

When the GUS scheduler is invoked at time \(t_{\text{cur}} \), the algorithm first builds the chain of dependencies for each task (line 4-5). Then, the PUD of each task is computed (line 7-9) by considering the task and all tasks in its dependency chain, called a \(\text{PartialSchedule} \).
Note that $T_i.TotalTime$ and $T_i.TotalUtility$ (line 8) are the total execution time and the utility of T_i’s partial schedule, respectively. Finally, the maximum PUD task and its dependencies are added into the current schedule (line 10-13), if they can produce a positive utility to the system.

Algorithm VI.1 A High-level Description of the GUS Algorithm

```
1: Input: An unordered task list $UT$;
2: Output: An ordered schedule $Sched$;
3: Initialization: $t := t_{cur}$, $Sched := \phi$.
4: for $\forall T_i \in UT$ do
5:   Build dependency list of $T_i$: $T_i.Dep := buildDep(T_i)$;
6: while $UT \neq \phi$ do
7:   for $\forall T_i \in UT$ do
8:     $\langle T_i.PartialSched, T_i.TotalTime, T_i.TotalUtility \rangle := createPartialSched(T_i, T_i.Dep)$;
9:     $T_i.PUD := \frac{T_i.TotalUtility}{T_i.TotalTime}$;
10: Pick the largest PUD task $T_k$ among all tasks left in $UT$;
11: if $PUD(T_k) > 0$ then
12:    $Sched := Sched \cdot T_k.PartialSched$;
13:    $UT := delPartialSched(UT, T_k.PartialSched)$;
14:    $t := t + T_k.TotalTime$;
15: else
16:    break;
17: return $Sched$;
```

Note that a partial schedule is appended at the tail of the existing schedule (Algorithm VI.1, line 12), instead of being inserted. This is because of the way we compute the PUD for each task, where we assume that the tasks are executed at the current position in the schedule. If the selected partial schedule is inserted into the existing schedule, the previously computed PUDs become void. Furthermore, the algorithm does not consider the deadline order, due to the reasons we discussed in Section IV.

Once a partial schedule is added to the schedule, GUS updates the time t, which is the starting time of the next partial schedule if there exists one. We call this time variable t as virtual time in the rest of the paper, because it denotes a time in the future. The algorithm repeats the procedure until either it exhausts the unordered list, or no tasks can produce any positive utility.

We discuss details of creating and deleting partial schedules in Section VI-A. A subproblem of creating a partial schedule is to determine the execution mode of tasks in the dependency chain. We address this in Section VI-B.
A. Manipulating Partial Schedules

A partial schedule is part of the complete schedule, containing a sequence of SchedElement’s. We use $T_i.PartialSched$ to denote the partial schedule that is computed for task T_i. $T_i.PartialSched$ consists of task T_i and its dependent tasks. Note that a partial schedule may contain only portions of T_i’s dependent tasks. We show how GUS computes the partial schedule for T_i in Algorithm VI.3.

Before GUS computes task partial schedules, the dependency chain of each task must be determined. This procedure is shown in Algorithm VI.2. The algorithm simply follows the chain of resource request/ownership. Each task T_j in the dependency list has a successor task that needs a resource that is currently held by T_j. For convenience, the input task T_i is also included in its own dependency list, so that all other tasks in the list have a successor task. The buildDep algorithm stops either because a predecessor task does not need any resource or the requested resource is free.

Note that we use the operator “।” to denote an append operation. Thus, the dependency list starts with the farthest predecessor of T_i (which can be retrieved by Head($T_i.Dep$)) and ends with T_i itself. Furthermore, each task in the dependency list is dependent on its predecessor task in the same dependency list. The exception is the task at the head of the dependency list, which is either not requesting any resource or its requested resource is free when a GUS scheduler is triggered.

Algorithm VI.2 buildDep(): Building Dependency List

1: **Input**: task T_i
2: **Output**: dependency list of T_i
3: Initialization: $T_i.Dep := T_i$
4: $PrevT := T_i$
5: while $reqResource(PrevT) \neq \phi \land Owner(reqResource(PrevT)) \neq \phi$ do
6: \quad $T_i.Dep := Owner(reqResource(PrevT)) \cdot T_i.Dep$
7: \quad $PrevT := Owner(reqResource(PrevT))$

The createPartialSchedule() algorithm accepts a task T_i, its dependency list $T_i.Dep$, and a virtual time t. The virtual time t is the time to execute the partial schedule to be created. On completion, the createPartialSchedule() algorithm produces a partial schedule for T_i, the total execution time of the partial schedule called $TotalTime$, and the aggregate utility that can be obtained by executing the partial schedule at time...
t, called TotalUtility. The algorithm computes the partial schedule by assuming that tasks in $T_i.Dep$ are executed from the current position (at time t) in the schedule while following the dependencies.

The total execution time of task T_i and its dependent tasks consists of two parts: (1) the time needed to release the resources that are needed to execute T_i; and (2) the remaining execution time of T_i itself. The order of executing the corresponding tasks or portions of tasks, in their particular modes, together becomes the partial schedule.

Lines 4-15 of Algorithm VI.3 compute the first part and lines 16-23 compute the second part. Note that, to release a resource R, a task T_j can either execute in NORMAL mode for $\text{holdTime}(T_j, R)$ or in ABORT mode for $\text{abortTime}(T_j, R)$. These two alternatives are accounted for in lines 7-15 of the algorithm by calling the algorithm $\text{determineMode}()$.

Furthermore, recall that our application model requires explicit release of resources before the end of a thread. Thus, it is possible that a task is selected to execute for only a portion of its remaining execution time, after which one or more of the resources that it holds are released. The remaining portion of that task may be scheduled to execute later.

If a task T_j is scheduled to complete it’s execution after it releases resources that are needed by its successor, then T_j may accrue some utility. This is accounted for in lines 11-12. Finally, task T_i itself may be executed in either NORMAL or ABORT mode, which has been determined before the current scheduling event. If T_i is executing in NORMAL mode, naturally, it may accrue some positive utility (line 20). Otherwise, no utility can be accrued from the execution of T_i.

If the selected partial schedule contains the remaining portion of a task T_i, either in NORMAL mode or in ABORT mode, task T_i needs to be removed from the unordered task list UT. Consequently, if the selected partial schedule only contains a portion of task T_i’s remaining part, state components of T_i need to be updated to reflect this.

The GUS algorithm uses another algorithm called $\text{delPartialSchedule}$ to delete a partial schedule from an unordered task list. This is shown in Algorithm VI.4. The $\text{delPartialSchedule}$ algorithm examines the partial schedule, from the head to the tail. If a task T has been determined to execute in NORMAL mode, then its remaining
Algorithm VI.3 The createPartialSchedule() Algorithm
1: Input: task T_i and its dependency list $T_i.Dep$; t: the time to start executing the partial schedule;
2: Output: a partial schedule PartialSched; the total execution time of PartialSched, called
TotalTime; the total utility accrued by executing PartialSched, called TotalUtility;
3: Initialization: PartialSched := ϕ; TotalTime := 0; TotalUtility := 0;
4: /* consider tasks in T_i’s dependency chain */
5: for $\forall T_j \in T_i.Dep \setminus T_j \neq T_i$, from head to tail do
6: $R := reqResource(T_j \rightarrow Next);$
7: Mode := determine$Mode(T_j, TotalUtility, TotalTime, t);$
8: if Mode = NORMAL then
9: PartialSched := PartialSched ∘ $(T_j, NORMAL, holdTime(T_j, R));$
10: TotalTime := TotalTime + holdTime($T_j, R);$
11: if holdTime($T_j, R) = $T_j.ExecTime then
12: TotalUtility := TotalUtility + $U_j(t + TotalTime);$
13: else
14: PartialSched := PartialSched ∘ $(T_j, ABORT, abortTime(T_j, R));$
15: TotalTime := TotalTime + abortTime($T_j, R);$
16: end if
17: if $T_i.Mode = NORMAL$ then
18: PartialSched := PartialSched ∘ $(T_i, NORMAL, T_i.ExecTime);$
19: TotalTime := TotalTime + $T_i.ExecTime;$
20: TotalUtility := TotalUtility + $U_i(t + TotalTime);$
21: else
22: PartialSched := PartialSched ∘ $(T_i, ABORT, T_i.AbortTime);$
23: TotalTime := TotalTime + $T_i.AbortTime;$
24: return (PartialSched, TotalTime, TotalUtility);

execution time is updated (line 11). Moreover, T may release one or more resources
during the allocated time. Therefore, the HoldTime’s of the resources that are currently
held by T are also updated (lines 6-10). In the event that T is selected to complete
its execution such that it can release the resources, then T is completely removed from
RUT (lines 12-13). Furthermore, we consider the abortion of a task as the execution of
a different piece of code segment for the task. Thus, the same procedure applies to those
tasks that have been determined to execute in the ABORT mode (lines 15-22).

Note that if a task T is not the tail of a partial schedule, then it must release at least
one resource, either in NORMAL mode or in ABORT mode. This is because, the only
reason for executing the task T (either in NORMAL mode or in ABORT mode) is to
release the requested resource, so that the successor of task T is able to execute. However,
task T_i (recall that the partial schedule is due to task T_i) must complete in the partial
schedule. Therefore, it is completely removed from RUT (line 23).
Algorithm VI.4 Removing a Partial Schedule from a Task List delPartialSched()

1: **Input**: a partial schedule $T_i, PartialSched$ and an unordered task list UT;
2: **Output**: a reduced task list RUT;
3: Copy UT into RUT: $RUT := UT$;
4: for $\forall \langle T, Mode, Time \rangle \in PartialSched \cap T \neq T_i$ from head to tail do
5: if $Mode = \text{NORMAL}$ then
6: for $\forall \langle R, HoldTime, AbortTime \rangle \in T.HeldResources$ do
7: Update $HoldTime$: $HoldTime := HoldTime - Time$;
8: if $HoldTime := 0$ then
10: $R.Owner := \phi$;
11: Update $T.ExecTime, T \in RUT$: $T.ExecTime := T.ExecTime - Time$;
12: if $T.ExecTime = 0$ then
13: Remove T from RUT: $RUT := RUT - T$;
14: else
15: for $\forall \langle R, HoldTime, AbortTime \rangle \in T.HeldResources$ do
16: Update $AbortTime$: $AbortTime := AbortTime - Time$;
17: if $AbortTime := 0$ then
18: $T.HeldResource := T.HeldResource - \langle R, HoldTime, AbortTime \rangle$;
19: $R.Owner := \phi$;
21: if $T.AbortTime := 0$ then
22: Remove T from RUT: $RUT := RUT - T$;
23: remove T_i from RUT;
24: return RUT;

B. Determining Task Execution Mode

Besides resolving deadlocks, abortions can also be used to improve the aggregate utility. The intuition for doing so is that the time to abort a task may be different from the normal resource hold time, which in turn may affect the timeliness of the tasks that depend upon it. Thus, determining the execution mode of the tasks in a dependency list is necessary to achieve better performance.

Algorithm VI.5 determines the execution mode of a task T_j in the dependency list of task T_i. In case that task T_j is running in ABORT mode, the determineMode() algorithm immediately returns ABORT mode (lines 4-5). If a thread cannot be aborted (i.e., $AbortTime$ is infinity), the algorithm immediately returns NORMAL mode (line 7-8).

To determine which execution mode (NORMAL or ABORT) is better, the algorithm compares the PUD’s of T_i, when T_j is executed in the two modes — NORMAL mode (lines 9-10) and ABORT mode (lines 11-12). The required time and accrued utility are computed under the two execution modes (called NormalTime and NormalUtility for
the first scenario; \textit{AbortTime} and \textit{AbortUtility} for the second scenario). The algorithm then follows the dependency chain to examine all other tasks that depend upon \(T_j \), assuming that all of them execute normally (lines 9-25) if they are not currently in \textit{ABORT} mode. Note that the execution modes of those tasks have not yet been determined when \(T_j \) is examined. They are assumed to execute normally for comparing the effects of executing \(T_j \) in different modes.

Finally, the algorithm considers task \(T_i \) itself (lines 26-34). If \(T_i \) is in \textit{NORMAL} mode, it requires \(T_i.ExecTime \) to finish the execution of the task. This may or may not produce some positive utility. On the other hand, if \(T_i \) is being aborted, it needs \(T_i.AbortTime \) to complete the abortion. However, this will not produce any utility.

Once total execution times and total utilities under the two scenarios are computed, the algorithm computes the two different PUD’s. If executing \(T_j \) in \textit{NORMAL} mode will yield a higher PUD for \(T_i \), then the algorithm decides to execute \(T_j \) normally (lines 36-37). Otherwise, \(T_j \) is aborted (lines 38-39).

Note that our approach to determine a task execution mode is different from that of the DASA algorithm [2]. The DASA algorithm seeks to acquire the requested resource as soon as possible. Thus, if the abort time of a task is shorter than its execution time, the task is aborted. Otherwise, the task executes normally. This simple criterion works well for step time/utility functions, because the timeliness of a task will not be negatively affected if the task finishes earlier than its deadline. However, this is not true for arbitrarily shaped time/utility functions. In fact, for non-increasing time/utility functions, the GUS \textit{determineMode()} algorithm can simply return the \textit{NORMAL} mode if a task’s abort time is longer than its execution time; otherwise it can return the \textit{ABORT} mode.

\textbf{C. Handling Termination Time Exceptions}

Recall that each time/utility function \(U_i \) has a termination time \(TM_i \) (see Section III). If the termination time is reached and thread \(T_i \) has not finished execution or even not yet started execution, an exception should be raised. Normally, this exception causes abortion of \(T_i \), which implies execution of the thread’s cleanup handlers, if any.

In this paper, we assume that an handler for a termination time exception is associated with an application-specific time constraint — i.e., a time/utility function. Thus, the
Algorithm V1.5 determineMode(): Determining Task Execution Mode

1: Input: task $T_j \in T_i.Dep$, the current accumulative utility of T_i, $TotalUtility$; the current accumulative execution time of T_i, $TotalTime$, the current virtual time t;
2: Output: the execution mode of T_j;
3: /* T_j is currently running in ABORT mode */
4: if $T_j.Mode = ABORT$ then
5: return ABORT;
6: /* T_j is not abortable */
7: if $T_j.AbortTime = \infty$ then
8: return NORMAL;
9: /* scenario I: assuming T_j executes normally */
10: $NormalTime := TotalTime + holdTime(T_j, reqResource(T_j \rightarrow Next))$;
11: $NormalUtility := TotalUtility + U_j (t + NormalTime)$;
12: /* scenario II: assuming T_j aborts execution */
13: $AbortTime := TotalTime + abortTime(T_j, reqResource(T_j \rightarrow Next))$;
14: $AbortUtility := TotalUtility$;
15: NextT := $T_j \rightarrow Next$;
16: while NextT $\neq \phi$ do
17: /* consider tasks in T_i’s dependencies */
18: if NextT.Mode = NORMAL then
19: $NormalTime := NormalTime + holdTime(NextT, reqResource(NextT \rightarrow Next))$;
20: $NormalUtility := NormalUtility + U_{NextT} (t + NormalTime)$;
21: $AbortTime := AbortTime + holdTime(NextT, reqResource(NextT \rightarrow Next))$;
22: $AbortUtility := AbortUtility + U_{NextT} (t + AbortTime)$;
23: NextT := NextT \rightarrow Next;
24: else
25: $NormalTime := NormalTime + abortTime(NextT, reqResource(NextT \rightarrow Next))$;
26: $AbortTime := AbortTime + abortTime(NextT, reqResource(NextT \rightarrow Next))$;
27: NextT := NextT \rightarrow Next;
28: /* consider T_i itself */
29: if $T_i.Mode = NORMAL$ then
30: $NormalTime := NormalTime + T_i.ExecTime$;
31: $NormalUtility := NormalUtility + U_i (t + NormalTime)$;
32: $AbortTime := AbortTime + T_i.ExecTime$;
33: $AbortUtility := AbortTime + U_i (t + AbortTime)$;
34: else
35: /* determine the execution mode of T_j */
36: if $NormalUtility/NormalTime \geq AbortUtility/AbortTime$ then
37: Mode := NORMAL;
38: else
39: Mode := ABORT;
40: return Mode;
termination handler is scheduled in the same way as other threads. In fact, execution of the exception handler is simply part of the thread itself.

VII. Complexity of GUS

To analyze the complexity of the GUS algorithm (Algorithm VI.1), we consider \(n \) tasks and a maximum of \(r \) resources in the system. Observe that, in the worst case, each task may hold up to \(r \) resources and may be split into \((2r + 1)\) partial schedules. Thus, the \textit{while}-loop starting at line 6 in Algorithm VI.1 may be repeated \(O(nr) \) times. Each execution of the loop body examines up to \(n \) tasks (or portions of the tasks) that remain in the unordered task list. Clearly, complexity of the \textit{while}-loop body is dominated by the complexity of creating a partial schedule (Algorithm VI.1, line 8), which in turn is dominated by the cost of determining execution modes of up to \(n \) tasks in the dependency chain. Since Algorithm VI.5 costs \(O(n) \) for each task, the worst-case complexity of Algorithm VI.3 is \(n \times O(n) = O(n^2) \). Therefore, the worst-case complexity of the GUS algorithm is \(nr \times (n \times O(n^2)) = O(n^3r) \).

Note that dispatching using the GUS algorithm is sufficient, unlike most other scheduling algorithms. This is because, a new partial schedule is appended by GUS only at the tail of the existing schedule, and cannot affect the partial schedule at the head (of the existing schedule) by any means. Thus, the \textit{while}-loop starting at line 6 in Algorithm VI.1 can be eliminated and the complexity of GUS complexity can be reduced to \(O(n^3) \).

VIII. Timeliness Feasibility Condition

Timeliness feasibility conditions are conditions under which a real-time system will satisfy its desired timeliness properties [14]. In the context of TUF scheduling, the feasibility condition of primary interest is the condition under which the system will accrue a desired lower bound on aggregate utility.

To derive the feasibility condition of GUS, we consider the sporadic task arrival model. That is, each task \(T_i \) has a minimal inter-arrival time of \(\delta_i \). Note that the periodic task model is a special case of the sporadic task model, where the task inter-arrival times are always the same as its minimal inter-arrival time.
We first derive the upper bound of task sojourn times \(^5\) under GUS (the lower bound is trivial — i.e., is always the task execution time). To do that (for task \(T_i\)), we consider interferences from all other tasks, which is sufficient but may not be necessary. This upper bound of task sojourn time is then substituted into the task TUF’s, to compute the bound on accrued utilities. The analysis of GUS feasibility condition is inspired by \([15]\).

To determine the upper bound on the sojourn time of a task \(T_i\) under the GUS scheduling algorithm, denoted as \(S(T_i)\), we restrict our analysis to independent task sets, because the analysis for dependent task sets under GUS is intractable.

To illustrate the intractability of analyzing response time bounds for dependent tasks, consider a task \(T_i\) that holds a resource \(R\). Assume that \(T_i\) has reached its termination time and thus an exception handler is scheduled to execute. If another task \(T_j\) were to arrive and to request the same resource \(R\), GUS will have to schedule \(T_i\)'s termination time exception handler first to release \(R\). Thus, the execution of \(T_j\) is interfered by \(T_i\) that can arrive arbitrarily long ago. This phenomena implies that a task may suffer unbounded inferences from other tasks, if resource dependencies are allowed. This unbounded interference is partly because of the dynamic nature of our task model: tasks can arrive at arbitrary times and can request arbitrary number of resources. Techniques similar to the blocking time analysis in Priority Ceiling Protocol \([5]\) do not apply here, because they require \textit{a priori} known information of all resource requests from all tasks. On the other hand, execution times of the handlers for termination time exceptions are assumed to be zero (or negligible in practice) for independent tasks. Therefore, it is possible to bound the interferences for independent tasks.

Let \(A(T_i)\) denote the arrival time of a task \(T_i\) and let \(TM(T_i)\) denote its termination time. We also denote the length of time interval \([A(T_i), TM(T_i)]\) as \(d(T_i)\).

To compute the upper bound on the response time, we consider the strongest adversarial situation, where all other tasks in the task set \(T\) are unfortunately scheduled before task \(T_i\). Thus, we need to compute an upper bound on the number of tasks that can interfere with the execution of task \(T_i\), denoted as \(r(T_i)\), and their total execution time,

\(^5\)In the context of TUF-driven scheduling, the “sojourn time” of a thread refers to the time interval from the thread enters a scheduling segment until it exists that scheduling segment.
denoted as \(u(T_i) \).

Observe that a task \(T_j \) may interfere with the execution of another task \(T_i \) only if \(T_j \) arrives during the time interval \([A(T_i) - d(T_j), A(T_i) + d(T_j)]\), which has the length:
\[
(A(T_i) + d(T_j)) - (A(T_i) - d(T_j)) = d(T_i) + d(T_j).
\]
This is because, if \(T_j \) were to arrive before \((A(T_i) - d(T_j))\), then \(T_i \) would have either finished its execution or has been aborted by GUS. Thus, \(T_j \) will not be able to interfere with the execution of \(T_i \). Similarly, GUS will not execute \(T_i \) after \(A(T_i) + d(T_i) \). Therefore, the upper bound on \(r(T_i) \) can be established as:

\[
r(T_i) = \sum_{T_j \in T} \left(\left\lceil \frac{d(T_i) + d(T_j)}{\delta(T_j)} \right\rceil \right). \tag{1}
\]

Let \(C(T_j) \) be the execution time of \(T_j \). It follows that

\[
u(T_i) = \sum_{T_j \in T} \left(\left\lceil \frac{d(T_i) + d(T_j)}{\delta(T_j)} \right\rceil \times C(T_j) \right). \tag{2}
\]

Therefore, the upper bound on the task sojourn time \(S(T_i) \) is computed as the sum of the maximum interference time and the execution time of \(T_i \) itself, which becomes \(S(T_i) = u(T_i) + C(T_i) \).

IX. Non-Timeliness Properties of GUS

This section presents a class of non-timeliness properties of GUS, including resource safety and task execution mode assurance.

Lemma IX.1. A task within a partial schedule is either ready to execute, or becomes ready after its predecessor task within the same partial schedule executes. We call a partial schedule “self-contained.”

Proof This lemma can be shown to be true by examining the `createPartialSchedule` algorithm (Algorithm VI.3). Consider a task \(T_i \) within a partial schedule \(PS \). If \(T_i \) lies at the head of \(PS \), then it must also lie at the head of the dependency chain. Thus, it is ready to execute and the resource that it needs is available.

If \(T_i \) does not lie at the head of \(PS \), then let \(T_j \) be the immediate predecessor task of \(T_i \) in \(PS \). Let \(R \) be the resource requested by \(T_i \). If \(T_j \) is added into the partial schedule
in NORMAL mode, then it must execute for \(\text{holdTime}(T_j, R) \) time units (line 9). On the other hand, if \(T_j \) is selected to execute in ABORT mode, then \(T_j \) is aborted after \(\text{abortTime}(T_j, R) \) (line 14) time units, releasing resource \(R \). Thus, resource \(R \) must be free when \(T_i \) is scheduled to execute.

Lemma IX.2. A complete schedule is self-contained if every partial schedule within it is self-contained.

Proof We consider a task \(T \) within a complete schedule. Since a complete schedule is a concatenation of a set of partial schedules, \(T \) must also belong to a partial schedule \(PS \). By Lemma IX.1, this lemma is therefore true.

Theorem IX.3. When a task \(T_i \) that requests a resource \(R \) is selected for execution by GUS, the resource \(R \) will be free at the time of execution of \(T_i \).

Proof The theorem can be proved using Lemma IX.1 and Lemma IX.2.

Theorem IX.4. If a task \(T_i \) is executing in ABORT mode, GUS will not later schedule \(T_i \) to execute in NORMAL mode.

Proof This theorem is a natural requirement, because our task model assumes that an aborted task cannot execute in NORMAL mode in the future, although the abort operation may be split into several stages. The correctness of this theorem can be seen from lines 4-5 of the \textit{determineMode}() algorithm (Algorithm VI.5). This mode information is further used in the \textit{createPartialSched}() algorithm. If a task is executing in ABORT mode, the algorithm will append the task in ABORT mode at the tail of the partial schedule (lines 13-15 and lines 21-23).

Recall that a non-abortable thread is associated with infinite abortion time. Thus, by similar argument (see line 7-8 of Algorithm VI.5), we can prove the following theorem.

Theorem IX.5. If a task \(T_i \) is not abortable, GUS will not schedule it to execute in ABORT mode.

X. Simulation Results

We performed two sets of experiments. The first set of experiments were “static” simulations in the sense that each experiment examines a task ready queue at a particular
scheduling event and produces a schedule. The major advantage of conducting such static simulations is that we can compare the schedule produced by GUS with that obtained by exhaustive search. The second set of experiments were “dynamic” simulations, as we randomly generated streams of tasks at run time and measured the aggregate utility produced by various scheduling algorithms.

For performance comparison, we considered DASA [2], LBESA [3], CMA (named after the authors of the algorithm, i.e., Chen and Muhlethaler’s Algorithm) [4], and D_{over} [7] algorithms. Each input to a static simulation experiment is a randomly generated 9-task set with certain distributions, including uniform distribution, normal distribution, and exponential distribution. Moreover, we normalize the accrued utility with that acquired by the schedule that is produced by exhaustive search. We call such a performance metric as normalized accrued utility ratio or “normalized AUR” for short. Furthermore, a single data point was obtained as the average of 500 independent experiments.

TABLE I	Simulation Parameters			
Distribution	ExecTime	Static Deadline	InterArr Time	Dynamic Laxity
uniform	$U[0.05, 2C_{\text{avg}}]$	$U[0.01, 2D_{\text{avg}}]$	$U[0.01, 2C_{\text{avg}}/\rho]$	$N[0.25, 0.25]$
normal	$N[C_{\text{avg}}, C_{\text{avg}}]$	$N[D_{\text{avg}}, D_{\text{avg}}]$	$N[C_{\text{avg}}/\rho, 0.5]$	$N[0.25, 0.25]$
exponential	$E[C_{\text{avg}}]$	$E[D_{\text{avg}}]$	$E[C_{\text{avg}}/\rho]$	$N[0.25, 0.25]$

Let C_{avg} be the average task execution time and let D_{avg} be the average task “deadline” that is defined as the latest time point after which the task utility is always zero.\(^6\) Given a 9-task set, the average load ρ can be determined as $\rho = 9C_{\text{Avg}}/D_{\text{avg}}$. In all the simulation experiments, we chose C_{avg} as 0.5 sec. In Table I, we show the simulation parameters.\(^7\), where parameters for the static simulations are shown in columns 2 and 3 of the table.

Excluding the D_{over} algorithm, our first static simulation experiments involve all other four scheduling algorithms for independent tasks with step time/utility functions. The D_{over} algorithm requires a timer for Latest Start Time \([7]\). Thus, it can only be dynami-

\(^6\)We assume that a deadline point is the same as the termination time of a TUF. This deadline definition is used through all our experimental results presented in Sections X and XI.

\(^7\)U[a, b] denotes a random variable that is uniformly distributed between a and b. N[a, b] specifies a normal distribution with mean value of a and variance of b. E[a] is an exponential distribution with mean value of a.

cally simulated. In Figure 6(a), we show the performance of the algorithms under uniform distributions. As shown in the figure, DASA and GUS have very close performance for the entire load range and perform the best. On the other hand, CMA and LBESA exhibits the worst performance among all algorithms. Our experiments with normal and exponential distributions showed consistent results. Thus, we conclude that GUS, in general, has close performance to DASA for independent task sets with step TUF’s.

![Fig. 6. Performance of Algorithms Under Step TUF’s and Uniform Distributions](image)

For dependent task sets, we show the simulation results of DASA and GUS schedulers for uniform distributions in Figure 6(b), as an example. Observe that GUS performs worse than DASA in the figure. Furthermore, the performance gap increases when more resources are present in the system. We attribute this worse performance of GUS to the fact that GUS ignores tasks deadlines in making scheduling decisions. Though deadline order may not be appropriate for arbitrarily shaped TUF’s (see Section IV), it can be beneficial for tasks with step TUF’s. On the other hand, DASA only outperforms GUS by no more than 10% in terms of normalized AUR, even if the system is overloaded and has five shared resources.

In Figures 7(a) and 7(b), we show the performance of GUS for tasks with arbitrarily shaped TUF’s, which are represented by 3rd-order polynomials in the experiments. As shown in the two figures, GUS does not suffer abrupt performance degradation with or

8The error bar around each data point represents the 90% confidence interval of that data point, and each single data point is an average of 500 independent experimental results.
without shared resources. Furthermore, if the system is not heavily overloaded, GUS can accrue most of the utility (over 80%) that can be accrued by the exhaustive-search scheduler. Simulation results for normal distribution and exponential distribution are similar, shown in Appendix A.

Our major objective in conducting dynamic simulations is to compare the performance of GUS with the D_{over} algorithm, which cannot be investigated in static simulations. Each dynamic simulation experiment generates a stream of 1000 tasks.

We show the performance of the five scheduling algorithms for step TUF’s in terms of Accrued Utility Ratio (AUR) in Figure 8. AUR is defined as the accrued utility divided by the maximal utility that can possibly be accrued from the tasks. As shown in the figure, the D_{over} algorithm performs the worst among all six algorithms, while DASA, CMA, and GUS have close performance. The poor performance of D_{over} is because the algorithm rejects more high utility tasks than it should, to guarantee the worst-case performance (see Chapter 8, Section 8.4.2 in [16]). Furthermore, the optimality of D_{over} only applies
to tasks whose utilities are proportional to their execution times, which is not the case in our experiments.

XI. IMPLEMENTATION RESULTS

We implemented GUS and several other scheduling algorithms (used in the simulation studies) in a scheduling framework called meta-scheduler [17]. The meta-scheduler is an application-level framework for implementing utility accrual scheduling algorithms on POSIX-compliant operating systems [13], without modifying the operating system. Our major motivation for considering the meta-scheduler framework (as opposed to using an OS kernel environment) is because, it is significantly easier to implement and debug scheduling algorithms in the meta-scheduler framework. In the meanwhile, the meta scheduler maintains reasonably small overhead (from 10 usec to a few hundred usec in a common hardware platform). The experimental system is a Toshiba Satellite 1805-S254 laptop (one 1GHz Intel Pentium III processor, 256KB L2 cache, and 256MB SDRAM) running QNX Neutrino 6.2.1 real-time operating system.

During each experiment, 100 tasks are generated with randomly distributed parameters such as task execution times and deadlines. For example, the worst-case execution times (WCETs) of tasks 9 are exponentially distributed with a mean of 500 msec. Given a workload ρ, we calculate the mean inter-arrival time as the mean execution time divided by ρ. In addition, the laxity of a task is uniformly distributed between 50 msec and 1 sec. The task relative deadline is then the sum of the task execution time and laxity.

Moreover, TUF’s of the tasks may be step, linear, parabolic, or combinations of these basic shapes. In our experiments, the maximal utility of tasks are uniformly distributed between 10 and 500. We use uniform distributions to define resource request parameters in our experimental study. These parameters include the number of resources requested by a task, resource hold times, and resource abort times.

We implemented four scheduling algorithms including DASA, LBESA, D^{over}, and GUS as part of our experimental study. The CMA algorithm that we had considered in the simulation studies was not implemented because it requires significant amount of memory space and CPU time for median number of ready tasks.

9WCETs are equal to exact execution times in our experiments.
Since all algorithms with the exception of GUS, have certain restrictions, we only compare performance of the algorithms for the cases that they apply to. For example, Figure 9 shows the AUR’s of all four scheduling algorithms for task sets with step TUF’s but no dependencies (this figure is also shown in Figure 17(b) of Appendix C). From the figure, we observe that the performance of the four algorithms do not significantly differ for light load and medium load conditions (workload is less than 0.8). However, DASA and LBESA show superior performance for heavy and overloaded situations.

In addition, we show the performance comparison of DASA and GUS for task sets with step TUF’s and dependencies in Figure 10. Our experiments in this class used three shared resources as an example scenario. We would expect DASA to outperform GUS for this class of experiments, because GUS neither conducts a feasibility test, nor considers the deadline order for scheduling the feasible task subset. The figures, however, show that GUS actually performs better than DASA during light workload situations. Performance of the two schedulers are very close during overloaded situations. We conjecture that the better performance of GUS is because of its lower actual computational cost (for this particular implementation), in spite of its \(O(n^3)\) complexity (DASA’s complexity is \(O(n^2)\)). In Figure 11, we provide further evidence for our conjecture by measuring scheduling overheads. Note that “R-N” in the figure stands for step TUF’s without dependencies; “R-D” is for step TUF’s with dependencies. Similarly, “ARB-N” and “ARB-D” are for arbitrary TUF’s without dependencies and with dependencies, respectively. Additional implementation results are shown in Appendix C.

XII. RELATED WORK

Uni-processor real-time scheduling algorithms can be broadly classified into two categories: (1) deadline scheduling and (2) overload scheduling. Algorithms in the first
category generally seek to satisfy all hard deadlines, if possible. Examples of deadline scheduling algorithms include the RMA algorithm [1] and the EDF scheduling algorithm [18]. These algorithms are extended and varied to deal with other deadline-based optimality criteria, such as the \((m, k)\) firm guarantee presented in [19], lock-based real-time resource access using the Priority Inheritance Protocol [5], the Priority Ceiling Protocol [5], and the Stack Resource Policy [6]. In contrast, algorithms in the second category deal with deadlines as well as non deadline time constraints such as non-step TUF’s, wherever proper.

Many existing algorithms for overload scheduling consider step TUF’s, and mimic the behavior of EDF during under-loaded situations as closely as possible. Furthermore, they seek to optimize other performance metrics during overloaded situations, since all deadlines cannot be satisfied during overloads. One important performance metric is the sum of utility (or “value”) that is accrued by all tasks. In [20], the authors show that, for restrictive task sets (i.e., task utilities are proportional to task execution times), the upper bound on the competitive factor of any on-line scheduling algorithm is \(1/(1+\sqrt{k})^2\), where \(k\) is the importance ratio of the task set. This upper bound is achieved by the \(D_{\text{over}}\) algorithm presented in [7]. However, the optimal competitive ratio does not imply the best performance for \(D_{\text{over}}\) for a broad range of workload we considered in the experiments.

Besides the optimal \(D_{\text{over}}\) algorithm, heuristic algorithms have also been developed
for effective scheduling during overloaded situations. In [3], Locke presents the LBESA algorithm that uses the notion of value density, which is complemented with feasibility tests. Locke’s work is extended by several others including [8], [21]. Performance of the algorithms presented in [8] may be better than LBESA’s, but in general, is very close.

Apart from the step time/utility model with one segment of execution per task, the concept of “imprecise computations” has also been proposed in the literature as an effective technique to handle overloads [22]. For example, the RED algorithm [23] and the algorithm presented in [24] consider this model. Furthermore, the work on feedback control theory scheduling assumes the presence of N versions of the same task ($N \geq 2$) [25].

Our work fundamentally differs from all the aforementioned algorithms in that we consider arbitrarily-shaped time/utility functions and mutual exclusion resource constraints. All the previously mentioned algorithms, except for the LBESA algorithm, only consider step TUF’s. Furthermore, the LBESA algorithm does not consider mutual exclusion constraints.

In [26], the authors present the concept of “timeliness-functions.” In [21], the same authors show that scheduling the task with the highest Dynamic Timeliness-Density (DTD) is more effective than scheduling the highest value density task. The DTD heuristic is echoed in a special case of GUS, where tasks do not share resources.

Non-increasing TUF’s have been explored in the context of non-preemptive scheduling of independent activities, such as the CMA [4] algorithms. We show the comparison of GUS with CMA in Section X and Section XI. Again, GUS allows preemption, arbitrary time/utility functions (including non-increasing functions), and mutual exclusion resource dependencies.

In [9], Strayer presents a framework for scheduling using “importance functions.” An importance function can take arbitrary shapes, and has the similar meaning as a time/utility function. However, no new scheduling algorithms are presented in [9]. Furthermore, the task model considered in [9] do not consider resource dependencies.

In the context of overload scheduling, little work considers shared resources that have mutual exclusion constraints. The DASA algorithm [2] considers shared resources with mutual exclusion constraints, but only for step time/utility functions. However, GUS
allows arbitrarily shaped TUF’s, whereas DASA is restricted to step functions. To the best of our knowledge, DASA and GUS are the only two algorithms that schedule both CPU cycles and other shared resources while allowing time constraints to be expressed using TUF’s.

There are however, a significant number of algorithms that can simultaneously manage multiple shared resources (either multiple units of the same resource or multiple resources). An example algorithm is the Q-RAM model [27]. Similar to the imprecise computation, the Q-RAM model assumes that each task can be executed in a number of ways, where different executions require different amount of shared resources, but yield different utilities. Furthermore, the Q-RAM model assumes that the utility of a task depends on the resources allocated to it, which is fundamentally different from our UA model. In Section II, we provide motivation for our TUF and UA model by summarizing two significant demonstration applications that were successfully implemented using our UA model.

XIII. CONCLUSIONS AND FUTURE WORK

Our simulation results and implementation measurements show that the GUS algorithm has comparable performance with algorithms such as DASA, LBESA, CMA and D_{aver} for all the application scenarios that they apply to. In addition, GUS can handle task sets with arbitrarily shaped TUF’s and mutual exclusion resource constraints; none of the existing algorithms can schedule such a task set. Furthermore, we establish several fundamental timeliness and non-timeliness properties of GUS.

Several aspects of GUS are interesting directions for further study. One direction is to develop a stochastic version of GUS — one that considers task models with stochastically specified task properties including that for execution times. Another very interesting future direction is to extend GUS for distributed scheduling for satisfying end-to-end time constraints in real-time distributed systems.

REFERENCES

Appendix

A. Additional Static Simulation Results

Fig. 12. Performance of Algorithms Under Step TUF’s and No Dependencies

(a) Under Normal Distribution

(b) Under Exponential Distribution
Fig. 13. Performance of Algorithms Under Step TUF's and Dependencies

Fig. 14. Performance of GUS Under Arbitrary TUF's and No Dependencies

Fig. 15. Performance of GUS Under Arbitrary TUF's and Dependencies
B. Additional Dynamic Simulation Results

Fig. 16. Performance of Algorithms Under Step TUF’s and No Dependencies

C. Additional Implementation Results

Fig. 17. Performance of Algorithms Under Step TUF’s and No Dependencies
Fig. 18. Performance of LBESA and GUS Under Arbitrary TUF’s and No Dependencies

(a) Deadline Satisfaction Ratio

(b) Accrued Utility Ratio

Fig. 19. Performance of GUS With Dependencies

(a) Under Non-Increasing TUF’s

(b) Under Arbitrary TUF’s