ON THE GLOBAL REGULARITY OF
SUB-CRITICAL EULER-POISSON EQUATIONS WITH PRESSURE

EITAN TADMOR AND DONGMING WEI

Abstract. We prove that the one-dimensional Euler-Poisson system driven by the Poisson forcing
together with the usual γ-law pressure, $\gamma \geq 1$, admits global solutions for a large class of initial data.
Thus, the Poisson forcing regularizes the generic finite-time breakdown in the 2×2 p-system. Global
regularity is shown to depend on whether or not the initial configuration of the Riemann invariants
and density crosses an intrinsic critical threshold.

1. Introduction

It is well known that the systems of Euler equations for compressible flows can and will breakdown
at a finite time even if the initial data are smooth. A prototype example for such systems is provided
by the 2×2 system of isentropic gas dynamics

$$
\begin{cases}
\rho_t + (\rho u)_x = 0 \\
(\rho u)_t + (\rho u^2)_x = -p_x,
\end{cases}
$$

where the pressure $p = p(\rho)$ is given by the usual γ-law, $p(\rho) = A\rho^\gamma$. By using the method introduced
in [La64] to deal with pairs of conservation laws, it can be shown that (1.1) will lose the C^1-smoothness
due to the appearance of shock discontinuities unless its two Riemann invariants are nondecreasing.
Thus, the finite time breakdown of (1.1) is generic in the sense that it holds for all but a “small set”
of initial data.

On the other hand, if we replace the pressure by Poisson forcing, then we arrive at the system of
Euler-Poisson equations

$$
\begin{cases}
\rho_t + (\rho u)_x = 0, \\
(\rho u)_t + (\rho u^2)_x = -k\rho\varphi_x \\
\varphi_{xx} = -\rho
\end{cases}
$$

subject to initial data $(u_0, \rho_0 > 0)$. Here $\varphi = \varphi(\rho)$ is the potential, which is dictated by the (one-
dimensional) Poisson equation, $\varphi_{xx} = -\rho$. In this case, there is a “large set” of initial configurations
which yield global smooth solutions. More precisely, [ELT01] have shown that (1.2) admits a global
smooth solution if and only if

$$
u_0 x(x) > -\sqrt{2k\rho_0(x)}.
$$

Thus, following the terminology of [LT02], the curve $u_0 x + \sqrt{2k\rho_0} = 0$ is a “critical threshold” in
configuration space which separates between initial configurations leading to finite time breakdown and a “large set” of sub-critical initial configurations which yield global smooth solutions. In particular,
1. REPORT DATE
09 SEP 2006

2. REPORT TYPE

3. DATES COVERED
09-09-2006 to 09-09-2006

4. TITLE AND SUBTITLE
On the Global Regularity of Sub-Critical Euler-Poisson Equations with Pressure

5. AUTHOR(S)

6. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland, Department of Mathematics, Institute for Physical Science & Technology, College Park, MD, 20742

7. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSOR/MONITOR'S ACRONYM(S)

10. SPONSOR/MONITOR'S REPORT NUMBER(S)

11. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

12. SUPPLEMENTARY NOTES

13. ABSTRACT

14. NUMBER OF PAGES
11

15. SECURITY CLASSIFICATION OF:

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

16. ABSTRACT

17. LIMITATION OF ABSTRACT

18. NUMBER OF PAGES
11

19a. NAME OF RESPONSIBLE PERSON
(1.3) allows negative velocity gradients (− depending on the local amplitude of the density), which otherwise are excluded in the case of inviscid Burgers equations, corresponding to \(k = 0 \).

In this paper we turn our attention to the full Euler-Poisson equations driven by both − pressure and Poisson forcing,

\[
\begin{align*}
\rho_t + (\rho u)_x &= 0, \\
(\rho u)_t + (\rho u^2)_x &= -p(\rho)_x - k \rho \varphi_x, \quad k > 0, \\
-\varphi_{xx} &= \rho.
\end{align*}
\]

These equations govern different phenomena, ranging from the largest scale of e.g., the evolution gravitational collapse in stars, to applications in the smallest scale of e.g., semi-conductors. There is a considerable amount of literature available on the local and global behavior of Euler-Poisson and related problems. Consult [Ma86] for local existence in the small \(H^s \)-neighborhood of a steady state of self-gravitating stars, [CW96] for global existence of weak solutions with geometrical symmetry, [Gu98] for global existence for 3-D irrotational flow, [MN95] for isentropic case, and [JR00] [PRV95] for isothermal case. Consult [Pe90] [MP90] [Si85] [WC98], [BW98] for non-existence results and singularity formation. The question of global smoothness vs. finite breakdown was studied in recent series of works of Liu and Tadmor, in terms of a critical threshold phenomena for 1-D “pressure-less” Euler-Poisson equations, [ELT01] and 2-D restricted Euler-Poisson equations, [LT02, LT03].

The natural question that arises in the present context of full Euler-Poisson equations (1.4) is whether the pressure enforces a generic finite time breakdown or, whether the presence of Poisson forcing preserves global regularity for a “large” set of initial configurations. We answer this question of “competition” between pressure and Poisson forcing, proving that the Euler-Poisson equations (1.4) with \(\gamma \geq 1 \) admit global smooth solutions for a “large set” of sub-critical initial data such that

\[
u_{0x}(x) > -k_0 \sqrt{\rho_0(x)} + \sqrt{A} \frac{|\rho_{0x}(x)|}{\rho_0(x)^{\frac{3}{2}}}, \quad \gamma \geq 1.
\]

Here, \(k_0 \) is a constant depending on \(k, \gamma \) and the initial data. In the particular (and important) case of isothermal equations, \(\gamma = 1 \), we have \(k_0 = \sqrt{2k} \) and (1.5) amounts to a sharp critical threshold,

\[
u_{0x}(x) \geq -\sqrt{2k \rho_0(x)} + \sqrt{A} \frac{|\rho_{0x}(x)|}{\rho_0(x)}, \quad \gamma = 1.
\]

The inequalities (1.5),(1.6) quantify the competition between the destabilizing pressure effects, as the range of sub-critical initial configurations shrinks with the growth of the amplitude of the pressure, \(A \), while the stabilizing effect of the Poisson forcing increases the sub-critical range with a growing \(k \). In particular, (1.6) with \(A = 0 \) recovers the pressure-free critical threshold (1.3).

The paper is organized as follows. In section 2, we reformulate the system (1.4) with its Riemann invariants as a preparation for the analysis carried out in sections 3 and 4. In section 3, we prove our main results, providing sufficient conditions for “large sets” of sub-critical initial configurations which yield global smooth solution. In section 4, we give examples of finite time breakdown for super-critical initial data. Combining our results in sections 3 and 4, they confirm the existence of a critical threshold phenomena for the full Euler-Poisson equations (1.4).
2. Riemann Invariants

2.1. The Euler-Poisson equations with γ-law pressure: $\gamma > 1$. We begin by rewriting the Euler-Poisson equations (1.4) as a first order quasilinear system

$$
\begin{pmatrix}
\rho \\
u
\end{pmatrix}_t + J \begin{pmatrix}
u \\
n\end{pmatrix}_x = \begin{pmatrix}0 \\
-k\varphi_x
\end{pmatrix},
$$

(2.1)

where the Jacobian $J := \begin{pmatrix}u & \rho \\
A\gamma\rho^{\gamma-2} & u
\end{pmatrix}$ has two different eigenvalues

$$
\lambda := u - \sqrt{A\gamma\rho^{\gamma-2}} < \mu := u + \sqrt{A\gamma\rho^{\gamma-2}}.
$$

and let R and S denote the Riemann invariants of the corresponding Euler system (1.1)

$$
R := u - \frac{2\sqrt{A\gamma}}{\gamma-1}\rho^{\gamma-1} \quad \text{and} \quad S := u + \frac{2\sqrt{A\gamma}}{\gamma-1}\rho^{\gamma-1}.
$$

They satisfy the coupled system of equations,

(2.3a) \quad R_t + \lambda R_x = -k\varphi_x,
(2.3b) \quad S_t + \mu S_x = -k\varphi_x,

coupled through the Poisson equation $-\phi_{xx} = \rho$. If we set $r := R_x$, $s := S_x$ then upon differentiation of (2.3) we get

(2.4a) \quad r_t + \lambda r_x + \lambda S r s + \lambda R r^2 = k\rho,
(2.4b) \quad s_t + \mu s_x + \mu S s^2 + \mu R s r = k\rho.

Next, we observe that $\lambda = \frac{R+S}{2} - \frac{\gamma-1}{4}(S-R)$ and $\mu = \frac{R+S}{2} + \frac{\gamma-1}{4}(S-R)$. Hence, expressed in terms of $\theta := \frac{\gamma-1}{2}$, we have for $\gamma \geq 1$,

$$
\lambda_R = \mu_S = \frac{1+\theta}{2} \quad \text{and} \quad \lambda_S = \mu_R = \frac{1-\theta}{2}, \quad \theta := \frac{\gamma-1}{2} \geq 0,
$$

and the pair of equations (2.4) is recast into the form

(2.5a) \quad r' + \frac{1+\theta}{2}r^2 + \frac{1-\theta}{2}rs = k\rho,
(2.5b) \quad s' + \frac{1+\theta}{2}s^2 + \frac{1-\theta}{2}rs = k\rho.

Here and below $\{\} := \partial_t + \lambda \partial_x$ and $\{\}' := \partial_t + \mu \partial_x$ denote differentiation along the λ and μ particle paths,

$$
\Gamma_\lambda := \{(x,t) \mid \dot{x}(t) = \lambda(\rho(x,t),u(x,t))\}, \quad \Gamma_\mu := \{(x,t) \mid \dot{x}(t) = \mu(\rho(x,t),u(x,t))\}.
$$

To continue, we rewrite the equation for ρ as

$$
\rho_t + \lambda \rho_x + \frac{\mu - \lambda}{2}\rho_x + \frac{s + r}{2} = 0,
$$

(2.6)

Since $s - r = S_x - R_x = 2\sqrt{A\gamma\rho^{\gamma-1}}\rho_x$, it enables us to express $\frac{\mu - \lambda}{2}\rho_x = \sqrt{A\gamma\rho^{\gamma-1}}\rho_x = \rho \frac{s - r}{2}$, so that the ρ equation (2.6) can be written along the λ particle path as $\rho' + \rho s = 0$. Similarly, it can be
Lemma 3.1. Given that the total charge \(E_0 := \int_{-\infty}^{\infty} \rho_0(x)dx < \infty \), then \(\rho(x,t) \) and \(u(x,t) \) remain uniformly bounded for all \(t > 0 \).

Proof. Under the given condition, we can set (e.g., [ELT01, p. 116])

\[
\varphi_x(x,t) = \frac{1}{2} \left(\int_{-\infty}^{x} \rho(\xi,t)d\xi - \int_{x}^{\infty} \rho(\xi,t)d\xi \right),
\]

which satisfies \(-E_0 \leq \varphi_x(x,t) \leq E_0\), for all \(t \geq 0 \) and \(x \in \mathbb{R} \).

Recall the transport equations (2.3a),(2.3b) which govern the Riemann invariants along different characteristics \(R' + k\varphi_x = S' + k\varphi_x = 0 \). Since \(\varphi_x \) is bounded, these transport equations tell us that \(R \) and.

written along the \(\mu \) particle path as \(\rho' + \rho r = 0 \). Assembling the above equations together, we arrive at the following system governing \(r, s \) and \(\rho \),

\[
\begin{align*}
(2.7a) \quad & \left\{ \begin{array}{l}
 r' + \frac{1 + \theta}{2} r^2 + \frac{1 - \theta}{2} rs = k\rho, \\
 \rho' + rs = 0,
\end{array} \right.
\end{align*}
\]

and

\[
(2.7b) \quad \left\{ \begin{array}{l}
 s' + \frac{1 + \theta}{2} s^2 + \frac{1 - \theta}{2} rs = k\rho, \\
 \rho' + rs = 0.
\end{array} \right.
\]

Finally, we use the integration factors \(1/\sqrt{\rho} \) and \(r/2\rho\sqrt{\rho} \) in the first and second equations of each pair in (2.7), to conclude

\[
\begin{align*}
(2.8a) \quad & \left(\frac{r}{\sqrt{\rho}} \right)' + \frac{1 + \theta}{2} \frac{r^2}{\sqrt{\rho}} - \frac{\theta}{2} \frac{rs}{\sqrt{\rho}} = k\sqrt{\rho},
\end{align*}
\]

\[
(2.8b) \quad \left(\frac{s}{\sqrt{\rho}} \right)' + \frac{1 + \theta}{2} \frac{s^2}{\sqrt{\rho}} - \frac{\theta}{2} \frac{rs}{\sqrt{\rho}} = k\sqrt{\rho}.
\]

2.2. The isothermal case \(\gamma = 1 \). In this case, the two eigenvalues are \(\lambda = u - \sqrt{A} < \mu = u + \sqrt{A} \) with the corresponding Riemann invariants \(R = u - \sqrt{A}\ln\rho \) and \(S = u + \sqrt{A}\ln\rho \). Their derivatives, \(r \) and \(s \), satisfy the pair of equations, corresponding to (2.8a),(2.8b) with \(\theta = (\gamma - 1)/2 = 0 \),

\[
\begin{align*}
(2.9a) \quad & \left(\frac{r}{\sqrt{\rho}} \right)' + \frac{1}{2} \frac{r^2}{\sqrt{\rho}} = k\sqrt{\rho},
\end{align*}
\]

\[
(2.9b) \quad \left(\frac{s}{\sqrt{\rho}} \right)' + \frac{1}{2} \frac{s^2}{\sqrt{\rho}} = k\sqrt{\rho}.
\]

3. Global smooth solutions for sub critical initial data

For the pressure-less Euler-Poisson equations (1.2), the evolution of \(u_x \) and \(\rho \) could be traced backwards along the same particle path to their initial data at \(t = 0 \). The scenario becomes more complicated with the additional pressure term, due to the coupling of \(r \) and \(s \) along different particle paths which are traced back to different neighborhoods of the initial line \(t = 0 \). This is the main obstacle in finding the sharp critical threshold of the full Euler-Poisson system (1.4). To this end, we will seek invariant regions for the coupled system, governing the Riemann invariants. We begin this section with the following lemma.

Lemma 3.2. Given that the total charge \(E_0 := \int_{-\infty}^{\infty} \rho_0(x)dx < \infty \), then \(\rho(x,t) \) and \(u(x,t) \) remain uniformly bounded for all \(t > 0 \).

Proof. Under the given condition, we can set (e.g., [ELT01, p. 116])

\[
\varphi_x(x,t) = \frac{1}{2} \left(\int_{-\infty}^{x} \rho(\xi,t)d\xi - \int_{x}^{\infty} \rho(\xi,t)d\xi \right),
\]

which satisfies \(-E_0 \leq \varphi_x(x,t) \leq E_0\), for all \(t \geq 0 \) and \(x \in \mathbb{R} \).

Recall the transport equations (2.3a),(2.3b) which govern the Riemann invariants along different characteristics \(R' + k\varphi_x = S' + k\varphi_x = 0 \). Since \(\varphi_x \) is bounded, these transport equations tell us that \(R \) and
and subject to initial data

\(|R(x, t), |S(x, t)| \leq C_0 + kE_0t \), \(C_0 := \sup_{|x| \leq M^{+\infty t}} \{ |R_0(x)|, |S_0(x)| \} \).

Take the sum and difference of \(S \) and \(R \) to find that \(u(x, t) \) and \(\rho(x, t) \) in (2.2) remain bounded,

\[
(3.2)\quad u_\infty := \sup_{|x| \leq M} |u(x, t)| \leq C_0 + kE_0t, \quad \sup_{|x| \leq M} \rho(x, t) \leq \text{Const.} \begin{cases} \quad (C_0 + kE_0t)^{\frac{2}{\gamma - 1}}, & \gamma > 1, \\ \quad \exp(kE_0t), & \gamma = 1. \end{cases}
\]

We note in passing that the time growth asserted in (3.2) is probably not sharp; the estimate can be improved after taking into account the uniform bounds of \(R_x/\sqrt{\rho} \) and \(S_x/\sqrt{\rho} \) discussed in theorems 3.1 and 3.2 below.

Remark 3.1. According to Lemma 3.1, the only way that the full Euler-Poisson system (1.4) breaks down at a finite time is through the formation of shock discontinuities where \(|u_x| \) and/or \(|\rho_x| \) blow up \(\uparrow \infty \), but neither will concentrate at any critical point. This is in contrast to the breakdown of the “pressure-less” Euler-Poisson equations (1.2), where \(-u_x(x, t) = \rho(x, t) \uparrow \infty \) simultaneously at the critical time.

3.1. Critical Threshold for isothermal case: \(\gamma = 1 \). We begin with the isothermal case, \(\gamma = 1 \), which plays an important role in various applications. Compared with the general case (2.8), the isothermal case becomes simpler due to the fact that \(\theta = 0 \) decouples the dependence on \(r \) and \(s \) through the mixed term \(\theta rs \), which disappears from left hand side of (2.9). Here we prove the following sharp characterization of the critical threshold phenomena.

Theorem 3.1. Consider the isothermal Euler-Poisson system (1.4) with pressure forcing \(p(\rho) = A\rho \), and subject to initial data \((u_0, \rho_0 > 0)\) with finite total charge, \(E_0 = \int_{-\infty}^{\infty} \rho_0(x)dx < \infty \). The system admits a global smooth, \(C^1 \)-solution if and only if

\[
(3.3)\quad u_{0x}(x) \geq -\sqrt{2k}\rho_0(x) + \sqrt{A|\rho_{0x}(x)|/\rho_0(x)}, \quad \forall x \in \mathbb{R}.
\]

Remark 3.2. Expressed in terms of the Riemann invariants specified in \(\S 2.2 \), \(u_x \pm \sqrt{A}\rho_x/\rho \), theorem 3.1 states that the isothermal Euler-Poisson equations admit global smooth solutions for sub-critical initial conditions,

\[
(3.4)\quad s_0 \geq -\sqrt{2k}\rho_0 \quad \text{and} \quad r_0 \geq -\sqrt{2k}\rho_0.
\]

Proof. We define \(X := \frac{r}{\sqrt{\rho}} \) and \(Y := \frac{s}{\sqrt{\rho}} \). Equations (2.9a),(2.9b) then read

\[
(3.5a)\quad X' = \frac{\sqrt{\rho}}{2}(2k - X^2),
\]

\[
(3.5b)\quad Y' = \frac{\sqrt{\rho}}{2}(2k - Y^2).
\]

It follows that

\[
X' \begin{cases} > 0, & X \in (-\sqrt{2k}, \sqrt{2k}), \\ = 0, & |X| = \sqrt{2k}, \\ < 0, & |X| > \sqrt{2k}, \end{cases}
\]
and similarly,

\[
Y' \begin{cases}
> 0, & Y \in (-\sqrt{2k}, \sqrt{2k}), \\
= 0, & |Y| = \sqrt{2k}, \\
< 0, & |Y| > \sqrt{2k}.
\end{cases}
\]

Thus, starting with (3.4), \(X_0, Y_0 \geq -\sqrt{2k} \), we find that \(X \) and \(Y \) remain bounded within the invariant region \([-\sqrt{2k}, \sqrt{2k}]\), or otherwise, they are decreasing outside this interval. We conclude that

\[
X(\cdot, t), Y(\cdot, t) \leq \max \left\{ \sqrt{2k}, X_0(\cdot), Y_0(\cdot) \right\}.
\]

Lemma 3.1 tells us that \(\rho \) is bounded. The boundedness of \(X \), \(Y \) and \(\rho \) imply that \(r = X\sqrt{\rho} \) and \(s = Y\sqrt{\rho} \) remain bounded for all \(t < \infty \), and hence the Euler-Poisson system (1.4) admits a global smooth \(C^1 \)-solution.

Conversely, suppose that there exists \(X_0 = X(x_0) < -\sqrt{2k} \). We will show that this value will evolve along \(\Gamma_\lambda(x_0, 0) \) such that \(X(\cdot, t) \) will tend to \(-\infty\) at a finite time. To this end, assume that \(Y \) is well behaved, i.e., \(Y_0(\cdot) \geq -\sqrt{2k} \) so that \(Y(\cdot, t) \leq Y_1 := \max \left\{ Y_0(\cdot), \sqrt{2k} \right\} \) for all \(t \)’s (otherwise, the finite time blow up of \(Y \) can be argued along the same lines). It follows that \(s = Y\sqrt{\rho} \leq Y_1\sqrt{\rho} \) and inserting this into \(\rho' = -\rho s \), we find \(\rho' \geq -\rho t^{3/2} \). This yields the lower-bound

\[
\rho \geq \left(\frac{2}{Y_1 t + 2/\sqrt{\rho_0}} \right)^2,
\]

and together with (3.5a), we conclude that \(X(\cdot, t) \) satisfies the following Ricatti equation along the \(\Gamma_\lambda \)-path,

\[
X' \leq -\frac{X_1}{Y_1 t + 2/\sqrt{\rho_0}} X^2, \quad X_1 := (X_0^2 - 2k)/X_0^2 > 0.
\]

Integration of (3.6) yields

\[
X(\cdot, t) \leq \frac{Y_1}{X_1 \ln \left(1 + \sqrt{\rho_0} Y_1 t/2 \right) + Y_1 X_0}.
\]

Thus, starting with \(X_0 < -\sqrt{2k} < 0 \) it follows that there exists a finite critical time \(t_c > 0 \) such that \(X(t \uparrow t_c) \) tends to \(-\infty\).

The critical threshold condition (3.3) reflects the competition between the Poisson forcing and the pressure. It yields global smooth solutions for a “large” set of initial configurations allowing negative velocity gradients. In the particular case that there is no pressure, \(A = 0 \), (3.3) is reduced to the critical threshold condition of the “pressure-less” Euler-Poisson equations \(u_{0x} > -\sqrt{2k\rho_0(x)} \) of [ELT01].

3.2. Critical threshold for \(\gamma > 1 \)

The equations for the Riemann invariants (2.8a), (2.8b) are coupled through the mixed term, \(\theta rs/2 \). We note in passing that it is possible to get rid of this mixed term when integrating (2.7a), (2.7b) with the integration factors \(\rho^{(\gamma-3)/4} \) and \(r \rho^{(\gamma-7)/4(3-\gamma)/4} \) in the first and second equations in each pair, yielding

\[
\begin{align*}
\left(r \rho^{\frac{\gamma-1}{2}} \right)' + \frac{1 + \theta}{2} r^2 \rho^{\frac{\gamma-1}{4}} &= k \rho^{\frac{1+\alpha}{2}}, \\
\left(s \rho^{\frac{\gamma-1}{2}} \right)' + \frac{1 + \theta}{2} s^2 \rho^{\frac{\gamma-1}{4}} &= k \rho^{\frac{1+\alpha}{2}}.
\end{align*}
\]
Nevertheless, it will prove useful to use the same integration factors, $1/\sqrt{\rho}$ and $r/2\rho\sqrt{\rho}$ which led to (2.8). The main task is to identify the invariant region associated with (2.8), corresponding to the isothermal invariant region $[-\sqrt{2k}, \sqrt{2k}]$ discussed in theorem 3.1.

Theorem 3.2. Consider the Euler-Poisson system (1.4) with γ law pressure $p(\rho) = A\rho^\gamma$, $\gamma > 1$, subject to initial data $(u_0, \rho_0 > 0)$ with finite total charge, $E_0 = \int_\infty^\infty \rho_0(x)dx < \infty$. Then, there exists a constant $K_0 > 0$ depending on k, γ and the initial conditions (specified in (3.9b) below), such that the Euler-Poisson equations (1.4) admit a global smooth, C^1-solution if,

$$u_{0x}(x) \geq -K_0 \sqrt{\rho_0(x)} + \sqrt{A\gamma \frac{|\rho_{0x}(x)|}{\rho_0(x)\frac{3-\gamma}{2}}}.$$

Before we turn to the proof of this theorem, several remarks are in order.

Remark 3.3. Expressed in terms of the Riemann invariants, $r = u_x - \sqrt{A\gamma \rho_{0x}/\rho_0^{(3-\gamma)/2}}$ and $s = u_x + \sqrt{A\gamma \rho_{0x}/\rho_0^{(3-\gamma)/2}}$, the critical threshold (3.8) reads

$$r_0(x) = \frac{\rho_0(x)}{\sqrt{\rho_0(x)}}$$

The constant K_0 is given by

$$K_0 = \frac{-\theta M_0 + \sqrt{\theta^2 M_0^2 + 8k(1 + \theta)}}{2(1 + \theta)}, \quad M_0 = \max_x \left\{ \sqrt{2k}, \frac{r_0(x)}{\sqrt{\rho_0(x)}}, \frac{s_0(x)}{\sqrt{\rho_0(x)}} \right\}.$$

We mention two simplifications which are summarized in the following two corollaries. We first observe that if the initial configurations satisfy the upper-bound $r_0(x), s_0(x) \leq \sqrt{2k}\rho_0(x)$ then (3.9b) yields $M_0 = \sqrt{2k}$, hence $K_0 = \frac{\sqrt{2k}}{1 + \theta}$, and theorem 3.2 implies the following.

Corollary 3.1. Consider the Euler-Poisson system (1.4) with γ law pressure $p(\rho) = A\rho^\gamma$, $\gamma > 1$, subject to initial data $(u_0, \rho_0 > 0)$ with finite total charge, $E_0 = \int_\infty^\infty \rho_0(x)dx < \infty$. Then, the Euler-Poisson equations (1.4) admit a global smooth, C^1-solution if for all $x \in \mathbb{R}$,

$$|u_{0x}(x)| \leq \sqrt{2k}\rho_0(x) - \sqrt{A\gamma \frac{|\rho_{0x}(x)|}{\rho_0(x)\frac{3-\gamma}{2}}}.$$

The next result follows from the trivial inequality $-K_0 \leq \frac{\theta M_0 - (\theta M_0 + \sqrt{8k(1 + \theta)})/\sqrt{2}}{2(1 + \theta)}$.

Corollary 3.2. Consider the Euler-Poisson system (1.4) with a γ-law pressure $p(\rho) = A\rho^\gamma$, $\gamma > 1$, subject to initial data $(u_0, \rho_0 > 0)$ with finite total charge, $E_0 = \int_\infty^\infty \rho_0(x)dx < \infty$. Then, the Euler-Poisson equations (1.4) admit a global smooth, C^1-solution, if for all $x \in \mathbb{R}$,

$$u_{0x}(x) \geq -\sqrt{\frac{2k\rho_0(x)}{\gamma + 1}} +$$

$$\left(1 - \frac{1}{\sqrt{2}}\right)\frac{\gamma - 1}{2(\gamma + 1)} \max_x \left\{ \sqrt{2k\rho_0(x)}, u_{0x}(x) + \sqrt{A\gamma \frac{|\rho_{0x}(x)|}{\rho_0(x)\frac{3-\gamma}{2}}} \right\} + \sqrt{A\gamma \frac{|\rho_{0x}(x)|}{\rho_0(x)\frac{3-\gamma}{2}}}.$$

Remark 3.4. We observe that as in the isothermal case, the critical threshold in its various versions (3.8), (3.9), (3.10) and (3.11), allow a “large set” of initial configurations with negative velocity gradient, due to the competition between the stabilizing Poisson forcing $k\rho_0(\rho)x$ and the destabilizing pressure $A(\rho^\gamma)x$. In the extreme case that Poisson forcing is missing $k = 0$, the breakdown of the system
is generic unless \(u_{0x} \) is positive enough (so that \(r_0, s_0 > 0 \)). In the other extreme of a “pressure-less” Euler-Poisson, \(A = 0, \gamma = 1 \), the critical thresholds (3.8), (3.10) are reduced to \(u_{0x}(x) > -\sqrt{2k\rho_0(x)} \), which coincides with the “pressure-less” critical threshold (1.3) found in [ELT01].

Proof. Expressed in terms of \(\rho \) which coincides with the “pressure-less” critical threshold (1.3) found in [ELT01].

In a similar manner, we study the lower bound of the invariant region. By (3.14) and (3.12) yield

\[
\begin{align*}
X' & = \sqrt{\rho} \left(k - \frac{1 + \theta}{2} X^2 + \frac{\theta}{2} XY \right), \\
Y' & = \sqrt{\rho} \left(k - \frac{1 + \theta}{2} Y^2 + \frac{\theta}{2} XY \right).
\end{align*}
\]

We seek an invariant region of the form \([-K_0, M_0]\), with \(K_0, M_0 > 0 \) yet to be determined. We begin by noticing that if \(X, Y \leq M \) then

\[
\begin{align*}
(3.15a) & \quad X' \leq \sqrt{\rho} \left(k - \frac{1 + \theta}{2} X^2 + \frac{\theta}{2} M^2 \right), \quad X > 0, \\
(3.15b) & \quad Y' \leq \sqrt{\rho} \left(k - \frac{1 + \theta}{2} Y^2 + \frac{\theta}{2} M^2 \right), \quad Y > 0.
\end{align*}
\]

This in turn implies that

\[
X \text{ and } Y \text{ are decreasing if } X, Y > C_+, \quad C_+ = C_+(M) := \sqrt{\frac{2k + \theta M^2}{1 + \theta}}.
\]

The solution of \(C_+(M) = M \) yields \(M = \sqrt{2k} \). Thus, \(X \) and \(Y \) are decreasing whenever \(X, Y > M = \sqrt{2k} \), and we end up with the upper-bound

\[
X(\cdot,t), Y(\cdot,t) \leq M_0, \quad M_0 := \max_x \left\{ \sqrt{2k}, X_0(x), Y_0(x) \right\}.
\]

In a similar manner, we study the lower bound of the invariant region. By (3.14) and (3.12) yield

\[
\begin{align*}
(3.16a) & \quad X' \geq \sqrt{\rho} \left(k - \frac{1 + \theta}{2} X^2 + \frac{\theta}{2} M_0 X \right), \quad X < 0, \\
(3.16b) & \quad Y' \geq \sqrt{\rho} \left(k - \frac{1 + \theta}{2} Y^2 + \frac{\theta}{2} M_0 Y \right), \quad Y < 0,
\end{align*}
\]

which in turn imply that

\[
X \text{ and } Y \text{ are increasing if } 0 \geq X, Y > -K_0,
\]

where \(K_0 \) is the smallest root of the quadratics on the right of (3.15),

\[
K_0 := \frac{-\theta M_0 + \sqrt{\theta^2 M_0^2 + 8k(1 + \theta)}}{2(1 + \theta)}.
\]

The critical threshold condition (3.8) tells us that at \(t = 0 \), \(X_0, Y_0 \geq -K_0 \) and (3.16a) implies that \(X(\cdot,t) \) and \(Y(\cdot,t) \) remain above the same lower-bound, (3.8). As before, the bounds of \(X, Y \) and \(\rho \) imply that \(r = X\sqrt{\rho} \) and \(s = Y\sqrt{\rho} \) remain bounded, and hence the Euler-Poisson system (1.4) a global smooth, \(C^1 \)-solution.

\[\square\]

1We let \(Z_+ = \max\{X,0\} \) and \(Z_- = \min\{Z,0\} \) denote the positive and negative part of \(Z \).
4. Finite time breakdown for super-critical initial data

Consider the Euler-Poisson system (1.4) with a γ-law pressure, $\gamma \geq 1$, and subject to initial data such that $r_0(x), s_0(x) \leq \sqrt{2k}$. Then, according to corollary 3.1, the following critical threshold is sufficient for the existence of global smooth solutions,

$$u_{0x}(x) \geq -\sqrt{2k\rho_0(x)} + \sqrt{A\gamma}\frac{|\rho_{0x}(x)|}{\rho_0(x)^{3/4}}.$$

In this section we show that this critical threshold is also necessary for global regularity.

Theorem 4.1. Consider the Euler-Poisson system (1.4) with a γ-law pressure $p(\rho) = A\rho^\gamma$, $\gamma \geq 1$, subject to initial data $(u_0, \rho_0 > 0)$. The system loses the C^1-smoothness if there exists an $x \in \mathbb{R}$ such that

$$u_{0x}(x) < -\sqrt{2k\rho_0(x)} + \sqrt{A\gamma}\frac{|\rho_{0x}(x)|}{\rho_0(x)^{3/4}}.$$

Remark 4.1. Expressed in terms of the Riemann invariants, $r = u_x - \sqrt{A\gamma}\rho_{0x}/\rho_0^{3/2}$ and $s = u_x + \sqrt{A\gamma}\rho_{0x}/\rho_0^{3/2}$, the condition (4.1) reads

$$\exists x \in \mathbb{R} \text{ s.t. } r_0(x) < -\sqrt{2k\rho_0(x)}, \text{ or } s_0(x) < -\sqrt{2k\rho_0(x)}.$$

The lack of smoothness in this case was shown in theorem 3.1 for $\gamma = 1$ and is extended for $\gamma > 1$ below.

Proof. Recall equations (3.12) for $X := \frac{r}{\sqrt{\rho}}$ and $Y := \frac{s}{\sqrt{\rho}}$

(4.3a)

$$X' = \sqrt{\rho}\left(k - \frac{1 + \theta}{2}X^2 + \frac{\theta}{2}XY\right),$$

(4.3b)

$$Y' = \sqrt{\rho}\left(k - \frac{1 + \theta}{2}Y^2 + \frac{\theta}{2}XY\right).$$

In the proof of theorem 3.2, we have shown that X and Y have an upper bound

$$X(\cdot, t), Y(\cdot, t) \leq M_0, \quad M_0 := \max_x \left\{ \sqrt{2k}, X_0(x), Y_0(x) \right\}.$$

Suppose that there exists $X_0 = X(x_0) < -\sqrt{2k}$. We will show that this value will evolve along $\Gamma_\lambda(x_0, 0)$ such that $X(\cdot, t)$ will tend to $-\infty$ at a finite time. To this end, assume that Y is well behaved, i.e., $Y_0(\cdot) \geq -\sqrt{2k}$ so that $Y(\cdot, t) \leq M_0$ for all t's (otherwise, the finite time blow up of Y can be argued along the same lines). It follows that along $\Gamma_\lambda(x_0, 0)$

$$X' = \sqrt{\rho}\left(k - \frac{1 + \theta}{2}X^2 + \frac{\theta}{2}XY\right) \leq \sqrt{\rho}\left(k - \frac{1}{2}X^2\right).$$

Following exactly what we have done in the proof of theorem 3.1, we obtain the inequality

$$X(\cdot, t) \leq \frac{M_0}{X_1 \ln \left(1 + \sqrt{\rho_0}M_0t/2\right) + M_0X_0},$$

where $X_1 := (X_0^2 - 2k)/X_0^2 > 0$. Thus, starting with $X_0 < -\sqrt{2k} < 0$ it follows that there exists a finite critical time $t_c > 0$ such that $X(t \uparrow t_c)$ tends to $-\infty$. \qed
We conclude with an example for a finite time breakdown.

Example: Suppose at \(t = 0 \), \(u_0(x) = 0 \) and

\[
\rho_0(x) = \begin{cases}
1, & x < 0, \\
1 - \frac{x}{2\epsilon}, & 0 \leq x \leq \epsilon, \\
\frac{1}{2}, & x > \epsilon.
\end{cases}
\]

Thus

\[
s_0(x) = \begin{cases}
-\sqrt{A_7} \left(1 - \frac{x}{2\epsilon}\right)/2\epsilon, & 0 < x < \epsilon, \\
0, & \text{elsewhere}.
\end{cases}
\]

If we choose \(\epsilon \) small enough, then \(s_0(x) < -\sqrt{2k\rho_0(x)} \) for \(0 < x < \epsilon \). According to theorem 4.1, the system (1.4) will break down in a finite time. This example shows that even if the fluid is near rest at \(t = 0 \), the pressure itself could still lead to collision.

References

(Eitan Tadmor)
Department of Mathematics, Institute for Physical Science and Technology
and Center of Scientific Computation And Mathematical Modeling (CSCAMM)
University of Maryland
College Park, MD 20742 USA
E-mail address: tadmor@cscamm.umd.edu
URL: http://www.cscamm.umd.edu/~tadmor

(Dongming Wei)
Department of Mathematics
Center of Scientific Computation And Mathematical Modeling (CSCAMM)
University of Maryland
College Park, MD 20742 USA
E-mail address: dwei@cscamm.umd.edu