Prevention and Mitigation of Weaponized Viruses Through NutriGenomics: A New Model

Fredric D. Abramson, Ph.D., S.M., Esq.

November 17, 2003

Presented at the 2003 Joint Services Scientific Conference on Chemical and Biological Defense Research
Prevention and Mitigation of Weaponized Viruses Through NutriGenomics: A New Model

1. REPORT DATE
 01 OCT 2005

2. REPORT TYPE
 N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
 Prevention and Mitigation of Weaponized Viruses Through NutriGenomics: A New Model

5a. CONTRACT NUMBER
 -

5b. GRANT NUMBER
 -

5c. PROGRAM ELEMENT NUMBER
 -

5d. PROJECT NUMBER
 -

5e. TASK NUMBER
 -

5f. WORK UNIT NUMBER
 -

6. AUTHOR(S)
 -

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 AlphaGenics, Inc

8. PERFORMING ORGANIZATION REPORT NUMBER
 -

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 -

10. SPONSOR/MONITOR’S ACRONYM(S)
 -

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
 -

12. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified
 b. ABSTRACT
 unclassified
 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
 UU

18. NUMBER OF PAGES
 52

19a. NAME OF RESPONSIBLE PERSON
 -

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
INFA
CCNG1
BIRC3
Some of the 359 Chemical Constituents in the Tomato

From the Handbook of Phytochemical Constituents of GRAS Herbs

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Concentration</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACETONE</td>
<td>FR HUL</td>
<td></td>
</tr>
<tr>
<td>ARGinine</td>
<td>1-3,637</td>
<td>FR HUL USA</td>
</tr>
<tr>
<td>ARSenic</td>
<td>0.00354-0.0425</td>
<td>FR USG</td>
</tr>
<tr>
<td>ASCORBIC-ACID</td>
<td>50-2,952</td>
<td>FR HUL USA</td>
</tr>
<tr>
<td>ASCPARAGINE</td>
<td>300</td>
<td>FR HUL</td>
</tr>
<tr>
<td>ASPARTIC-ACID</td>
<td>1,230-20,332</td>
<td>FR USA</td>
</tr>
<tr>
<td>AUROZANTHIN</td>
<td>FR NAP</td>
<td></td>
</tr>
<tr>
<td>BARiUM</td>
<td>0-60</td>
<td>FR USG</td>
</tr>
<tr>
<td>CADMIUM</td>
<td>0.005-1.7</td>
<td>AAS USG</td>
</tr>
<tr>
<td>CALCIUM</td>
<td>60-2.400</td>
<td>AAS HUL</td>
</tr>
<tr>
<td>BETA-CAROTENE</td>
<td>7-113</td>
<td>FR HUL USA</td>
</tr>
<tr>
<td>CHLORINE</td>
<td>510</td>
<td>WOI</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>C-3</td>
<td>FR USG</td>
</tr>
<tr>
<td>COBALT</td>
<td>0-1.4</td>
<td>FR USG</td>
</tr>
<tr>
<td>COPPER</td>
<td>0.4-100</td>
<td>FR HUL USA USG</td>
</tr>
<tr>
<td>CYSTINE</td>
<td>120-1.984</td>
<td>FR USA</td>
</tr>
<tr>
<td>ETHANOL</td>
<td>FR HUL</td>
<td></td>
</tr>
<tr>
<td>FORMIC-ACID</td>
<td>FR HUL</td>
<td></td>
</tr>
<tr>
<td>FRUCTOSE</td>
<td>11,700</td>
<td>RHUL</td>
</tr>
<tr>
<td>GLUCOSE</td>
<td>16,300</td>
<td>FR HUL</td>
</tr>
<tr>
<td>GLUTAMIC-ACID</td>
<td>90-54,053</td>
<td>FR HUL</td>
</tr>
<tr>
<td>GLYCERIC-ACID</td>
<td>FR HHB</td>
<td></td>
</tr>
<tr>
<td>GLYCOLIC-ACID</td>
<td>FR HHB</td>
<td></td>
</tr>
<tr>
<td>HISTIDINE</td>
<td>30-2,149</td>
<td>FR HUL</td>
</tr>
<tr>
<td>IRON</td>
<td>1-800</td>
<td>(3,000) FR HUL</td>
</tr>
<tr>
<td>LEAD</td>
<td>0.003-60</td>
<td>AAS USG</td>
</tr>
<tr>
<td>LINOLEIC-ACID</td>
<td>830-13,720</td>
<td>FR HUL USA</td>
</tr>
<tr>
<td>LYSINE</td>
<td>2-5,455</td>
<td>FR HUL USA</td>
</tr>
<tr>
<td>MAGNESIUM</td>
<td>70-6,000</td>
<td>FR HUL USA USG</td>
</tr>
<tr>
<td>MANGANESE</td>
<td>0.6-100</td>
<td>AAS HUL USG</td>
</tr>
<tr>
<td>MERCURY</td>
<td>0.00069-0.0017</td>
<td>FR USG</td>
</tr>
<tr>
<td>METHANOL</td>
<td>FR HUL</td>
<td></td>
</tr>
<tr>
<td>MOLYBDENUM</td>
<td>0-6</td>
<td>FR USG</td>
</tr>
<tr>
<td>NIACIN</td>
<td>6-99</td>
<td>FR USA</td>
</tr>
<tr>
<td>NICKEL</td>
<td>0.01-5</td>
<td>AAS USG</td>
</tr>
<tr>
<td>OXALIC-ACID</td>
<td>36-263</td>
<td>FR WBB</td>
</tr>
<tr>
<td>PECTIN</td>
<td>100-31,000</td>
<td>FR HUL WOI</td>
</tr>
<tr>
<td>PHENYLALANINE</td>
<td>72-3,801</td>
<td>FR HUL USA</td>
</tr>
<tr>
<td>POTASSIUM</td>
<td>780-58,800</td>
<td>(-102,000) FR AAS</td>
</tr>
<tr>
<td>PROPIONIC-ACID</td>
<td>FR HHB</td>
<td></td>
</tr>
<tr>
<td>PYRUVIC-ACID</td>
<td>FR HUL</td>
<td></td>
</tr>
<tr>
<td>RIBOFLAVIN</td>
<td>1-8</td>
<td>FR USA</td>
</tr>
<tr>
<td>SELENIUM</td>
<td>0.00069-0.034</td>
<td>FR USG</td>
</tr>
<tr>
<td>SILVER</td>
<td>0-1.4</td>
<td>FR USG</td>
</tr>
<tr>
<td>SODIUM</td>
<td>10-6.600</td>
<td>FR HUL</td>
</tr>
<tr>
<td>STRONTIUM</td>
<td>0-140</td>
<td>FR USG</td>
</tr>
<tr>
<td>SUCCINIC-ACID</td>
<td>FR HHB</td>
<td></td>
</tr>
<tr>
<td>SUCROSE</td>
<td>FR HUL</td>
<td></td>
</tr>
<tr>
<td>SULFUR</td>
<td>107-2,330</td>
<td>FR AAS HHB USG</td>
</tr>
<tr>
<td>TITANIUM</td>
<td>0-140</td>
<td>FR USG</td>
</tr>
<tr>
<td>ALPHA-TOCOPHEROL</td>
<td>7-143</td>
<td>FR TOT</td>
</tr>
<tr>
<td>TYROSINE</td>
<td>38-2,479</td>
<td>FR HUL USA</td>
</tr>
<tr>
<td>UBIQUINONE</td>
<td>10-60</td>
<td>TC NAP</td>
</tr>
<tr>
<td>VALINE</td>
<td>1-3.801</td>
<td>FR HUL USA</td>
</tr>
<tr>
<td>VANADUIM</td>
<td>0-6</td>
<td>FR USA</td>
</tr>
<tr>
<td>ZINC</td>
<td>1-120</td>
<td>FR HUL USA USG</td>
</tr>
</tbody>
</table>
Network Evaluation II - Ingenuity

- 120 Mapped Genes in Literature
- 82 Ingenuity system
- 189 Total Networked Genes
- 107 new connections
- 24 Networks
8 of 24 Networks

<table>
<thead>
<tr>
<th>Network</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BIRC2, BIRC3, FOSL2, IFI16, IL2, IL4, IL6ST, IRF1, IRF2, JUN, LTBR, MYC, NFKBIA, PTGS2, RIPK1, SOCS3, STAT1, STAT3, TNFAIP3, TRAF1</td>
</tr>
<tr>
<td>2</td>
<td>CCBP2, CCL3, CCL4, CCL5, CCR4, CREBBP, CTSD, EEF1G, EEF2, HMGA1, IFNA1, IFNA4, IFNB1, IRF3, IRF7, KLF13, MYCN, NCL, NOS2A, RPS6</td>
</tr>
<tr>
<td>3</td>
<td>ATF2, BTRC, C-REL, EP300, FOS, GATA3, HNRPU, IL10, IL13, IL1RL1, IL8, MAPK12, NFKB1, NMI, RELA, RPS18, SOD2, TBP, UBE1, UTF1</td>
</tr>
<tr>
<td>4</td>
<td>CDK4, CDKN1A, CEBPB, CUGBP1, CYFIP1, CYFIP2, FMR1, FXR1, FXR2, GANKYRIN, IL6, MAPK6, PRKCG, PSMA3, PSMB1, PSMB7, PSMB8, PSMB9, PSME1, PSME2</td>
</tr>
<tr>
<td>5</td>
<td>CCNB1-RS1, CCNG1, CDK6, CDKN2D, DDB2, E2F1, ESR1, ISGF3G, NDN, PIASX, POLA, POLA2, PRIM2A, PRKR, RAD54L, RANGAP1, RRM2, TFAP2C, TP53, UBE2I</td>
</tr>
<tr>
<td>6</td>
<td>CXCL12, DCN, DPP4, FN1, HOXD3, IGF2R, IL1A, IL1B, IL1R1, IL1R2, MMP12, MMP16, MMP2, PLG, SPARC, TAC1, TGM2, TNF, TNFRSF6, UMOD</td>
</tr>
<tr>
<td>7</td>
<td>BARD1, BRCA1, CSTF1, CSTF2, CSTF3, CUL2, IFI27, IFNG, IGF1R, INS, JAK1, JAK2, NFATC2, PRLR, RBX1, SOCS1, SOCS2, TAP1, TCEB1, TCEB2</td>
</tr>
<tr>
<td>24</td>
<td>BUB1B, BUB3, CDC20, CDC27, CSF2RB, E2F4, INS, KIF1B, MAD1L1, MAD2L1, MAD2L2, UBD</td>
</tr>
</tbody>
</table>
Network 1 – 20 genes
Network 1 – Cellular Layout

[Diagram of cellular layout with various compartments and molecules labeled]
Network 2 – 20 genes
Network 2 – Cellular Layout
Network 3 – 20 genes
Network 3 – Cellular Layout
Network 4 – 20 genes
Network 4 – Cellular Layout
Network 5 – 20 genes
Network 5 – Cellular Layout
Network 6 – 20 genes
Network 6 – Cellular Layout

Unknown
Network 7 – 20 genes
Network 7 – Cellular Layout
Network 24 – 20 genes
Network 24 – Cellular Layout
Unifying Diet & the Genome

- TNF
- INFLUENZA
- NOS2A
- STAT1
 - RA
 - Mycobacterial infection
 - STAT1 deficiency

AlphaGenics
A NUTRIGENOMICS SCIENCE COMPANY
Unifying Diet & the Genome
Unifying Diet & the Genome
Gene Choices

• Marginal
 • Nose Hair Growth
 • Finger Nail Growth
• No longer used
 • Infant tooth eruption
• Needed in future
 • Aging & Senescence
TOP SECRET

Operational Immediate
2 Oct 2004
2014 hrs local
From: Station Chief, Tehran
To: Director, Central Intelligence

Located, SE Iran, remnants of biological lab.

Target: Election day – Washington, DC

More follows.
02 November 2004

Cases
4,950
08 November 2004

Cases 89,377

DEAD 22,049
22 November 2004

Cases 4,191,126

DEAD 1,003,222
25 December 2004
CHRISTMAS DAY

Cases
13,657,260

DEAD
3,081,035
Unifying Diet & the Genome

Dietary Inputs

Genotype

Environment

Phenotype

Expressivity

Microarray Data

DNA Blueprint

Biothreat Prevention

Prevention
Advantages
NutriGenomic Anti-Viral (NAV) System

- Fast response time
- Uses existing foods & supplements
- Responds to new viral variants
- Can isolate effective combinations of dietary chemicals, for use in supplements, foods, pharmaceuticals
- Can respond to multiple-viral complex
- No apparent way to design around
AlphaGenics Team

- Fredric Abramson, President & CEO
- Jeffrey Lang, Director of Finance
- Jeffrey Kilgour, Chief Information Officer
- Siani Kayani, Digital Biologist
- Julie Nisson, Digital Biologist
- Meredith Libeg, Digital Biologist
- Mark Rockman, Systems Programmer
• “The flying machine which will really fly might be evolved by the combined and continuous efforts of mathematicians and mechanicians in from one million to ten million years”
 – The New York Times
 • 9 October 1903

• “We started assembly today”
 – Orville Wright’s Diary
 • 9 October 1903
AlphaGenics, Inc.

www.Alpha-Genics.com

THANK YOU

(240) 453-6242

Maryland Technology Incubator
9700 Great Seneca Highway
Rockville, MD 20850