Single Particle Absorption Measurements in the Mid-Infrared by Exploiting Elastic Scattering

Kevin Aptowicz, Yong-Le Pan, and Richard K. Chang
Yale University

Ronald G. Pinnick, Steven C. Hill, Kris Gurton, and Richard L. Tober
Army Research Labs

Burt V. Bronk
AFRL at US Army SBCCOM

Joint Service Scientific Conference on Chemical & Biological Defense Research
Single Particle Absorption Measurements in the Mid-Infrared by Exploiting Elastic Scattering

Abstract

Goal: Measure the infrared absorption and scattering cross-sections for single biological and chemical aerosol particles.

Use: Single particle measurements are necessary for detailed modeling and understanding of test results from infrared stand-off detection systems.

Technique:

Two-dimensional **Angular Optical Scattering** (TAOS)

TAOS patterns depend upon particle shape, size, and **complex refractive index**
Coordinates for TAOS patterns

Scattering Parameters

Diameter: 54.2 µm
Refractive Index: 1.342 + i * 0.00
Wavelength: 3.41 µm
Size Parameter: $2\pi a/\lambda \cong 50$
Laser Polarization: Vertical

$0^\circ \leq \theta \leq 180^\circ$
$0^\circ \leq \phi \leq 360^\circ$
Extrapolate absorption cross-sections of spherical particles by comparison with Mie theory.

Changes in absorption leads to changes in the scattering profile beyond just a scale factor.
Experimental set-up to collect TAOS patterns of droplets
Collected TAOS patterns of droplets

H₂O
Droplet Diameter: 57.4 µm
Refractive Index: 1.405 + i 0.018

50% H₂O - 50% D₂O
Droplet Diameter: 54.2 µm
Refractive Index: 1.342 + i 0.010

D₂O
Droplet Diameter: 55.2 µm
Refractive Index: 1.279 + i 0.002
Comparison between experiment and Mie theory

<table>
<thead>
<tr>
<th>Liquid Type</th>
<th>Droplet Diameter</th>
<th>Refractive Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>D$_2$O</td>
<td>55.2 μm</td>
<td>1.279 + i 0.002</td>
</tr>
<tr>
<td>50% H$_2$O - 50% D$_2$O</td>
<td>54.2 μm</td>
<td>1.342 + i 0.010</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>57.4 μm</td>
<td>1.405 + i 0.018</td>
</tr>
</tbody>
</table>
Current work
Collaboration with MIT Lincoln Lab
(Anish Goyal, Tom Jeys, and Antonio Sanchez)

Large Angle Two-dimensional Angular Optical Scattering
LA TAOS patterns collected in the **visible** of clusters ($\lambda = 532$ nm)
LA TAOS patterns collected in the **mid-IR** of clusters ($\lambda = 3.9 \ \mu m$)

Variability within a data set is due to multiple factors: cluster size, shape, and orientation, and optical alignment distortions.
LA TAOS in the visible and mid-infrared

By increasing the wavelength, the LA TAOS technique becomes more sensitive to larger structure sizes.

SEM of Tryptophan

Visible LA TAOS pattern of Tryptophan at $\lambda = 532$ nm

Mid-IR LA TAOS patterns of Tryptophan at $\lambda = 3.9$ μm
Future Plans: Capture Dual Wavelength LA TAOS

Use two mid-infrared wavelengths to simultaneously illuminate an aerosol, then compare the LA TAOS patterns to ascertain if there is absorption at either wavelength.
Summary of Work

- Detected TAOS patterns of single 50 µm droplets composed of H₂O, D₂O, and H₂O/D₂O mixture.

- Able to achieve decent visible match with results derived from Mie theory.

- Unable to implement a minimization routine to find absorption because of aberration in the collection optics as well as an inability to determine absolute angle reference.

- Collected LA TAOS patterns of Arizona Road Dust, BG, Bovine Albumin, PSL sphere cluster, and Tryptophan