Superconducting MEM switches for microwave power applications

Final technical report

Award number F49620-02-1-0044

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

Principal investigator: Vlasov, Yuri (vlassovy@fiu.edu)
Co-principal investigator: Larkins, Grover (larkinsg@fiu.edu)

Organization: Florida International University
4. TITLE AND SUBTITLE
SUPERCONDUCTING MEM SWITCHES FOR MICROWAVE POWER APPLICATIONS

6. AUTHOR(S)
DR VLASOV

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
FLORIDA INTERNATIONAL UNIVERSITY
11200 SW 8TH UNIVERSITY
MIAMI FL 33199

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFOSR/NE
4015 WILSON BLVD
SUITE 713
ARLINGTON VA 22203

10. SPONSORING/MONITORING AGENCY REPORT NUMBER
F49620-02-1-0044

13. ABSTRACT (Maximum 200 words)
FINAL PROGRESS
- In the fourth year of the project the work on optimization of fabrication process for a capacitively shunted RF micro-electromechanical superconducting switch was continued.
- Simulations and measurements show that the filter response is not critically distorted by the presence of the MEM switches.
- When the filter is not active, the signal is attenuated by a value of <0.9 dB at 3 GHz.
- Yield of fabricated devices was improved to be greater than 40%.
- Work on study of the effect of temperature on the Au Young's elastic modulus was performed.

17. SECURITY CLASSIFICATION OF REPORT
Unclassified

18. SECURITY CLASSIFICATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION OF ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT
UL
<table>
<thead>
<tr>
<th>Project title:</th>
<th>"Superconducting MEM switches for microwave power applications."</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization:</td>
<td>Florida International University</td>
</tr>
<tr>
<td>P.I.</td>
<td>Vlasov, Yuri</td>
</tr>
<tr>
<td>Co-P.I.</td>
<td>Larkins, Grover</td>
</tr>
<tr>
<td>Award No.</td>
<td>F49620-02-1-0044</td>
</tr>
<tr>
<td>Project period:</td>
<td>from 11/15/2001 to 11/14/2005</td>
</tr>
<tr>
<td>Total project cost:</td>
<td>$394,635.00</td>
</tr>
<tr>
<td>Program manager:</td>
<td>Dr. Harold Weinstock</td>
</tr>
</tbody>
</table>
Personel

FIU PhD students:
 Yazan S. Hijazi
 Albert Bogozi
FIU graduate students:
 Drayton Hanna
 Dane Fairweather
 Leon Lawrence
 Julian Noel
 Jose Martinez
FIU undergraduate student:
 James Burke

Demographics:

<table>
<thead>
<tr>
<th></th>
<th>African American</th>
<th>Hispanic</th>
<th>Asian</th>
<th>Women</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty/Staff</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PhD students</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Graduate students</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Undergraduate</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>Percentage of total</td>
<td>36%</td>
<td>18%</td>
<td>0%</td>
<td>9%</td>
<td>36%</td>
<td>100%</td>
</tr>
</tbody>
</table>

2001 – 2002 year summary

- The work performed in the first year of the project proved that YBa$_2$Cu$_3$O$_7$ is a good candidate for use in MEMS applications.
- The fabricated switches showed good microwave characteristics at cryogenic temperatures which are in line with those in the simulations.
- Isolation of more than 34 dB below resonance and an insertion loss of less 0.05 dB at 0.5 GHz was shown.
- There were issues with stiction and high actuation voltage (from 75 V to 120 V) which need solving and on which work was planned to be done.

2002 – 2003 year summary

- MEM switches have been incorporated in three different high- Tc superconducting resonators.
- Insertion loss has been shown to be less than 0.007 dB.
- Yield has been improved to ~5%, but issues still remain.
- Actuation voltage in our devices has stabilized at about 75 V.

2003 – 2004 year summary
MEM switches have been incorporated in five different high- T_c superconducting devices.
The coplanar shunt switch isolation was > 34 dB below resonance.
Insertion loss of shunt switch has been shown to be < 0.007 dB.
Yield of fabricated devices was improved (25%) due to optimization of fabrication process.
A superconducting switchable bandpass filter has been successfully designed and simulated.
Several different prototypes of switchable filter have been fabricated.

2004 – 2005 year summary

- In the fourth year of the project the work on optimization of fabrication process for a capacitively shunted RF micro-electromechanical superconducting switch was continued.
- Simulations and measurements show that the filter response is not critically distorted by the presence of the MEM switches.
- When the filter is not active, the signal is attenuated by a value of < 0.9 dB at 3 GHz.
- Yield of fabricated devices was improved to be greater than 40%.
- Work on study of the effect of temperature on the Au Young’s elastic modulus was performed.

A. Concept and fabrication of the first MEM switch on superconducting transmission line

![Schematic of cross section of the switch in (a) “up” and (b) “down” positions. The first fabricated MEM switch on superconducting transmission line (c).](image-url)
Figure 2.
MEM switch in test fixture

Figure 3.
s_{21} of coplanar waveguide with MEM switch:
(1) $T = 300$ K, switch is in “up” position; (2) $T = 14$ K, switch is in “up” position, insertion loss at 0.5 GHz is less than 0.05 dB; (3) $T = 14$ K, switch is in “down” position.
Steps of optimized fabrication process of MEM switch integrated in superconducting microwave device.

(a) The substrate receives YBa2Cu3O7 film deposited in PLD system.
(b) Photoresist is spun, patterned, and developed using the transmission line mask.
(c) The BaTiO3 dielectric patch is fabricated using a liftoff process and RF magnetron sputtering. A dual layer of AZP4620 and AZ5214-E photoresist are spun and developed using the dielectric mask with the underlying layer having been flood expose.
(d) The sample undergoes 3 hours of BaTiO3 on-axis sputtering.
(e) Liftoff of the BaTiO3 is carried out in acetone at 50°C.
(f) The bridge support makes use of a polymer (PMGI SF15) that is spun to a thickness of 3 μm and patterned using the sacrificial layer mask.
(g) Dual layer photoresist system is utilized using the gold bridge mask.
(h) The deposition of gold is carried out using thermal evaporation.
(i) Gold film liftoff in acetone.
(j) The final bridge release uses a wet release process using PMGI stripper (Nano Remover) and critical point CO2 drying.
B. Tapped microstrip "T"-resonator

Fabrication and testing tapped microstrip "T"-resonator allowed us to make more accurate estimation of insertion loss of microelectro mechanical switch.

![Image](image1.png)

Figure 5.
Left: masks for fabrication of tapped microstrip "T"-resonator with MEM switch.
Right: frequency response of the tapped microstrip "T"-resonator
Curve 1 - measured s_{21} when switch is in "DOWN" state (grounded "T")
Curve 2 - measured s_{21} when switch is in "UP" position (ungrounded "T")
$T = 38 \text{ K}$, switch actuation voltage $V = 122 \text{ V}$.

Insertion loss of the MEM switch is estimated to be less than $10 \log(1-10^{-2.8}) = 0.007 \text{ dB}$

C. Switched microstrip "T"-resonator

Switched superconducting "T"-resonator showed significant change in frequency response at cryogenic temperature when switching. When membrane of the MEM switch is pulled down by applied electrostatic field produced by pull-down voltage applied, the resonant frequency changes by approx. 20%.

![Image](image2.png)

Figure 6.
Left: masks for fabrication of switched "T"-resonator with MEM switch.
Right: frequency response of "T"-resonator (1) when switch is in "UP" position and (2) when it was actuated with $V = 150\ V$.

D. Coplanar "T"-resonator
Microwave tests of coplanar "T"-resonator showed few surface modes in frequency response. Switching between resonance at 2 GHz and 4 GHz is in agreement with simulated data.

![Figure 7.](image)
Left: masks for fabrication of coplanar "T"-resonator with MEM switch. Right: frequency response of coplanar "T"-resonator. $T = 30\ K$. Pull-down voltage $V = 150\ V$

E. Switched filter

![Figure 8.](image)
Outline of superconducting bandpass filter with integrated series MEM switches. 1 - 15 mm x 15 mm LaAlO$_3$ substrate; 2 - DC bias contact pad; 3 - resistor; 4,8 - RF input; 5 - YBa$_2$Cu$_3$O$_7$ throughline; 6 - suspended gold bridge; 7 - BaTiO$_3$ patch; 9 - three pole bandpass filter.

Figure 9.
Masks for switched filter fabrication. (a) YBa$_2$Cu$_3$O$_7$; (b) BaTiO$_3$; (c) PMGI sacrificial layer; (d) Au.

Figure 10.
Sonnet simulation geometry for verification of Q magnitude dependence on resistor value when placed near a switch.
Figure 11.
Photograph of fabricated switched filter

Figure 12.
Fabricated device mounted on test fixture. Notice the three feedthrough capacitors; they provide access to the substrate, so voltage can be applied for switches actuation.
Figure 13.
Simulated frequency response.
(1) filter alone; (2) filter with switches; (3) throughline with switches.

Figure 14.
Filter response. (1) simulated; (2) measured at $T = 300$ K; (3) measured at $T = 17$ K.
Figure 15.
Measured response at $T = 15$ K: (1) – filter alone; (2) – device with the filter turned on.

Figure 16.
Measured response at $T = 12$ K: (1) – filter with sputtered BaTiO$_3$ patches; (2) – filter with PLD BaTiO$_3$ patches; (3) – filter without BaTiO$_3$ patches; (4) – filter with PLD BaTiO$_3$ patches and with resistor pads.
Publications supported by the grant.

Papers:

Conference presentations:

