Author Request (To be completed by applicant) - The following author(s) request authority to disclose the following presentation in the MORSS Final Report, for inclusion on the MORSS CD and/or posting on the MORS web site.

Name of Principal Author and all other author(s): LTC Jeffery Joles; Ms. Pam Blechinger; LTC Bruce Gorski

Principal Author’s Organization and address:
Phone: _(913)684-9298_
Fax: _(913)684-9288__
Email: _jeffery.joles@us.army.mil_

Original title on 712 A/B: Network Representation in Army Force-on-Force Models
– Reducing the Risk of Irrelevance

Revised title: _No Change___

Presented in (input and Bold one): WG-6

This presentation is believed to be:
UNCLASSIFIED AND APPROVED FOR PUBLIC RELEASE
Network Representation in Army Force-on-Force Models Reducing the Risk of Irrelevance

TRADOC Analysis Center

Network Representation in Army Force-on-Force Models – Reducing the Risk of Irrelevance

MORSS 2005, West Point, New York
21 June 2005

This briefing is UNCLASSIFIED
Agenda

• The importance of network modeling
• Progress in Force-on-Force simulation models
• Network modeling challenges
• Example: The network data challenge
• Overcoming the challenges
Network Definition:
Infostructure providing end-to-end movement of data, information & knowledge

& “Network Information Brief,” TRADOC Futures Center, Aug 03

The Warfighter’s Network

LandWarNet: “The globally interconnected, end-to-end set of Army information capabilities, associated processes, and personnel for collecting, processing, storing, disseminating, and managing information on demand, supporting warfighters, policy makers, warriors, and support personnel.”

“LandWarNet - Network Development and Integration White Paper” TRACOC Futures Center, Nov 04
Why this focus?

“The two truly transforming things, conceivably, might be in information technology and information operation and networking and connecting things in ways that they function totally differently than they had previously. And if that's possible, what I just said, that possibly the single-most transforming thing in our force will not be a weapon system, but a set of interconnections and a substantially enhanced capability because of that awareness.”

-- Secretary Rumsfeld - Aug 9, 2001

“Joint integration and improvements in command and control capabilities have multiplied the effectiveness of small, agile land forces and changed the character of tactical and operational-level warfare. Operations have become more dispersed across greater spaces, more efficient in use of time and precision strike capabilities, and more capable of collecting, processing, and distributing information.

...Integrating intelligence, fires, and maneuver with advanced information technologies greatly magnifies the effectiveness of small units.”

-- Army Comprehensive Guide to Modularity
What was the state-of-the-art?

- As recently as five years ago, most force-on-force analysis was conducted assuming *largely perfect communications*
 - Minimally impacted by attrition, terrain, foliage, operational distances or reliability limits,
 - Marginally informed by architectural products or organizational options,
 - Resistant to enemy activity,
 - Capable of providing a continuous flow of information and fusion products, enabled by sensor performance and a minimal location error, to all nodes.

But the capability to model communications has evolved dramatically over the last decade ……….
What do current models represent?

• The expected *Future Force architectural design* to include
 – number of radios and relay nodes by type and location,
 – expected performance characteristics of those systems,
 – loss of those systems due to enemy or mechanical factors.

• The *impact of foliage, distance, and terrain* on the expected performance of the communications systems.

• The capability to represent the *connectivity and throughput* differences of various network types.

• The *ability of the threat force* to destroy communications nodes or to deny service through jamming.

• The *user-offered load* (IER-based messages) that is generated based on conditions in the operational environment; *background load* to represent other traffic.

• The ability to assess the *operational impact* of significant changes to the network.
What has enabled this evolution?

Developing Partnerships

Emerging Architectural Products

Continuing Self-Assessments

Maturing Tools
What challenges does this evolution face?

• Development of *scenarios that are more sensitive to information flow* and allow exploration of the *network in urban and complex terrain*.

• *Development of data* that represents all *network traffic* and the performance of the network under very dynamic conditions.

• *Standardization of terms* to define the network and its component elements, characteristics and functions.

• *Documentation of the body of assumptions* about the network being made by various agencies.

• The requirement for *significant computational power* to provide a high fidelity representation of expected traffic loads.

• *Definition of metrics* to assess network performance, the value of information, and contributions of the network to force effectiveness.
What is our "Communications Data Business Model"?

1. **UAMBL IPTs**
 - High Level Mission Threads

2. **IER Database (Traffic Set)**
 - Perform a Modeling (OPNET)
 - Traffic Estimate
 - Traffic Model
 - Scenarioized IER Database
 - AMSAA Radio Characteristics

3. **TRAC**
 - Force on Force Effectiveness Analysis
 - AMSAA Radio Characteristics
 - Assessed

4. **LSI**
 - Network Baseline
 - Traffic Estimate
 - Traffic Model
 - Scenarioized IER Database

5. **AMSAA**
 - Radiated Characteristics
 - Assessed

6. **TRAC**
 - Force on Force Models
 - AMSAA Radio Characteristics

7. **TRAC**
 - Radiated Characteristics

An Example: The Data Problem
But is this process sufficiently responsive?
What would cause us to initiate this cycle?

Requirement to Update Network Performance Characterization:

<table>
<thead>
<tr>
<th></th>
<th>Process Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Algorithms</td>
</tr>
<tr>
<td>Force Structure</td>
<td>None</td>
</tr>
<tr>
<td>IERs</td>
<td>None</td>
</tr>
<tr>
<td>Scenario</td>
<td>None</td>
</tr>
<tr>
<td>Comms Systems</td>
<td>High</td>
</tr>
</tbody>
</table>

IERs updated when:

Requirement to Update Traffic Representation (a.k.a. “Scenarioize” IERs):

<table>
<thead>
<tr>
<th></th>
<th>IER Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force Structure</td>
<td>Moderate</td>
</tr>
<tr>
<td>Scenario: Timeframe</td>
<td>Low</td>
</tr>
<tr>
<td>Scenario: Entities, Locations, Taskorg</td>
<td>High</td>
</tr>
<tr>
<td>CONOPS - Info Flow, Network Services</td>
<td>High</td>
</tr>
<tr>
<td>Comms Systems</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

Any significant changes to the scenario or communications systems would cause us to generate new network performance data.
And how long does this cycle take?

<table>
<thead>
<tr>
<th>I. Define Communications Modeling Requirements (~1 month)</th>
<th>Input</th>
<th>Tasks</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario: - Timeframe - Force Structure - CONOPS</td>
<td>• Scenario: - Timeframe - Force Structure - CONOPS</td>
<td>• Determine entities that will communicate</td>
<td>• Identification of comms systems and entities to be modeled</td>
</tr>
<tr>
<td>Network OVs/SVs*</td>
<td>• Network OVs/SVs*</td>
<td>• Determine device distribution and general network structure</td>
<td>• Understanding of general network</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II. Develop Network Traffic (New: ~6 months) (Update: ~3 months)</th>
<th>Input</th>
<th>Tasks</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario: - Force Structure - CONOPS</td>
<td>• Scenario: - Force Structure - CONOPS</td>
<td>• Select applicable traffic from generic IER database**</td>
<td>• Scenarioized IERs - foreground and background</td>
</tr>
<tr>
<td>Network Entities to be modeled</td>
<td>• Network Entities to be modeled</td>
<td>• Augment or adjust traffic to reflect entities and operation to be modeled</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Correlate IERs to scenario events</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Identify critical foreground IERs for explicit modeling</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Produce scenarioized IER files</td>
<td></td>
</tr>
</tbody>
</table>

* Assumes required architectures are available (AIMD validated).
** Assumes representative generic IER database is available.

“Scenarioized” =
- Tailored to scenario entities
- Comprehensive for all potential information exchanges
- Appropriate sizes and frequencies
- Time sequenced to reflect CONOPS
- Prioritized for explicit or implicit modeling
III. Produce Unit Location Data

<table>
<thead>
<tr>
<th>Input</th>
<th>Tasks</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Dynamically gamed scenario (maneuver)</td>
<td>• Run maneuver portion of scenario in combat model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Record unit/entity locations</td>
<td>• Entity locations and combat postures -30 minute (max) intervals</td>
</tr>
</tbody>
</table>

TRAC

IV. Model Network Performance

<table>
<thead>
<tr>
<th>Input</th>
<th>Tasks</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Scenarioized IERs</td>
<td>• Update and validate algorithms and device models as required*</td>
<td></td>
</tr>
<tr>
<td>• Entity locations, equipment types, and combat postures</td>
<td>• Produce background traffic estimates</td>
<td></td>
</tr>
<tr>
<td>• Network architectures and technical data</td>
<td>• Model representative portions of network</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Produce performance curves/data</td>
<td>• Certified performance data for each system and waveform:</td>
</tr>
<tr>
<td></td>
<td>• Certify results</td>
<td>- completion rates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- delay times</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- background traffic levels</td>
</tr>
</tbody>
</table>

TRAC

* Assumes required **algorithms and device models** are available.

V. Incorporate Comms Data Into Combat Model

<table>
<thead>
<tr>
<th>Input</th>
<th>Tasks</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Performance data</td>
<td>• Map performance data to combat model message sets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Load data; test</td>
<td>• Network representation in force-on-force model</td>
</tr>
</tbody>
</table>

TRAC

*Certified performance data for each system and waveform:
- completion rates
- delay times
- background traffic levels

Key Assumption: Assumes required **algorithms and device models** are available.
What is the impact on specific studies?

Theoretical

Critical Path

I. Requirements
II. Traffic
III. Locations
IV. Performance
V. FoF Model Input

Actual

FCS in NEA 50 (CASTFOREM)
FCS in NEA 5 (VIC)

Start 3 Months 6 Months 9 Months 12 Months

I. Requirements
II. Traffic
III. Locations
IV. Performance
V. FoF Model Input

Significant reuse of Caspian 2.0 products
Data required Mid-Mar
Surrogate from Caspian 20 work
What can be done to reduce this timeline?

• **Collaboration**
 – Baseline of current networks
 – Documentation of assumptions
 – Sharing of data and models
 – Standardization of network modeling processes
 – Configuration management of models and data

INAP Purpose

In support of the Integrated FCS Analysis Plan, “recommend steps to integrate the network evaluation process with ongoing FCS program activities and deliverables.”

Blue Team Terms of Reference paragraph 5e

Purpose

• Set conditions for synchronized, relevant and credible network analysis to understand how the Army will “change, invest & fight as a networked force.”
• Provide mechanisms to track the evolution from currently fielded configurations through modernization of the modular units to objective network design.
• Define the issues of concern associated with those configurations. Link the resolution of those issues to key decision points and monitor progress.
• Propose an evaluation framework for the objective and comprehensive evaluation of alternative network design configurations.
• Define the process for developing and maintaining appropriate data sources for network analysis.

But to be effective, some governing body must assume ownership & provide the overwatch, direction, resourcing & management of the plan.

• **Development of Scenario Independent Network Data**
 – Isolation of the key components that drive completion rates and delay
 – Development of network performance data that accounts for:
 Sender-Receiver Prototype Pairings
 Type Battle Command Software
 Combat Postures
 Terrain Characterization
 Distances
 Precedence (Cat I-IV)
 UAV Profiles
What must be done to continue the progress?

- Defining and depicting communications for current and modernized forces.
- Enhancing the models to better represent the non-homogeneous force – SBCT, TF Modularity, FCS BCT.
- Including the full set of user options in represented traffic (VOIP, IM, E-mail, VTC etc).
- Replicating the full set of threat network attack options.
- Developing data to represent the impact of the urban environment.
- Introducing the impact of Processing and Cognition in the models.
- Replicating functionality that will reside in the future network – automated BDA, distributed fusion, C2 of networked fires.
- Developing an efficient, sustainable business model for communications modeling and analysis at engineering performance & force effectiveness levels.