The Limitations to Delay-lnsensitivity

in Asynchronous Circuits.

Alain 1. Martin

Computer Science Department
California Institute of Technology

Caltech-CS-TR-90-02

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
JAN 1990 2. REPORT TYPE 00-01-1990 to 00-01-1990
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

The Limitationsto Delay-I nsensitivity in Asynchronous Cir cuits £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Defense Advanced Resear ch Projects Agency,3701 North Fairfax REPORT NUMBER
DriveArlington,VA,22203-1714

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 19
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

THE LIMITATIONS TO DELAY-INSENSITIVITY

IN ASYNCHRONOUS CIRCUITS

Alain J, Martin

to appear in:
Proceedings of the 6th MIT Conference
on Advanced Research in VLSI
MIT Press, 1990

Nov. 1989, Revised Jan. 1990

The research described in this report was

sponsored by the Defense Advanced Research
Projects Agency, ARPA Order Number 6202;
and monitored by the Office of Naval Research
under contract number NO00014-87-K-0745.

Department of Computer Science
California Institute of Technology
Pasadena CA 91125

Caltech-CS-TR-90-02

The Limitations
to Delay-Insensitivity
in Asynchronous Circuits

Alain J. Martin
Department of Computer Science

California Institute of Technology
Pasadena CA 91125, USA

Asynchronous techniques—that is, techniques that do not use clocks to
implement sequencing—are currently attracting considerable interest
for digital VLSI circuit design [3, 4, 6, 8, 1, 11], particularly when the
circuits produced are delay-insensitive (DI). A digital circuit is DI when
its correct operation is independent of the delays in operators and in
the wires connecting the operators, except that the delays are finite
and positive. '

In this paper, we characterize the class of circuits that are entirely
DI, and we show that this class is surprisingly limited: Practically all
circuits of interest fall outside the class since closed circuits inside the
class may contain only C-elements as multiple-input operators.

The paper is organized as follows: First, we introduce the stable
gate model of DI circuits, which is based on the notion of production
rules (PRs) as elementary computation steps. We then define a partial
ordering on transitions in the circuits. We prove that all DI circuits
have to fulfill the so-called Unique-Successor-Set criterion; and we show
that the class of circuits that meet this criterion is very limited. We
also give a characterization of the class of computations that admit a
DI implementation. Finally, we discuss what we consider to be the
weakest compromise to delay-insensitivity, namely, isochronic forks.

1 Circuits as Networks of Gates

A DI circuit is a network of logical operators, or gates. A gate has
one or more Boolean inputs and one Boolean output. (Later, we will
introduce gates with multiple outputs.) The state of the circuit is
entirely characterized by the values of the input and output variables
of the gates.

We assume that all circuits are closed: Each variable of a circuit is
the input of a gate and also the output of a gate. An open circuit is
transformed into a closed one by representing the environment of the
circuit as gates.

1.1 Gates as Pairs of Production Rules

The simple assignments z := true and ¢ := false are denoted by = T
and z |, respectively. An execution of a simple assignment is called a
transition. The result of a transition of type z T is the postcondition z
(standing for the predicate “x is true”); the result of a transition of type
z | is the postcondition —x (standing for the predicate “x is false”).

A gate with output variable z is defined by the two production rules:

B, — 27
Bd |—>zj_

where B, is the condition on the input variables for a transition of type
z T to take place, and B, is the condition on the input variables for a
transition of type z | to take place. B, and B, are called the guards
of the PRs. They are Boolean expressions in terms of the Boolean
variables of the circuit.

We will assume that a guard is in disjunctive-normal form, that is,
it is either a literal, a term, or a disjunction of terms. A literal is a
variable or its negation; a term is a conjunction of literals.

EXAMPLES: The gate, with inputs = and y, and output z, defined
by the two PRs
zAy -z
—zV-oy +— 2T
is usually called a “nand-gate.” The gate, with inputs = and y, and
output z, defined by the two PRs

TAY —zT
—z Ay 2z

is usually called a “Muller-C element.” [

1.2 Non-interference and Stability of PRs

Obviously, the simultaneous execution of both PRs of a gate would
result in a malfunctioning of the circuit. Hence, the two PRs of a gate
must fulfill the non-interference requirement.

Non-interference. —B, V =By is invariantly true.

A gate is a partial function when the non-interference requirement
is not a tautology but has to be maintained as a program invariant.
The flip-flop is an example of such a gate.

The non-interference requirement eliminates the most obvious case
of malfunctioning of a gate. But other forms of malfunctioning, usually

2

called hazards, have to be eliminated as well. A hazard is an incomplete
{ransition on the output of a gate caused either by two consecutive
transitions on one input variable or by some concurrent changes on
several input variables. In our model, all occurrences of hazards are
eliminated as follows.

At any time, all PRs of a circuit with a true guard are executed
concurrently. The net effect of the execution of a PR is to establish
the result of the PR; therefore, the execution of a PR is considered
to be correctly terminated when the result holds. (The result of a
PR is the result of the transition caused by an execution of the PR.)
The execution of a PR correctly terminates unless the guard is falsified
before the result holds. In that case, the net effect of the execution is
undefined. We therefore add a requirement called stability.

Stability. The guard of a PR is stable in a computation if it is falsified
only in states where the result of the PR holds.

(The stability of the physical implementation of a PR also requires
that the changes in value of the physical quantity—voltage, in MOS
technology—representing the Boolean values be monotonic. However,
monotonicity around the stable values is, in general, neither attainable,
because of noise, nor necessary.)

If a circuit fulfills the non-interference and stability criteria, no glitch
or hazard can corrupt the value of the variables. At any point in time,
the physical quantity representing a variable either has one of the two
stable values representing the two Boolean values, or is monotonically
changing from one stable value to the other.

Observe that, whereas non-interference can be a property of either
the gate—if =B, V —~By is a tautology—or of the circuit using the gate,
the stability of a gate is always a property of the circuit.

Any pair of PRs that set and reset the same output variable defines
a valid gate, with the exception of self-invalidating PRs. A rule with
guard g and result r is self-invalidating if r = —¢ may hold as a post-
condition of a transition of that rule. In other words, the execution of
the rule may falsify the guard. For example, the rules z — z | and
-z +— x T are self-invalidating.

The execution of a PR in a state where the result holds is called
vacuous; otherwise, it is called effective. From the definition of the
execution of a PR, the vacuous execution of a PR is equivalent to a
skip. Consequently, it is always possible to modify the guard of a PR
so that it does not contain the output variable of the gate. (This is
achieved by removing all terms that contain the result as literal. For
example, (£ A z) Vy — zT can be replaced with y — 2T, since an
execution of the PR in the state where x A z holds is vacuous.)

3

{2

Hence, gates do not contain variables that are both input and output
(self-loops). In the sequel, unless specified otherwise, an execution of a
PR is an effective execution.

1.3 Wires

A priori, a wire with input z and output y is the gate defined by the
PRs z + y T and =z + y|. But, since the composition of any gate,
including a wire, with a wire is the gate itself with one of its variables
renamed, we can add an arbitrary number of wire gates to a circuit
definition without actually changing the circuit. In order to have a
unique network of gates for each circuit, we exclude the wire from the
gates; a wire is just a renaming mechanism for variables.

So far all gates except the wire have more inputs than outputs, but
most circuits have as many outputs as inputs. We must therefore reset
the balance by introducing at least one gate with more outputs than
inputs. This gate is the fork.

1.4 Forks and Multiple-Output Gates

A fork has one input and at least two outputs. The fork, f, with input
z and outputs y and =z is defined as

z w=ylz]
-z —ylzl

where the comimna means the execution of the two assignments in any
order or concurrently. The generalization to an arbitrary number of
outputs is obvious. The gate

B, —=z7
By —zx]

composed with fork f is equivalent to the gate with outputs y and =

B, —yTl,21
By —yl,zl.

Hence, the fork is just a mechanism for replicating the outputs of a
gate and for defining gates with an arbitrary number of outputs. The
following discussion is somewhat simplified if we eliminate the fork and
allow instead the type of multiple-output gates that correspond to the
composition of a single-output gate and a fork. But gates defined in
this way have an timportant restriction: The effective execution of a PR
of a gate contains an effective transition on each output of the gate.

U

1.5 Summary of the Model

The only restriction that these definitions and conventions introduce
on the class of circuits being considered is the exclusion of gates with
self-loops and of arbitration devices. Unlike models based on the “fun-
damental mode” of operation, several inputs of a gate may change
values simultaneously as long as the stability of the guards of the PRs
18 preserved.

Also, we do not assume that the transitions are instantaneous: A
variable value changes monotonically from the “bottom” value repre-
senting one logical value to the “top” value representing the other log-
ical value, and vice-versa. Because the transitions durations are finite
but positive and variable, the ordering of transitions in a circuit has to
be defined with care.

2 Partial Order of Transitions

The specification of a sequential circuit defines a partial order of actions
taken from a repertoire of commands. In order to assert that a circuit
fulfills a specification, we must relate this partial order to some other
order relation among transitions of the circuit. The partial order of
{ransitions is defined as follows.

Consider an effective execution of a PR causing the transition ¢, and
let C' be a term of the guard such that C holds for this execution of
the PR.

We attach to C a set, T, of transitions in the following way. Each
literal of C' uniquely defines a transition: The literal z is the result of a
transition of type z T, and the literal -z is the result of a transition of
type z |. (The initialization of a variable is also considered a transition.)
By definition, we say that transition t is a successor of each transition of
T'. In other words, a transition is the successor of the set of transitions
that make the guard true, including initializations.

For example, if the PR is z A y — 2z T, we say that each transition
z T is the successor of a transition z { and of a transition ¥ .

If the guard of the PR is of the form A V B, the transition is the
successor of the set of transitions that make A true, or of the set of
transitions that make B true. Hence, the successor relation defined is
not unique for a given circuit. A computation is a particular successor
relation on a set of transitions, such that each computation corresponds
to a possible execution of the circuit. The set of transitions of a compu-
tation is finite if the corresponding execution of the circuit terminates,
and possibly infinite otherwise.

From the successor relation, we can now construct a relation < that
is a pre-order; that is, it is transitive and anti-reflexive. Once we have

5

£ry

the pre-order relation <, we construct the partial order < by defining
tl <12 to mean t1 < {2 or t1 = £2.

Transitivity, For any two transitions t1 and 2, we say that t1 < 2
when 12 is a successor of t1, or there exists a transition t3 such that
tl <13 and 13 < 2.

Anti-reflexivity. ¢t < ¢ holds for no transition t.

REMARK: Anti-reflexivity is satisfied if, for each ring of gates in the
circuit, there is always at least one PR whose guard is true and whose
result is false—the ring “oscillates.” Anti-reflexivity excludes rings of
gates that are used to maintain constant values of variables, as in cross-
coupled device constructions of storage elements. We therefore assume
that the storage elements are parts of “perfect wires,” so to speak, that
keep the value of a variable until the next transition on the variable. [

Definition. A chain from a to b is a finite, non-empty set {t;,0 < i <
n} of transitions such that tg = a, t, = b, and for all i, 0 < i < n, ¢; is
a successor of t;_;. By construction, a < b means that there is a chain
from a to b. If a < b, we say that b follows a.

3 Implementation of Stability

Consider again an execution of a PR with guard B and transition ¢.
Either B is never falsified once it holds, but then ¢ is the last transition
on the variable involved, and we say that the transition is final. Or B
is falsified after a finite number of transitions following #, in which case,
in order to implement the stability of B, we have to see to it that ¢ is
completed before B is falsified.

For all transitions ¢ that falsify B, we have to guarantee t < 1.
Hence, by definition of the order relation, there must be a transition s
such that s is a successor of ¢, and s < i. We say that s acknowledges
t. Hence, the

Acknowledgment Theorem. In a DI circuit, each non-final transi-
tion has a successor transition,

By construction of multiple-output gates, we have the

Corollary. In a DI circuit, a non-final transition on an input of a gate
has a successor transition on each output of the gate.

EXAMPLE: Consider the three following gates with two inputs, z
and y, and one output, z. The flip-flop is defined as = — 271 and
-y + z |, the asymmetric C-element as z Ay + 2T and -y — 2}, and
the switchas z Ay 2T and z A -y — 2z |.

6

Since no guard of these gates has a term containing the literal -z,
a transition of type x| has no successor. Hence, according to the
Acknowledgment Theorem, there can be at most two transitions on z
in any computation of a DI circuit using any of these three gates. [

4 The Unique-Successor-Set Criterion

Later on, we shall give a simple criterion for deciding whether a given
circuit—a network of gates—is DI. But such a criterion does not tell
us whether there exists a DI circuit for a given specification. We shall
therefore formulate a more general theorem that characterizes the par-
tial orders of transitions that admit a DI implementation. This criterion
enables us to decide that a program has no DI implementation without

having to construct a circuit.

Successor Set. In a computation, the successor set of a transition i
is the set of variables x such that a transition on z is a successor of t.

Unique-Successor-Set Property. A computation has the unique-
successor-set (USS) property when all non-final transitions on the same
variable have the same successor set. A set of computations has the
USS property when all non-final transitions on the same variable have
the same successor set in all computations of the set.

Unique-Successor-Set Theorem. A set of computations of a DI
circuit has the USS property.

Proof. Consider an arbitrary variable z of a DI circuit. By the corol-
lary of the Acknowledgment Theorem, any non-final transition ¢ on z
has a successor transition on each output of the gate, say G, of which
z is an input.

By definition of the successor set, the set of output variables of &
is the successor set of {. But since the set of output variables of a
gate is unique, the successor set is the same for all non-final transi-
tionsonz. [

5 Characterization of DI computations

Although the Unique-Successor-Set Theorem is a direct consequence
of the Acknowledgment Theorem, its formulation in terms of compu-
tations instead of gates makes it possible to lift the result from the
implementation level to the specification level. Since the partial orders
of actions defining a circuit are projections of the partial orders of ac-
tions implementing it, we shall investigate whether the USS property
is maintained by projection.

Definition. Given a computation, ¢, on a set of variables, V, the pro-
jection of ¢ on a subset, W, of V is the computation derived from ¢ by
removing all transitions on variables of V\W from the chains of c. The
projection of a set of computations is the set obtained by projecting
each element of the original set.

Projection Theorem. If a set of computations has the USS property,
then its projection on a subset of variables has the USS property.

Proof. By definition, the projection of a set of computations on W
can be obtained by removing the elements of V\W one for one from all
chains of each computation of the set. We prove the theorem by showing
that removing all transitions on one variable, say, w, maintains the USS
property of the set.

Let z be another variable, and let X be the USS of (all transitions
on) ¢ in all computations of the set. Either w does not belong to X and
X is left unchanged by the transformation, or w is removed from X.
But then, for each transition ¢x on z, the successor set of the transition
on w that follows {z must be added to the successor set of tz. Since
all transitions on w have the same successor set in all computations of
the set, the new X is the same for all transitions and all computations
of the set. []

5.1 Example: One-Place Buifer

The cyclic program *[X;Y], where X and Y are communication com-
mands, is called a one-place buffer'. It is a basic building block of asyn-
chronous circuit design since it is used to implement the sequencing of
any two actions. With a four-phase handshaking protocol for imple-
menting the communications, an expansion of the program in terms of
elementary variables is:

*[[zi]; zo T; [~2id]; wo s yo 15 [yil; yo ;s [yil],

where zi and y¢ are the input variables, and zo and yo are the output
variables®. (See Figure 1.} The environment of the circuit can be simply
modeled as the two programs:

(21 1; [zo]; 1 §; [~z0]]
*[lyel; yi 15 [-yol; yi 1]

These three programs are concurrent. Now observe that the projection
of a computation on the output variables of the first program gives the

The notation +[S] stands for the non-terminating repetition of the program 5,
*For an arbitrary Boolean expression B, the command [B] is 2 shorthand notation for
[B — skip)], and can be informally defined as “wait until B holds.”

8

56

7) yo

A X3 Y] <7

0 vi

Figure 1: A one-place buffer and its interface

computation described by the program
*[zoT;zo0 l;y0T;y0]

Obviously, this computation does not have the USS property; there-
fore, by the Projection Theorem, the closed circuit implementing the
three programs is not DI. But the two environment programs can be
implemented with an inverter gate and an identity gate, which are DI
circuits. Hence, there is no DI circuit implementing this version of the
one-place buffer with four-phase handshaking.

We can state a more general result. We observe that, for what-
ever four-phase handshaking is chosen for X and ¥, the projection on
the output variables is always *[zoT;zo |;yoT;yo], unless the hand-
shaking actions of X are reordered (“shuffled”) with respect to the
handshaking actions of Y. Hence, the

Theorem. There is no DI circuit implementing a one-place buffer with
unshuffled four-phase handshaking.

We can shuffle the handshaking actions of X with respect to the
handshaking actions of Y, so that the projection on the output variables
is the sequence

*[zoT;yoT; 2090l

Now, the sequence has the USS property, and we can implement the
one-place buffer as a DI circuit. An example is shown in Figure 2.

S

N
w2
)

)

L0 < C yi

Figure 2: A DI circuit for the one-place buffer

6 Specifications and the USS Property

The Projection Theorem is very useful because we can also define when
a specification has the USS property. If a specification does not have
the property, we can immediately conclude that there exists no DI im-
plementation of the specification. The projection from implementation
to specification occurs as follows.

We assume that, whatever specification notation is used, whether
programs, traces, or regular expressions, it is possible to derive from the
specification certain properties of the partial order of actions involved.
Hence, in the sequel, a specification is a set of partial orders of actions,
where an action is an execution of a command taken from some given
repertoire.

We also assume that an elementary variable can be uniquely iden-
tified with (the implementation of) each command: The transitions on
the variable occur only in the executions of the command, and each ex-
ecution of the command contains a transition on the variable. This (in
theory, slightly restrictive) assumption is needed only for the following

Specification Theorem. If the specification of a circuit does not have
the USS property, the circuit is not DI

Proof. Consider a specification, S, of a circuit. For each command,
X, of §, we substitute a transition on the elementary variable x that
is uniquely associated with X. We obtain a set, s, of partial orders

10

of transitions on elementary variables. Since the existence of the USS
property is independent of whether the transitions are upgoing or down-
going (that is, the “direction” of the transitions), we can decide whether
s has the USS property even though the direction of the transitions in
s is undefined.

By definition, we say that specification 5 has the USS property if
and only if the set, s, thus defined has the USS property. By construc-
tion, s is a projection of the set of computations of the circuit specified
by S. Hence, by the Projection Theorem and the USS Theorem, if s
does not have the USS property, the circuit is not DI.

EXAMPLES: The following examples, which we give without proofs,
show how limited is the class of programs that admit a DI implemen-
tation. (In the examples, all commands are different from skip.) We
assume that the semantics of the program notation are clear enough
that we can identify the programs with the partial order of actions
they represent.

o Let P = %[51;5;...5,], and assume that there is no equivalent
program

*[.S1; Sa; ... Skl

with k& < n. (We say that P is a minimal representation. For instance,
*[X; X] is not minimal since *[X] is an equivalent program.)

Then P has the USS property if and only if 5; # S; for ¢ # j.
Hence, the “modulo-2 counter” *[X; X;Y] and all other “modulo-k
counters” have no DI implementation. A similar result has been proved
by C. J. Seger]9].

e The program *[S1;[B; — S:{B; — S3];54], with S; #£ Sa, does not,
have the USS property. Hence, there is no DI circuit implementing such
a selection command. [J

7 Gate Characterization of DI Circuits

We have already seen that, apart from the trivial case where one input
of the gates changes at most twice, there is no DI circuit that contains
either a flip-flop, or an asymmetric C-element, or a switch. In the same
way, we can use the USS and the Projection Theorems to show that
there is no DI circuit containing either an or-gate, or an and-gate, or
an exclusive-or, in which each input of the gates changes more than a
minimum number of times specific to each case. Consider an or-gate
with inputs z and y and output z. The only sequence® in which each

3The notation (S5)* is the Kleene-star notation standing for an arbitrary number of
actions S in sequence.

11 -

transition on an input is acknowledged is:

(hzhizliz)5 hahylizl))

We easily see that any computation that contains a transition on both
inputs does not have the USS property.

The cases of the and-gate and of the exclusive-or are treated simi-
larly and are left as an exercise for the reader. After having eliminated
all gates with at most two inputs except the inverter and the Muller-
C element, we are led to conjecture that a DI circuit contains only
C-elements. C-elements are defined as follows.

Definition. An n-input gate in which B, is the conjunction of the
n input variables and By is the conjunction of the negations of the n
input variables is called an n-input C-element. A gate derived from
a C-element by negating ome or more literals in B, or By is also a
C-element.

The Muller-C element is a two-input C-element according to our
definition. A one-input C-element reduces to either a wire or an in-
verter.

C-Element Theorem. If a DI circuit has only one computation, and
if the computation contains at least three transitions on each variable,
then the circuit can be constructed with C-elements only.

Proof. Let z be an arbitrary variable of the circuit; z is the input of
gate g with output 2. We shall prove that g can be implemented as a
(-element. Since there are no self-loops, z and z are different variables.

First, observe that because of the non-interference, all transitions
on the same variable are totally ordered. And because all transitions
are effective, upgoing and downgoing transitions on the same variable
alternate.

Since the circuit contains at least three (effective) transitions on each
variable, at least one transition of type z T is followed by a transition
of type = |, and at least one transition of type z | is followed by a
transition of type = T.

Let t1 be a transition of {ype 1 and ¢2 be the transition of type
z | following it. For the guard of the PR of ¢1 to be stable, there must
be a transition ¢z on z such that t1 < tz < t2. We also know that ¢z is
a successor of t1. '

By the USS Theorem and the Projection Theorem, there is exactly
one transition ¢z on z such that 1 < tz < t2. By the same argument,
there is exactly one transition on z between a transition of type z | and
the transition of type z T following it.

Without loss of generality, assume that the first transition on z is of
type z T and the first transition on z is of type z 7. Then, because of the

12

/.

alternation of upgoing and downgoing transitions on each variable, each
transition of type z T is the successor of a transition of type z T, and
each transition of type z | is the successor of a transition of type z |.
By definition of the successor relation, z holds as a precondition of
each transition z T; thus, guard B, of g can be formulated so that all
terms contain z, since a term that is never true can be removed. Hence,
B, can be chosen of the form = A C,, where C,, does not contain z.
Symmetrically, guard By of g can be chosen of the form —z A Cy, where
(4 does not contain z. Since this property of B, and By holds for each
input of g, g is a C-element or can be replaced with a C-element. Q1

8 TIsochronic Forks

Since the class of DI circuits is so limited, we must have compromised
the delay-insensitivity in the circuits that we designed using the syn-
thesis method described, for instance, in [5] and [4]. Let us analyze a
standard sequencing circuit used in this design style. (It is similar to
the one-place buffer, but is simpler to use as an example.) This circuit
(Figure 3) is an implementation of the sequence of elementary actions:

*[[ze]; yo T3 [wil; w T; [ul; yo L [~wil; zo T3 [—xi]; w |; [—u); zo).

rl

2

zTo

< y1

Figure 3: A sequencing element containing isochronic forks

The environment of the circuit is the same as that of the one-place
buffer. The z- and y-variables are each parts of a four-phase hand-
shaking sequence, and u is a state variable—without u, it would not

13

be possible to encode each state of the circuit uniquely. Since the pro-
jection of this sequence on the variables zo, yo, and u lacks the USS
property, and since the environment of the circuit can be implemented
as an inverter and an identity, the circuit is not DI.

In order to find out where we have cheated, we must look at the
forks. We observe that x¢ is an input both of the and-gate with output
yo and of the C-element. Hence, the circuit actually contains a fork
with input 27 and two outputs, say, z1 and z2. Similarly, the circuit
contains a fork with input y¢, and a fork with input u. Let us analyze
the behavior of the first fork by introducing it explicitly into the set of
PRs of the circuit. For the sake of simplicity, we ignore the other two
forks. We get:

Tt 17,227
zl A —u — yoT
z2 A yi —utl
—zl1Vu +—ryol

—yi A u — zo]

-2 —zll],z2]
~z2 Ayt —ul

yi V ~u — 0]

Transitions 1T and 227 are both acknowledged by the two PRs
that follow. But only transition z2 | is acknowledged. Transition z1 |
is not acknowledged. Hence, the circuit is not DI, because the Ac-
knowledgment Theorem is not satisfied. Therefore, the completion of
transition x1 | is not guaranteed unless we implement the fork as an
isochronic fork, which is defined as follows.

In an isochronic fork, when a transition on one output is acknowl-
edged, and thus completed, the transitions on all outputs are acknowl-
edged, and thus completed.

(We leave it as an exercise to the reader to check that the fork with
input ¥¢ must also be isochronic, but not the fork with input u.)

The implementation of an isochronic fork relies on two types of
assumptions about delays. First, we have to assume that the difference
between the delays in the branches of the fork is negligible compared
to the delays in the gates. This requirement is easy to meet in current
MOS technology except when there is an inverter on one branch of
the fork and not on the other branch(es). The fork with input y¢ has
such an inverter, and therefore, the inverter must be removed by proper
circuit transformations.

Second, and more important in current technology, we have to as-
surne that the switching thresholds in the different gates to which the
fork is an input are close enough to each other. This requirement is

14

more difficult to meet than the first one because, on the one hand, the
thresholds of individual transistors are difficult to control—in particu-
lar in CMOS; on the other hand, the switching thresholds of a gate vary
greatly with the logical design of the gate. For these reasons, this re-
quirement may impose a design style in which all gates are implemented
as combinational gates, so that the fight between pull-up and pull-down
during the switching of the gate keeps the switching threshold around
VDD/2. Observe that, unlike what is advocated in other compromises
to delay-insensitivity, enforcing the locality of the wires offers little help
in implementing isochronicity because locality is irrelevant to the issue
of threshold voltages!

9 For Whom the Bell Tolls?

Are these results tolling the bell for DI design? Actually, not. At
worst, they may slightly embarrass those researchers who claim to have
a design method for entirely DI circuits. At best, they vindicate the
compromises to delay-insensitivity adopted by several asynchronous de-
sign methods. Most likely, they are sobering reminders of the difficulty
of VLSI design and the novelty of asynchronous design.

We have proved elsewhere that extending a standard repertoire of DI
gates with isochronic forks is sufficient to construct any circuit of inter-
est. The proof consists in giving a circuit implementation for each con-
struct of the progam notation we use (see [2]). I believe the isochronic
fork to be the weakest possible compromise to delay-insensitivity in
the sense that all other compromises also include isochronic forks: For
instance, in speed-independent design[T7], all forks are supposed to be
isochronic; in self-timed design[10], all forks inside a certain region—
called an equipotential region—are assumed to be isochronic.

Acknowledgments

The results on the influence of threshold voltages on the functioning
of isochronic forks are based on analysis and simulation done by Steve
Burns. The formulation of the C-element Theorem in terms of three
transitions on each variable is due to a suggestion from Pieter Hazewin-
dus. Acknowledgment is also due to Drazen Borkovi¢, Steve Burns,
Peter Hofstee, Marcel van der Goot, Tony Lee, and José Tierno for
their comments and criticisms. The research described in this paper
was sponsored by the Defense Advanced Research Projects Agency,
DARPA Order number 6202, and monitored by the Office of Naval
Research under contract number NO0014-87-K-0745.

15 .

References

[1]

[2]

3]

[4]

[5]

[6]

[7]
(8]

[10]

[11]

J.A. Brzozowski and J.C. Ebergen. Recent Developments in the
Design of Asynchronous Circuits. Research Report C5-89-18, Com-
puter Science Department, University of Waterloo, 1989.

Steven M. Burns and Alain J. Martin. Syntax-directed Translation
of Concurrent Programs into Self-timed Circuits. Proc. Fifth MIT
Conference on Advanced Research in VLSI, ed. J. Allen and F.
Leighton, MIT Press, 35-40, 1988.

David L. Dill. Theory for Automatic Hierarchical Verification of
Speed-Independent Circuits. MIT Press, 1989.

A.J. Martin, S.M. Burns, T.K. Lee, D. Borkovic, P.J. Hazewindus.
The Design of an Asynchronous Microprocessor. Decennial Caltech

Conference on VLSI, ed. C.L. Seitz, MIT Press, 351-273, 1989.

Alain J. Martin. Compiling Communicating Processes into Delay-
insensitive VLSI circuits. Distributed Computing, 1,(4), 1986.

Teresa H. Meng, Robert W. Brodersen, David G. Messerchmitt.
Automatic Synthesis of Asynchronous Circuits from High-Level
Specifications. IEEE Trans. on CAD, 8:11, 1185-1205, 1989.

Raymond E. Miller. Switching Theory, Vol. 2, Wiley, 1965.

J. Staunstrup and M.R. Greenstreet. Designing Delay-Insensitive
Circuits using “Synchronized Transitions.” IMFEC IFIP Interna-
tional Workshop on Applied Formal Methods for Correct VLSI De-
sign, 1989.

Carl-Johan Seger. On the Existence of Speed-Independent Cir-
cuits. Research Report CS-87-63, Computer Science Department,
University of Waterloo, 1987.

Charles L. Seitz. Systemn Timing. Chapter 7 in Mead & Con-
way, Introduction to VLSI Systems, Addison-Wesley, Reading MA,
1980.

Charles L. Seitz. Let’s Route Packets Instead of Wires. These

Proceedings.

16

