THE NATIONAL SHIPBUILDING RESEARCH PROGRAM

Proceedings of the REAPS Technical Symposium

Paper No. 4: Computer-Aided Engineering and Drafting in Shipbuilding

U.S. DEPARTMENT OF THE NAVY CARDEROCK DIVISION, NAVAL SURFACE WARFARE CENTER
Title: The National Shipbuilding Research Program: Proceedings of the REAPS Technical Symposium Paper No. 4: Computer-Aided Engineering and Drafting in Shipbuilding

Performing Organization: Naval Surface Warfare Center CD Code 2230 - Design Integration Tools
Building 192, Room 128 9500 MacArthur Blvd Bethesda, MD 20817-5700

Distribution/Availability Statement: Approved for public release, distribution unlimited

Security Classification:
- Report: unclassified
- Abstract: unclassified
- This Page: unclassified

Limitation of Abstract: SAR

Number of Pages: 32
DISCLAIMER

These reports were prepared as an account of government-sponsored work. Neither the United States, nor the United States Navy, nor any person acting on behalf of the United States Navy (A) makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness or usefulness of the information contained in this report/manual, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or (B) assumes any liabilities with respect to the use of or for damages resulting from the use of any information, apparatus, method, or process disclosed in the report. As used in the above, “Persons acting on behalf of the United States Navy” includes any employee, contractor, or subcontractor to the contractor of the United States Navy to the extent that such employee, contractor, or subcontractor to the contractor prepares, handles, or distributes, or provides access to any information pursuant to his employment or contract or subcontract to the contractor with the United States Navy. ANY POSSIBLE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR PURPOSE ARE SPECIFICALLY DISCLAIMED.
As Manager, Federal Systems, Dr. Cowan is responsible for sales and technical coordination of all major federal projects in Maryland, Virginia and the District of Columbia. Before joining Computervision, he was President of Applied Programming Technology (a Gerber Scientific subsidiary) and also performed independent software contracting and consulting.

Dr. Cowan has a B.S. degree from Brown University and M.S. and Ph.D. degrees from Case Institute of Technology.
PROBLEMS COMPANIES FACE TODAY

- HIGH COST OF CREATING DESIGN DOCUMENTATION
- RISING COST OF MANPOWER
- TIME WASTED ON TEDIOS REPETITIVE TASKS
- LACK OF STANDARDIZATION
- PEAK WORK LOAD SITUATIONS
- REJECTED FINISHED PARTS
- TRIAL AND ERROR APPROACH TO PARTS PROGRAMMING
- LONG PRODUCT LEAD TIMES

RESULT OF THESE PROBLEMS
- WASTED COMPANY RESOURCES

RESULTING IN
- INCREASED PRODUCT COST
- REDUCED PRODUCTION
- REDUCED COMPETITIVE POSITION

BOTTOM LINE.
- LOST $$'s
<table>
<thead>
<tr>
<th>HARDWARE</th>
<th>SOFTWARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLOTTER/DIGITIZERS</td>
<td>100% FORTRAN BASED</td>
</tr>
<tr>
<td>CRT's</td>
<td>SIMULTANEOUS, COMPATIBLE 3D AND 2D DATA BASES</td>
</tr>
<tr>
<td>DIGITIZERS</td>
<td>SIMULTANEOUS, MULTI-APPLICATION</td>
</tr>
<tr>
<td>PHOTOPLottERS</td>
<td>PEP</td>
</tr>
<tr>
<td>AUTOMATIC SCANNER</td>
<td>DATA BASE MANAGEMENT</td>
</tr>
<tr>
<td>PLOTTERS</td>
<td>MULTI-TERMINAL OPERATING SYSTEM AND FILE MANAGER</td>
</tr>
<tr>
<td>FULL RANGE OF COMPUTER</td>
<td>OPTIMIZED MAN-MACHINE INTERFACE</td>
</tr>
<tr>
<td>PERIPHERALS</td>
<td>SELF-TUTORING</td>
</tr>
<tr>
<td></td>
<td>FORTRAN COMPILER</td>
</tr>
<tr>
<td></td>
<td>NC POST PROCESSORS</td>
</tr>
<tr>
<td></td>
<td>ACCOUNTING FEATURES</td>
</tr>
</tbody>
</table>
3D MD/NC SYSTEM OVERVIEW

INPUT DESIGN INTERACTION

EDIT (CHANGE-UPDATE)

INTERROGATE

NC TAPES FOR MANUFACTURING
CL FILES
APT SOURCE

ENGINEERING DRAWINGS

GRAPHICS FOR TECHNICAL PUBLICATIONS

DATA FORMATTED FOR ENGINEERING ANALYSIS

BILL OF MATERIALS

APT LABELED PLOTS
CENTRAL DATA BASE CONCEPT

- **DESIGN DRAFTING**
 - **DESIGN DOCUMENTATION**
 - **COMMON CENTRAL DATA BASE (DIGITAL)**
 - **ENGINEERING**
 - **TECHNICAL PUBLICATIONS**
 - **PRODUCT DESCRIPTION**
 - **MANUFACTURING**
 - **FINISHED PRODUCT**
 - **DESIGN ANALYSIS**
DESIGN ON INTERACTIVE GRAPHIC SYSTEMS

- AREA, PERIMETER, LENGTH, VOLUME, DENSITY, WEIGHT
- 3D DISTANCE
- MINIMUM DISTANCE
- INTERSECTING LINES
- INTERSECTING LINES AND PLANES
- INTERFERENCE AND CLEARANCE
- TOLERANCE STACKING
- STRESS, STRAIN, THERMAL EXPANSION
- FIT PARTS TOGETHER
- CROSS-SECTION
- INTERSECTION OF SURFACES

+ ALL THE GEOMETRIC CONSTRUCTIONS
DRAFTING ON INTERACTIVE GRAPHIC SYSTEMS

- ISOMETRIC VIEWS
- CROSS-SECTIONS
- DIMENSIONING (ENGLISH & METRIC)
- CROSS-HATCHING
- FILLETS
- FEATURE CONTROL SYMBOLS
- SCALE, COPY, ROTATE, MIRROR, DELETE ETC.

Once design is completed the draftsman can easily create finished drawings of parts and assemblies

- Higher quality drawings
- In a shorter period of time
- At a reduced cost
BASIC GEOMETRY

POINT
LINE
STRING
CIRCLE
ARC

GROUPS
FILLET
SPLINE (CUBIC)

CONICS
(ELLIPSE)
(HYPERBOLA)
(PARABOLA)

ARRAYS
(RECTANGULAR)
(CIRCULAR)
EXTENDED GEOMETRY

- TABULATED CYLINDERS
- Ruled Surfaces
- Surfaces of Revolution
- B-Surfaces
- Mesh Surfaces
- Surface Intersections
AUTOMATIC DIMENSIONING

- ENGLISH/METRIC
- HORIZONTAL
- VERTICAL
- RADIAL
- DIAMETER
- ANGULAR
- PARALLEL POINTS (DIMENSIONS AT AN ANGLE)
- AUTOMATIC TOLERANCING
- ANSI Y14.5
GENERAL NOTES

1—DIM SPECIFIED MUST BE MAINTAINED.
2—DIM SHOWN IN ENGLISH AND METRIC FORM.
PEP PROGRAM (WEDGE)

PEP' JRIIS. WEDGE
SOURCE VERSION # 137 7-11-75
OBJECT VERSION **NONE**

11 PARTNO/WEDGE
21 $PARAMETERS
31 A=2.5 $LENGTH
41 B=A*COS (75) $THICK
51 C=2.5 $CONSTANT
61 D=.2 $DENSITY
71 $PART DEFINED

81 L1=LINE/0,0,A,0
91 L2=LINE/A,0,O,B
101 L3=LINE/0,B,0,o
111 L4=LINE/o,o,o,o,c
121 L5=LINE/o,o,c,A,o,c
131 L6=LINE/A,0,C,A,0,0
141 L7=LINE/A,0,C,O,B,C
151 L8=LINE/0,B,C,O,B,O
161 L9=LINE/0,B,C,0,0,C

171 AREA=A*B/2
181 VOLU-AREA*D
191 WGT=VOLU*D
201 PRINT/AREA, VOLU, WGT
211 FILE
221 FINI
THE FOUR VIEWS OF A WEDGE, RESULTED FROM EXECUTING THIS PROGRAM
NUMERICAL CONTROL

- GRAPHIC TOOL PATH DERIVATION
- UP TO 5-AXIS CAPABILITY
- POCKETING
- PROFILING
- POINT TO POINT
- ABSOLUTE AND SURFACE MACHINING
- APT SOURCE, APT GEOMETRIC SOURCE, APT LABEL PLOT
 (AUTOMATIC TAGGING), CL FILES, NC TAPES
- POST PROCESSORS
- MAGNETIC OR PAPER TAPE OUTPUT
HOW DO PEOPLE INTERFACE WITH THE SYSTEM?

- NO COMPUTER KNOWLEDGE REQUIRED
- EASY TO LEARN ENGLISH LANGUAGE COMMANDS
- SELF-TUTORING
COMMAND LANGUAGE

VERB NOUN: DIGITIZE

EXAMPLE: INSERT A SERIES OF CONNECTED LINES

INS LIN: DIG, DIG₂, DIG₃, DIG₄
TYPICAL NORMS ENTERED USING PEP AND A COMBINATION OF PARAMETERS AND DIGITIZED DATA
PARTS NESTED ON CRT