REPORT DOCUMENTATION PAGE

Title: SIZING/OPTIMIZATION OF A SMALL SATELLITE ENERGY STORAGE AND ATTITUDE CONTROL SYSTEM

Authors: MAJ RICHIE DAVID J

Performing Organization: UNIVERSITY OF SURREY

Sponsoring/Monitoring Agency: THE DEPARTMENT OF THE AIR FORCE

Abstract:

Unlimited distribution

In Accordance With AFI 35-205/AFIT Sup 1

Number of Pages: 10

Price Code:

Standard Form 298 (Rev. 2-89) (ES)

- Prescribed by ANSI Std. 239.18
- Designed using Perform Pro, WHS/DIOR, Oct 94
Sizing/Optimization of a Small Satellite Energy Storage and Attitude Control System

David J. Richie*, Vaiovs J. Lappas†, and Phil L. Palmer‡
University of Surrey, Guildford, UK, GU2 7XH

The recent advent of miniature single gimbal control moment gyroscopes has spawned interest in variable speed versions for combined energy storage and attitude control systems on small satellites. Although much has been studied on the theory behind such a system, little has been done in optimally sizing these actuators for small satellite applications. Therefore, this paper investigates the fundamental design concepts, optimal sizing, and mission benefits for these actuators. Given a set of small satellite agility and energy storage requirements, an optimal, nonlinear programming method is applied to this problem.

Nomenclature

\[c_1, c_2, c_3 = \text{Equiv Performance, Fixed Parameter Constants} \]
\[t_f, t_{off} = \text{Slew maneuver time, dead-band} \]
\[r_{0i}, r_i = \text{Rotor Outer, Inner Radii} \]
\[\rho_m = \text{Rotomer Material Density} \]
\[l_{rot} = \text{Rotor Length} \]
\[T_e = \text{On-orbit Eclipse Duration} \]
\[k_s = \text{Shew maneuver angle} \]
\[d_{dis} = \text{Depth of Discharge} \]
\[h = \text{Orbital Altitude} \]
\[x_{trans} = \text{Transmission Efficiency} \]
\[d_{sys} = \text{Eclipse Cycle} \]
\[V_{bus} = \text{Spacecraft Power Bus Voltage} \]
\[l_{cmg} = \text{CMG Wheel Spin-axis Inertia} \]
\[l_{rot} = \text{Maximal Spacecraft Principal-axis Inertia} \]
\[I_W = \text{Wheel Spin-axis Inertia} \]
\[J = \text{Optimization Performance Index} \]
\[\sigma_r, \sigma_{th} = \text{Rotor Radial, Tangential Stress} \]
\[\nu_r, \nu_{th} = \text{Rotomer Material Poisson’s Ratio of Contraction in r-direction Due to Tension in th-direction} \]
\[\nu_r, \nu_{th} = \text{Rotomer Material Poisson’s Ratio of Contraction in th-direction Due to Tension in r-direction} \]
\[E_r, E_{th} = \text{r-direction, th-direction Elastic Modulus} \]
\[\alpha_1, \alpha_2 = \text{Integration constants in Rotor Stress Equations} \]
\[\lambda = \left(\frac{E_r}{E_{th}}\right)^{0.5} \]
\[l_{read}, \Omega_{read} = \text{Real World Limits to } l_{rot}, \Omega \]
\[l_{sp}, l_{wp} = \text{Wheel Spoke Thickness, Density} \]
\[r, \Omega = \text{Generic Wheel Planar Radius, Angular Speed} \]

1.0 Introduction

Today’s small satellites (less than 500 kg in mass) are increasingly considered for large satellite missions such as precision Earth imaging and Space RADAR [1–3]. Difficult hurdles face these small satellites’ designers such as meeting stringent mass, power, and volume constraints which significantly impact cost. In order to mitigate costs, the Surrey Space Centre (SSC) in conjunction with Surrey Satellite Technology, Ltd. (SSTL) regularly uses commercial-off-the-shelf (COTS) components in design [1–4]. Another method to reduce cost (by deleting mass) is to combine key satellite functions. For example, a satellite’s Energy Storage (ES) function, usually achieved via rechargeable batteries, can be combined with its pointing system (i.e. the Attitude Control Subsystem (ACS)), forming an Energy Storage and Attitude Control System (ESACS) [5]. Such an ESACS typically consists of flywheel-based, three-axis stabilising, momentum exchange actuators such as Reaction Wheels (RWs), Momentum Wheels (MWs), Control Moment Gyroscopes (CMGs), or Variable-Speed CMGs.
Although the flywheel energy storage concept predates the potter’s wheel, Roes was apparently the first to propose its use in satellites in 1961 [7]. However, it was not until the early 1970s, during the international energy crisis, when coupling Roes’ approach with the attitude control function emerged [8–14], spawning several proposals for an ESACS, primarily for employment on NASA’s International Space Station (ISS). As this technology progressed, designers encountered flywheel rotor material and mechanical bearing/rotation issues [15, 16]. Likewise, many of these early concepts relied on counter-rotating MW implementations while a handful mentioned CMGs as plausible alternatives. Then, the development of hybrid cars propelled flywheel energy storage technologies such as composite rotors and magnetic bearings to burgeoning maturity [17]. This sparked renewed interest in ESACS in parallel with ISS advancing development. Key related results included Chris Hall’s gyrostat investigation [18] and Shen, Tsiostras, and Hall’s simultaneous control design for an ESACS subcategory, an Integrated Power and Attitude Control System (IPACS), using four redundant, non-counter-rotating, momentum wheels [19]. In parallel to these efforts, Hall gave an excellent pre-2000 literature review for this problem in [20]. One should refer to that document for a further list of significant contributions.

Nevertheless, building on Shen, Tsiostras, and Hall’s work, Richie, Tsiostras, and Fausz [5] showed simultaneous momentum wheel and gimbal control were possible by employing the new momentum exchange device theoretical generalization known as the VSCMG, conceptualized by the combined efforts of Ford and Hall [21, 22] and Schaub, Junkins, and Vadali [23]. The VSCMG development, of course, was predicated on the detailed CMG theory offered by Jacot and Liska [24], Marguilles and Aubrun [25], Oh and Vadali [26], Wie [27], and several others [28–30]. Following Richie, Tsiostras, and Fausz’ work, Yoon and Tsiostras identified a wheel speed equalization technique for reducing the risk that one VSCMG reaches saturation, effectively increasing a VSCMG-suite’s utility [2, 7]. Other related work involves Roithmayr’s VSCMG-gyrostat generalization to gimbaled, counter-rotating wheels including satellite to actuator damping torque [31] with direct application to systems with a mixture of counter-rotating MWs and standard CMGs.

Heretofore, ESACS performance was limited due to bearing friction and structural fatigue, hurdles virtually eliminated by composite material and magnetic bearing advances. Without these barriers, two major contemporary ESACS programs targeted for medium to large satellites stand to gain from this technology, NASA’s counter-rotating wheels [32–34] and the US Air Force Research Laboratory’s VSCMG-like ESCMG work [35], both focused on laboratory validation prior to flight. In contrast, small satellite implementation of ESACS VSCMGs has not been done. Only recently has the dogma of CMG-use for large satellites been exploded with Lappas’ small satellite work [6]. Likewise, Varatharajoo demonstrated small satellite counter-rotating MW ES ACS use [36]. Neither of these efforts address using VSCMGs in an ESACS role. Thus, one needs to extend Lappas’ and Varatharajoo’s work by defining an algorithm for adequately sizing such VSCMGs for an ESACS. Identifying this algorithm is the sole aim of this paper.

In meeting this objective, the paper is organized as follows: section 2.0 describes the benefits for a VSCMG-based ESACS; section 3.0 presents the key technology trades required in selecting such a system; section 4.0 gives ESACS fundamentals including describing the key design margin definitions; section 5.0 addresses the applicable decision variables, constraints, and objective functions that define the optimal ESACS VSCMG sizing nonlinear programming problem; section 6.0 illustrates two general design objective categories, design for equivalent performance and design for equivalent mass as compared to a contemporary baseline; section 7.0 presents example results from applying this algorithm to a space RADAR mission; section 8.0 identifies future work building on these results; and section 9.0 summarizes this investigation’s key findings.

2.0 ESACS Benefits

An ESACS brings several advantages to a small satellite, including significant mass savings, longer lifetime, favourable power density, moderate energy density, and increased satellite agility as compared to a contemporary 4-MW ACS plus Nickel Cadmium (NiCd) battery ES. Mass savings follows from function consolidation. Consider a 400 kg satellite which includes a 40 kg MW-based ACS plus NiCd ES. If one were to replace the ACS plus ES with a VSCMG-based ESACS at a mass of 20 kg, the gain would be a 50% mass savings at the subsystem level and a 5% mass savings at the satellite level, a profound cost benefit.

Second, as shown by Lappas in [6], a small satellite with its CMG torque amplification advantages yields a tenfold increase (1.0 to 10.0 °/s as compared to 0.1 to 1.0 °/s for MWs) in slew rate for a system of equivalent size/mass. Plus, the VSCMG-based ESACS’ variable-speed property permits better singularity avoidance characteristics [37].

Third, satellite lifetime, shown in Figure 2 for contemporary technologies plus flywheel batteries, increases for a given VSCMG battery depth-of-discharge (DOD), the percent of total capacity removed from the battery, as compared to its conventional counterpart. Clearly, lifetime drops off linearly with increased secondary battery DOD. This makes sense – the greater average depth one draws down a battery during discharge cycles, the quicker the battery will wear out. However, even if these secondary battery limits did not hold, most contemporary satellites would not last more than 83000 cycles due to solar panel lifetime limits (assumed to be 15 years in LEO). For this reason, the Li-ion data is cut off at 83000 cycles. Similarly, one can assume satellites using flywheel batteries are limited by this solar panel degradation constraint. Contrary to secondary batteries, though, VSCMG batteries can sustain this lifetime for various DOD levels. The result is longer VSCMG battery lifetime at high DOD levels. For this paper, a conservative VSCMG battery DOD limit of 80% is assumed (allowing 20% for attitude control safety margin). Comparing this to the typical LEO satellite secondary battery value of 15-20% DOD, one can...
have been proposed which incorporate its constituent technologies used by Varatharajoo [36]. Finally, Alternative #3 uses rotor-density advantages. Even if the plotted Lithium Ion battery performance falls short of the VSCMG battery's true strength-power density. The advantage follows from comparing popular secondary battery energy storage approaches (Lithium-Ion (Li-ion), Nickel Cadmium (NiCd), and Nickel Metal Hydride (NiMH)) to flywheels. Although a satellite's storage capacity is important, the producible peak power during discharge is paramount to high-power operations in eclipse. The designer needs to know a proposed ES's ability to store and drain energy as related to the most crucial satellite commodity—mass. Figure 3's Ragone Plot, constructed from contemporary battery data (including that used in SSTL small satellites), captures this idea in each technology's energy versus power density plots. The dashed lines represent the theoretical boundaries for these technologies. Also, several patched data points represent actual data adjusted for VSCMG comparison as typical Energy and Power densities use the per-cell mass, not the entire EPS mass.

Moreover, in the case of ESACS, one needs the combined ACS and ES system mass, dividing these densities by this value. The true comparison occurs in evaluating the flywheel-based VSCMG data points in the upper right quadrant of Figure 3 versus the data points in the lower left. Clearly, VSCMG ES has power and energy density advantages. Even if the plotted Lithium Ion battery performance was based on the entire ACS plus ES mass, that result still falls short of the VSCMG battery's true strength-power density. This means that a high peak power system like a satellite RADAR is better powered through flywheel batteries than Lithium Ion.

![Fig. 2 Depth-of-Discharge Versus Lifetime](image)

3.0 Design Alternatives

Despite past barriers, several flywheel energy storage schemes have been proposed which incorporate its constituent technologies (e.g., composite rotors, high-spin compatible bearings, and advanced motor/generator electronics). The set of realistic VSCMG ESACS technologies is captured in the Figure 4 Design Trade Tree. The items shown in Figure 4 are the realistic, contemporary options from past, present, and short-term proposals in the literature. This trade tree defines the essential hardware trade space and bounds VSCMG design approaches. In fact, the three investigated design alternatives encompass the most promising combinations from this tree. Before identifying these alternatives, one must understand a key trade space feature. As Henrikson, Lyman, and Studer state in [38], "the development of magnetically suspended momentum wheels is just beginning. There is no tendency as yet for designs to settle on one or two 'best' configurations, but rather there are nearly as many configurations and design opinions as there are workers in the field." This applies not just to the magnetic suspension, but also to the layout of the flywheel, the rotor construction, the motor/generator design, and the implemented power and attitude control electronics.

![Fig. 3 Ragone Plot](image)

Moreover, several observations lead one to prune the trade tree most effectively and identify the best technologies. First, although mechanical (wet and dry) lubricants work well for most terrestrial applications, these devices are limited in space utility. A better alternative lies in magnetic bearing suspension, from the complex 5 degree of freedom (5-DOF) approach, to the simpler but less forgiving 1- and 2-DOF versions. As Varatharajoo addressed, the 2-DOF method is best for small satellites [36], thus the magnetic-bearing trades addressed here imply the 2-DOF option. Also, the electronics yield two options: use existing electronics or design new ones. In keeping with this effort's aim for low-complexity SSC/SSTL synergy, reusing existing electronics is best. Likewise, two basic containment vessel classes (of hundreds) dominate—steel and composites. For reduced wheel speed applications, Lappas' adaptation of common SSTL electronics trays as containment vessels makes sense. However, larger applications require crafting an individual VSCMG container, presumably made of Kevlar. Finally, identifying the power bus design is important. There are two primary conventional types as defined in [39], Peak Power Tracker (PPT) or Direct Energy Transfer (DET) and a hybrid of the two such as done by Clark approach [40]. In maintaining SSC/SSTL synergy, since the PPT approach is more prevalent amongst SSTL satellites, this method will be employed here.

As for designs, Alternative #1 uses a bolstered SSC CMG design with a high-speed wheel rotor and motor/generator. Alternative #2 uses an open motor concept based on individually-wound, external magnetic coils which propel a ring of magnetic material affixed to the rotor. Likewise, a second set of coils are used as power generator coils to drain energy from the rotating wheel. This wheel is magnetically levitated via a hub-based magnetic bearing similar to that used by Varatharajoo [36]. Finally, Alternative #3 uses rotor-imbedded motor and generator coils with a hub-based magnetic bearing like that of [36].
4.0 ESACS Fundamentals

To achieve success, the ESACS engineer needs system design margins (i.e. the differences between the actual design and its associated requirement) that are at or above 0. Identifying the requirements for the 4 key parameters, torque, peak power, storage capacity, and mass, \(N_i, P_i, C_i, \) and \(M_i \), respectively, and actual equivalents, \(N_m, P_m, C_m, \) and \(M_m \), one can define the relevant design margins, \(N_m, P_m, C_m, \) and \(M_m \):

\[
N_m = N_i - N_r
\]
\[
P_m = P_i - P_r = N_vC_m - P_r
\]
\[
C_m = C_i - C_r = N_vC_m - C_r
\]
\[
M_m = M_i - M_r = M_vC_m - N_vM_m
\]

where

\[
N_i = \xi_{\text{eq}} \Omega_{\text{max}} \delta (2 + 2 \cos \beta)
\]
\[
N_r = \frac{4T_{\text{eq}}}{r_f^2 - r_0^2}
\]
\[
P_i = I_{\text{eq}} \Omega_{\text{max}} \Omega - \min)
\]
\[
C_r = \frac{d I_{\text{eq}} T_P}{d \text{dof}}
\]
\[
C_m = \xi_{\text{eq}} g_{\text{rot}} \left(\frac{r_v^2 - r_i^2}{1 - \left(\frac{\Omega_{\text{max}}}{\Omega_{\text{max}}} \right)^2} \right) / 3600
\]

Next, 5 variables drive the design margins and are thus interrelated: \(\Omega_{\text{max}}, \Omega_{\text{min}}, I_{\text{eq}}, \) and \(g_{\text{rot}}/P_{\text{rot}} \). Selecting these parameters, known as decision variables, via an optimal sizing algorithm is addressed next. Furthermore, these parameters are constrained in that \(\Omega_{\text{max}}, \Omega_{\text{min}}, \text{rot} \), \(\Omega, g_{\text{rot}}/P_{\text{rot}} \), and \(N_m, P_m, C_m, \) and \(M_m \) must be non-negative for design feasibility. Added to this, \(\Omega_{\text{max}} \) is structurally limited by the flywheel rotor strength, \(\Omega_{\text{min}} \) is limited in ensuring enough torque and power is produced by the flywheel, and the disparity between the maximum and minimum allowable wheel speeds is limited to ensure proper energy is stored. Thus, these constraints drive these five feasible ESACS design variables.

5.0 Optimal Actuator Sizing

Designing effective ESACS VSCMGs centers on selecting the best decision variable combination (i.e. that optimizes a suitable performance index) to meet mission requirements subject to the aforementioned constraints. Since an underlying aim in this task is to produce a system that outperforms the baseline MW ACS plus NiCd ES, a performance index, \(J \), was crafted to capture the relationship of the ESACS design to the baseline. It is defined as the ratio of the four VSCMG design margins to baseline counterparts

\[
J = \frac{C_m P_m N_m M_m}{C_m P_m N_m M_m} = \frac{N_i C_m P_m N_m M_m}{C_m P_m N_m M_m}
\]

where the index \(i = 1, 2, \) or \(3 \) relates to the candidate alternative in consideration (i.e.
#1,
#2,
#3) and its differently calculated mass. The capacity and power margins are calculated based on one VSCMG as is the mass margin, but the torque margin (as are the baseline margins) is calculated for the entire VSCMG suite. This has been included in finding \(J \). Furthermore, for the best ESACS to baseline ratio one needs to maximize \(J = \text{value} \), or equivalently, minimize \(J = -\text{value} \). Incorporating the constraints, one can cast the problem as a standard Nonlinear Programming Problem (NLP):

Minimize

\[
J = -N_i \lambda C_m P_m N_m M_m, i = 1, 2, 3
\]

Subject to

\[
C_m, P_m, N_m, M_m, \Omega_{\text{max}}, \Omega_{\text{min}}, \text{rot} \geq 0, i = 1, 2, 3
\]

\[
\Omega_{\text{max}} \leq \Omega_{\text{attract}}
\]

\[
\Omega_{\text{min}} \geq \Omega_{\text{rot}}
\]

\[
J \leq -1.0
\]

where \(\Omega_{\text{attract}} \) follows from applying the radial force equilibrium equations defined by Danfelt et. al. and addressed in Varatharajoo [36,41] for a typical, anisotropic (orthotropic), single-layer rotor. Captured directly from [36,41,42], the governing stress equations for a constant speed flywheel are:

\[
\sigma_r = \frac{E_i (l + v) \lambda - 1 + \frac{E_i (v - \lambda)}{1 - v} \lambda - 1}{1 - v} \frac{1}{E_i - E_0} - \frac{(3 + v) r^2}{9 E_i - E_0}
\]

\[
\sigma_0 = \frac{E_0 (1 + v) \lambda - 1 + \frac{E_0 (v - \lambda)}{1 - v} \lambda - 1}{1 - v} \frac{1}{E_i - E_0} - \frac{(1 + 3v) r^2}{9 E_i - E_0}
\]

The integration constants, \(\alpha_1, \alpha_2 \), are found by applying radial stress boundary conditions (i.e. \(\sigma_r = 0 \) at \(r = r_0 \) and \(\sigma_0 = -t_s \sigma_p \Omega^2 r^2 \) at \(r = r_1 \)). Substituting these 2 values in equations 22 and 23, one can calculate the stress distribution in the wheel for a given wheel speed, or conversely, use the maximum allowable rotor stress to define the maximum allowable wheel speed. The latter of these techniques yields \(\sigma_{\text{rot}} \). The stress distribution can be viewed graphically in figures 5 and 6 which directly follow from [41] and [36]. In these plots, the allowable stress (tensile and compressive) values are superimposed upon the stress distribution plots for determining the maximum allowable structural wheel speed.

Fig. 5 T1000G Carbon Fiber Radial Stress Distribution

To solve the optimal problem proposed in Equations 14 and 15, one must understand a few basic principles. As explained in [43], an optimal parametric design is achieved by crafting the Hamiltonian (the Lagrangian plus the linear combination of nonlinear
constraints), then setting its first derivative equal to 0 to find inflection points, and completed using the second Hamiltonian derivative to determine if the inflection points are local maxima, local minima, or saddle points. Here, the Hamiltonian is formed by adding to the performance index equation the sum of each constraint multiplied by a multiplication constant (aptly termed a “Lagrange multiplier”). If the performance index or the constraints are nonlinear, as in the VSCMG-based ESACS optimal actuator sizing case, the problem is known as an NLP.

Figure 7 illustrates the basic optimal actuator sizing process as incorporated in the authors’ Microsoft Excel Solver-based VSCMG ESACS sizing tool. The process includes mission and actuator parameter definition; user inputs (alternative number, optimization type, and optimization parameter selection (J, Mm)); optimizer operation; and design outputs for different combinations of design approach (Alt #1, #2, or #3); optimization type (Max, Min, Set value); and optimization parameter (e.g. N1, P1).

6.0 Analysis Objectives

Applying actuator optimization technique depends on the desired objective. In the continuous effort to reduce mass, one obvious approach is to optimize the ESACS to baseline mass savings at equivalent performance. An alternative (but arguably equally important) goal is to maximize the ESACS to baseline performance at equivalent mass. This method is akin to answering a small satellite customer’s question, “How much agility/peak power/capacity improvement over the baseline system can ESACS provide my experimental at an equal mass?” This is especially significant when such a customer equates mass to mission cost (price).

Either approach involves further constraining the basic optimal sizing problem (i.e. adding more constraint equations to the presented NLP). In the case of equivalent performance, the ratio of \(\frac{PmCmNm}{PmCmNm} \) must equal \(\frac{PmCmNm}{PmCmNm} \) such that the performance index is based on \(Mm \) optimization. However, from a scientific method perspective, this approach has one obvious flaw—individual margins \(Pm, Cm, \) and \(Nm \) can have several values as long as the product equals to \(PmCmNm \). This can yield several different results with non-readily apparent benefits. Thus, a more accurate implementation is to individually equate these margins such that \(Pm = Pm, Cm = Cm, \) and \(Nm = Nm, \) permitting a controlled implementation in which only \(Mm \) changes through decision variable selection.

Interestingly, these constraints force an analytic solution to the problem, which can then be used to validate the results. The basic idea is to substitute the baseline margin values into equations 1, 2, and 3. Setting \(Cm = Cm/Nm, Pm = Pm/Nm, \) and \(Nm = Nm, \) and defining constant values \(c_1, c_2, \) and \(c_3, \) one finds:

\[
c_1 = \frac{(\Omega_{\text{max}} - \Omega_{\text{min}})^2}{\Omega_{\text{max}}^2} = \frac{3600}{NmcO_k \rho C_m f_0^{-1}} \left(\frac{C_m}{\rho C_m f_0^{-1}} \right) \tag{24}\]

\[
c_2 = \frac{1}{2} \left(\frac{P_m + \rho C_m f_0^{-1}}{\rho C_m f_0^{-1} - f_0^{-1}} \right) \tag{25}\]

\[
c_3 = \frac{\Omega_{\text{min}}}{\Omega_{\text{in}}} = \frac{\pi D_c^2 (r_1^2 - r_0^2)}{D_c^2 (r_1^2 - r_0^2)} \tag{26}\]

Also, notice that each of these equations can be expressed as a product of a material property \((1/\rho C_m f_0^{-1})\) and a fixed constant. Combining the \(c_1, c_2, \) and \(c_3, \) and equations re-arranging yields:

\[
\Omega_{\text{min}} = \frac{c_2^2 c_3 + 2c_2 c_3}{c_1 c_2^2 + 2c_1 c_3 c_2 + c_1^2 c_3 + c_0 \Omega} \tag{27}\]

\[
\Omega_{\text{max}} = \frac{c_2^2 c_3 + 2c_2 c_3 \Omega^2 + 2c_1 c_3 c_2 + c_1^2 c_3 \Omega^2}{c_1 c_2^2 + 2c_1 c_3 c_2 + c_1^2 c_3 \Omega^2} \tag{28}\]

\[
l_{\text{int}} = \left(\frac{c_1 c_2^2 + 2c_1 c_3 c_2 + c_1^2 c_3 \Omega^2}{c_2^2 c_3 + 2c_2 c_3 \Omega^2} \right) \tag{29}\]

This final equation set illustrates the direct dependency of \(\Omega_{\text{min}} , \Omega_{\text{max}}, \) and \(l_{\text{int}} \) on \(\Omega \) when ESACS to baseline performance is equal.

Likewise, for the equivalent mass problem, one needs to further constrain the basic NLP through equating the mass margins, i.e. \(Mm = Mm. \) However, in this case, there is more design freedom to choose results and an analytic solution isn’t as easy to find, especially since 2 of the mass equations rely on \(l_{\text{int}} \) only whereas one relies on \(l_{\text{int}} \) and \(\Omega_{\text{max}}, \) if, for example, a constraint is added, such as \(Nm = Nm, \) which is realistic in the case of the satellite customer that only desires equivalent torque (i.e. agility) at equivalent mass, but desires increased energy storage and/or peak power demand to operate an experiment, a similar set of analytic equations can be found when the mass only depends upon rotor length, \(l_{\text{int}}. \)

Thus, there are 2 primary approaches in comparing the designed ESACS with the baseline system, equivalent performance and equivalent mass, both of which yield utility to satellite mission developers. The former of these approaches, equivalent performance, is illustrated in the ensuing optimal sizing example.
7.0 Optimal Sizing Example

Mission Description, Requirements, and Actuator Assumptions

Generally, a Synthetic Aperture RADAR (SAR) permits high-resolution images to be crafted from several consecutive target returns using a small antenna vice the large, conventional high-resolution microwave RADAR antennas [44]. Stripmapping SAR is "the oldest and most widely known form of SAR ... in which the antenna beam sweeps out a strip on the ground" [44]. This is quite similar to the conventional push-broom technique used in satellite imaging cameras. Clearly, space-borne RADAR, being employed in the ultimate high ground, have an immense coverage advantage over airborne, ship-borne, and ground-based RADAR with a disadvantage in resolution. Although stripmapping SAR yields efficient resolution for antenna size, Spotlight mode SAR, in which the "the antenna is steered to continuously illuminate a single [target]," thereby illuminating it from several different angles, is an even more accurate technique when collecting high-resolution data from a small object [44].

Obviously, the farther away the satellite is from a target the more precise the SAR's attitude control must be to maintain the desired resolution. Whereas stripmapping SAR requires a fixed platform for the camera during imaging, Spotlight SAR requires the camera to be constantly slewed. Similar to the UK-DMC imaging mission, there are two primary design strategies to meet the individual mini-Spotlight SAR satellite's pointing needs: rapidly slew the entire satellite with a rigidly attached dish, or, maintain a fixed orientation (e.g. continual nadir/Earth pointing) whilst scanning the dish. Although each approach has its challenges, the former makes sense due to recent advancements in spacecraft agility. This permits using a standard, agile platform across SAR systems without custom designing a slew-able RADAR dish for each mission. Plus, due to the complex data and its required processing, storage, and retrieval, such a system needs large instantaneous peak power for collecting and transmitting data to the ground. From this, the SAR satellite requires high instantaneous peak power to operate and is often used during eclipse, levying a huge energy storage burden.

Table 1 Space RADAR Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit Altitude, (h), km</td>
<td>450</td>
</tr>
<tr>
<td>Depth-of-Discharge, (d), %</td>
<td>80</td>
</tr>
<tr>
<td>Transmission Efficiency, (\eta_{trans}), %</td>
<td>90</td>
</tr>
<tr>
<td>Peak Power Demand, (P_r), W</td>
<td>1200</td>
</tr>
<tr>
<td>Power Bus Voltage, (V_{bus}), V</td>
<td>28</td>
</tr>
<tr>
<td>Max Single-axis inertia, (I_{max}), kg m²</td>
<td>120</td>
</tr>
<tr>
<td>Slew maneuver angle, (\beta_S), deg</td>
<td>140</td>
</tr>
<tr>
<td>Slew maneuver time, (t_S), s</td>
<td>70</td>
</tr>
<tr>
<td>Slew maneuver dead-band, (t_{off}), s</td>
<td>12</td>
</tr>
<tr>
<td>Satellite Total Mass, (M_{sat}), kg</td>
<td>400</td>
</tr>
<tr>
<td>Allowable Satellite Mass, (M_{sat}), kg</td>
<td>450</td>
</tr>
<tr>
<td>Allowable ACS plus ES Mass, (M_{sat}), kg</td>
<td>45</td>
</tr>
</tbody>
</table>

As implied earlier, the key ESACS requirements are the instantaneous Peak Power demand, \(P_r \), and the required maneuvering torque from the actuators, \(N_r \), in this case assumed to be for a hang-off-hang maneuver as previously parameterized. Table 1 gives the assumed parameters for this maneuver (i.e. a \(140^\circ \) maneuver in 70 s with a 12 s dead-band and 1100 W instantaneous peak power with a maximum principle-axis of inertia of \(120 \) kgm²). These requirements follow for the near-term small satellite Space RADAR mission and represent a tenfold increase in slew maneuvering and energy storage over a nominal SSTL-built small satellite.

Assumptions

Before examining the results from this example, it's important to identify a few key assumptions. First, rotor containment in the event of catastrophic wheel failure is VERY important to personnel and systems safety in testing the proposed hardware. As previously stated, the simpler containment approach (i.e. designed for a much smaller satellite CMG system) is not sustainable in this configuration. Thus, a new containment solution will probably entail the use of a Carbon Kevlar flywheel envelopment.

Second, there are several different schemes for wheel spin initialization once the satellite is deployed. This study has not ventured to explore all of these, but awareness of this issue is paramount to future on-orbit success. Plausible methods include EPS battery-like trickle charging; solar panel to super capacitor to VSCMG ESACS charging; or employment of a small primary battery to handle the power load and VSCMGs are adequately charged to commence on-orbit operation.

Third, this technology only applies for missions with simultaneous high precision pointing and high peak power requirements. If either requirement is eliminated, this approach loses its utility.

Fourth, the presented arguments focus on this technology's role in fulfilling the entire energy storage mission for a satellite, however, an equally plausible (if not better) alternative is to employ VSCMG ESACS on precision pointing missions wherein a system (e.g. a high-power, high-agility payload) only needs the high-power properties of the ESACS during some operations, but does not need them all the time. Thus, the EPS can supplement the VSCMG flywheel batteries with conventional secondary ones. This synergy could prove quite beneficial.

Mass Savings and Performance Index Optimization Results

One can now couple the SAR mission requirements with actuator assumptions (which vary by design alternative), and then evaluate different ESACS VSCMG point designs. This is done for the equivalent performance case. The ensuing results are visually conveyed 2 ways: i) wheel acceleration, \(\Omega \), versus mass savings plots by material type and ii) optimal decision variable plots (i.e. of the length versus \(\Omega \) envelope, \(\Omega_{min} \), to \(\Omega_{max} \), for several values of \(\Omega \) and grouped by material type and alternative). After assessing this data, the maximum mass savings results are combined with the maximum performance results and tabbed via a scoring method. These scores are then rank ordered and analysed in order to select the most appropriate designs.

Figures 8 and 9 show the mass savings and performance index values, respectively, for selected materials as a function of wheel acceleration, \(\Omega \), evaluated for the equivalent performance case. As one can see, composites consistently outperform metal materials via mass advantages with equitable strength. The top performing rotor material is Ti1000G Carbon fiber, perhaps the strongest of the composites (and all materials considered in this study) for its mass, using Alternative #3 - the magnetic bearing-based design similar to the one defined in [36]. Also fairing well were the other composites, mostly enjoying 50 ± \% advantage over the baseline, which was quite close to the Metals results. The results from Figure 8 apply when \(C_{min} = C_{min}/NC_{min}, P_{min} = P_{min}/NC_{min} \), and \(N_{max} = N_{max} \). For the most part, the trends are linear, with a downward slope. This slope follows from motor/generator and/or magnetic bearing mass demanded of systems that produce higher torque (i.e. acceleration). The increase in mass causes the system mass savings to drop with \(\Omega \). In a few instances, namely Glass/Epoxy Alternative #2, the rotor length limit is reached before the highest wheel acceleration is reached, thus cutting out any increase in length, associated decrease in mass, and ending any decrease in performance versus the baseline. Simply put, this effect is the sizing saturation imposed by the rotor length constraint.

In examining the performance index plot, figure 9, one can get a more direct feel for how a design compares to the baseline. The
idea is that J values ≤ -1.0 yield performance better than the baseline. Again, Carbon fiber T1000G Alternative #3 leads the pack with the lowest J value, followed closely by composites IM6/Epoxy and IM7/PEEK. Interestingly, these materials perform up to 3 times better than the baseline, with the lion’s share besting the baseline at a two-to-one ratio.

![Figure 8: Material Mass Savings at Equal Performance](image)

Fig. 8 Material Mass Savings at Equal Performance

The decision variables themselves can also be combined into a single plot like Figure 10, wherein point designs for the T1000G Carbon fiber-based Alternative #3 are displayed. The horizontal axis is rotor length and the vertical axis wheel speed. Each vertical line corresponds to a different maximum wheel acceleration (Ω) setting. In other words, a vertical line for each value of Ω is plotted for rotor length with its vertical axis magnitude running from Ω_{min} to Ω_{max}.

![Figure 9: Material Performance Index at Equal Performance](image)

Fig. 9 Material Performance Index at Equal Performance

In scoring the design alternatives, the chosen scoring method combines optimizations for maximising Mass Savings (with baseline-equivalent performance) and minimising the performance index (with 0% Mass Savings). For the SAR mission, the latter of these 2 necessarily makes for a very large, unrealistic rotor length to increase design margins. This yields a large, negative-valued performance index, J. One way to limit this unrealistic result is to constrain the maximum rotor length. However, this prevents the Mass Savings from being 0%. Nevertheless, the results here were generated by keeping the rotor length within a fairly realistic range using different constrained values for the MS maximization problem than for the performance index minimization problem.

Point Designs

In scoring the results for the equivalent performance case, it was found that the best scoring flywheel rotor material is Carbon fiber and the best design method is Alternative #3. Logically, the top scored design occurred at the highest (but not yet achievable) angular acceleration used, $\Omega = 500 \text{rad/s}^2$. As reflected in Figure 10, if one reduces the wheel acceleration requirement, the wheel speed range increases quite drastically (i.e. moving right to left on the plot). This is important since one method of realising such a system (with an incremental development approach) involves building each of the point designs from left to right (i.e. start at an achievable wheel acceleration and increase capability by changing the motor and wheel speed range). However, a better approach is to choose a realistic future design (in the 5-10 year time frame) in terms of required angular acceleration that operates in a realistic wheel speed range (e.g. 20000RPM to 55000RPM), then build the VSCMG to sustain these limits, starting at a realistic wheel acceleration while gradually increasing to the long-term, wheel acceleration point design. This refined implementation strategy requires changing the motor as torque capability increases assuming wheel speed remains constant. This follows typical DC motor capability theory – a motor’s capability is assessed by its torque-speed curve where the motor speed is traded for its torque. Also, every motor’s torque-speed curve has capability limits (i.e. the stall torque and the no-load speed). Therefore, as motor technology improves, motor torque-speed limits increase. Thus, this design approach calls for setting the wheel no-load speed limit and applying stall torque improvements as they occur (i.e. which are proportional to wheel speed.
acceleration improvements).

Put another way, DC motor output power is the torque-speed product. Thus, conventional DC motors are rated by shaft power. COTS versions for small applications typically operate peak between the 10-200 W range, with a few designs in the 100-350 W range. Custom-built motors are the only contemporary choices that exceed the 400 W realm. This is important as the desired long-term design calls for 576 W output power per each of the VSCMG wheel in order to meet the mission requirements. Small motors operating at such high power also incur larger thermal losses, further restricting effective employment for VSCMG ESACS.

In summary, the Carbon fiber rotor design has been identified as the best long-term VSCMG design for a small satellite ESACS using Alternative #3. Actualising it requires 2 major advancements: a COTS motor/generator system that can accelerate the wheel at high acceleration and a COTS miniature magnetic bearing to suspend its flywheel. Lack of miniature COTS magnetic bearings drive the selection of two different designs—one that uses the magnetic bearing (Alternative #3) and one that does not (Alternative #1).

Defining the Baseline MW/NiCd System

The designs from the previous section can be compared to the baseline in order to determine VSCMG-based ESACS effectiveness. However, before comparing these designs, it helps to review the baseline design and its margins. First, since the energy storage system must provide 1100 W of instantaneous peak power during eclipse, enough battery cells must be included in the design. Using a conservative battery cell number factor of safety of 1.5, SSTL's standard Sanyo 4 Ah, 1.2 V NiCd cells, and assuming an eclipse duty cycle of 25%, one finds that the required battery capacity, \(C_e \), in order to accomplish the mission is 164.62 Whrs. This equates to a requirement for just over 52 cells (rounded up to 55). Converting the performance for these 55 cells back to the instantaneous peak power and capacity available, \(P_e \) and \(C_e \), yields 1667.81 W and 249.60 Whr, respectively. Then, comparing the available power and capacity to the associated required values, gives an instantaneous peak power margin of 567.81 W and capacity margin of 1.98 Whr. These are the first 2 baseline design margins. Second, the Attitude Control Subsystem, ACS, is a MW system required to do a 140 deg bang-off maneuver in 70s, with a 12 s torque dead-band. This results in a required torque of \(N_F \) for the baseline system of 0.2466Nm. Coupling this result with a 2.6 factor increase in baseline wheel mass and radius (for a baseline in inertia) yields an \(N_F \) of 1.0498Nm, or torque margin of 1.632Nm. Finally, the upgraded baseline system which meets the given power and attitude control requirements checks in at 31.83 kg, with 13.17 kg below the allocated 45.0kg.

ESACS vs. Baseline

Coupling the baseline definition with optimally sized ESACS VSCMGs and using the defined implied implementation strategy yields the Table 2 results. Here, the Alternative #3 Long-term columns reflects the desirable long-term point design based on a wheel angular acceleration of 100 rad/s^2 and angular speed of 15000 RPM to 55200 RPM. This was found using the aforementioned realistic wheel speed range in Figure 10, which corresponds to 100 rad/s^2. Since this design is based on equivalent performance, another way to determine this angular acceleration is to use the baseline performance margins to get the constants \(c_1 \), \(c_2 \), and \(c_3 \) and calculate \(\Omega \). Clearly, one can see this effect in reviewing the baseline capacity, power, and torque margins as compared to this design. Obviously, using an increased wheel acceleration and speed range yields an increased mass margin over the baseline with a shorter rotor length. Similarly, one enjoys a significant increase in energy and power density over the baseline system using this approach. This information is also quite valuable in assessing the effect of implementing a more conventional approach as in Alternative #1. The largest difference lying in the lifetime result. Furthermore, these results illustrate the large mass savings over the baseline in the long-term with either option. Table 3 shows a mass breakdown for these designs.

Similarly, the near-term results reflected in Tables 2 and 3 illustrate benefits which can be realized with present technology. There are definite benefits, namely energy density, power density, and lifetime, for a small satellite mission such as spotlight SAR with optimistic agility, peak power, energy storage requirements in implementing this plan, even in the short-term.

8.0 Future Work

Future work entails implementing these sizing results via laboratory experimentation. The idea is to implement currently realisable technology (i.e. Alternative #1's Near-Term results) to validate/confirm the sizing approach and extrapolate a magnetic-bearing-based flywheel, ESACS VSCMG Alternative #3's performance. Then, as Alternative #3 becomes feasible, it can be implemented to realize increased benefits.

9.0 Conclusion

In summary, energy storage and attitude control for small satellites using VSCMGs is feasible and beneficial. Given the ESACS' wide variety of benefits, such a system can replace a conventional MW ACS plus NiCd secondary battery ES yielding greater agility, 40+% subsystem mass savings (with 3-5% overall spacecraft mass reduction), longer lifetime for depths-of-discharge ranging from 0-80%, and increased power density (W/kg) for a given energy density (Whr/kg). In fact, one satellite mission which will thrive on these benefits is that of space RADAR.

This work reviewed the state-of-the-art for a VSCMG-based ESACS. Technology trades and an analysis of three resulting alternatives was completed using a novel, nonlinear, constrained optimization-based, ESACS VSCMG actuator sizing approach presented. From it, a gimbaled, magnetically-levitated, carbon fiber rotor flywheel like that of [36] best met a set of aggressive, small satellite-spotlight SAR sample requirements. Since this technology is not yet realisable, two three-part implementation plans (one for Alternative #3 and one for Alternative #1) were formulated to provide the most benefits from advancing technology. The next stage is to use current technology to build and test an ESACS VSCMG suite based on the near-term, Alternative #1 actuator design identified in this implementation plan. This actuator will involve a mechanically suspended, Carbon fiber rotor based on Lappas' SSTL CMG design [6], with a 3.5 cm thick rotor spinning at 15000 - 55200 RPM and with 66 rad/s^2 angular acceleration. Testing this system (and thus validating the sizing and control theories) will positively advance the state-of-the-art in small satellite design, paving the way for better and cheaper agile small satellites to fulfill challenging missions previously reserved for large satellites.

10.0 Acknowledgements

The authors would like to thank Dr. Barrett Flake from the US Air Force European Office of Research and Development as well as Dr. Jerry Fausz and Dr. Brian Wilson at the United States Air Force Research Laboratory for their efforts in sponsoring this investigation. Their advice and funding support has enabled this ambitious effort to evolve.

References

Table 2: ESACS Development Comparison

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Base MW + N/Cd</th>
<th>Alt #3 Long-Term</th>
<th>Alt #3 Mid-Term</th>
<th>Alt #3 Near-Term</th>
<th>Alt #1 Long-Term</th>
<th>Alt #1 Mid-Term</th>
<th>Alt #1 Near-Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheel Acceleration, $\dot{\Omega}$, rad/s2</td>
<td>25</td>
<td>100</td>
<td>80</td>
<td>66</td>
<td>100</td>
<td>80</td>
<td>66</td>
</tr>
<tr>
<td>Capacity Margin, C_m, Whr</td>
<td>84.98</td>
<td>84.98</td>
<td>84.98</td>
<td>84.98</td>
<td>84.98</td>
<td>84.98</td>
<td>84.98</td>
</tr>
<tr>
<td>Power Margin, P_m, W</td>
<td>567.8</td>
<td>567.8</td>
<td>234.25</td>
<td>0.754</td>
<td>567.8</td>
<td>234.25</td>
<td>0.754</td>
</tr>
<tr>
<td>Torque Margin, N_m, Nm</td>
<td>1.163</td>
<td>1.163</td>
<td>1.163</td>
<td>1.163</td>
<td>1.163</td>
<td>1.163</td>
<td>1.163</td>
</tr>
<tr>
<td>Mass Margin, M_m, kg</td>
<td>13.17</td>
<td>42.42</td>
<td>42.42</td>
<td>42.48</td>
<td>40.79</td>
<td>40.79</td>
<td>40.79</td>
</tr>
<tr>
<td>Wheel Speeds, Ω_{min}-Ω_{max}, RPM</td>
<td>0-5000</td>
<td>15300-55200</td>
<td>15300-55200</td>
<td>15300-55200</td>
<td>15300-55200</td>
<td>15300-55200</td>
<td>15300-55200</td>
</tr>
<tr>
<td>Rotor Length, L_r, m</td>
<td>0.089</td>
<td>0.035</td>
<td>0.035</td>
<td>0.035</td>
<td>0.035</td>
<td>0.035</td>
<td>0.035</td>
</tr>
<tr>
<td>Energy Density, Ed, Whr/kg</td>
<td>7.84</td>
<td>121.44</td>
<td>123.11</td>
<td>124.43</td>
<td>74.52</td>
<td>74.52</td>
<td>74.52</td>
</tr>
<tr>
<td>Power Density, pd, W/kg</td>
<td>52.39</td>
<td>645.83</td>
<td>523.74</td>
<td>436.74</td>
<td>396.31</td>
<td>317.04</td>
<td>261.56</td>
</tr>
<tr>
<td>Mass Savings, %</td>
<td>0.0</td>
<td>91.9</td>
<td>92.0</td>
<td>92.1</td>
<td>86.8</td>
<td>86.8</td>
<td>86.8</td>
</tr>
<tr>
<td>Lifetime, cycles</td>
<td>2500</td>
<td>22000</td>
<td>22000</td>
<td>22000</td>
<td>505</td>
<td>505</td>
<td>505</td>
</tr>
<tr>
<td>Requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Power, P_p, W</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
</tr>
<tr>
<td>Eclipse Duty Cycle, d_{cy}, %</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

Other Mass Includes Support Structure, Electronics, Containment Vessel, Launch Lock, Baseline ES, etc.

10

44Song, Y., "Motion Compensation of Spotlight SAR Images in the Presence of Unknown Translational Target Motion," MS thesis, Department of Electrical and Computer Engineering, Queen's University, Kingston, Ontario, Canada, March 1998.
Orbital is one of the industry's leading providers of low Earth orbit (LEO) satellites. Over the past two decades, Orbital has delivered nearly 100 small satellites that have performed national security, commercial communications, Earth and space science, remote imaging and technology demonstration missions. Orbital is currently under contract to deliver another 12 satellites over the next four years. Our flight-proven spacecraft can support a variety of payloads and are highly reliable, having amassed nearly 450 years of in-orbit experience. Our LEO spacecraft serve four primary markets:

Earth and Space Science

Working hand-in-hand with Principal Investigators and NASA, we have developed affordable and reliable spacecraft busses designed to support a variety of Earth and space science payloads and missions. Current LEO programs include the NASA-funded Aeronomy of Ice in the Mesosphere (AIM), Orbiting Carbon Observatory (OCO), Interstellar Boundary Explorer (IBEX), and Glory missions. Recent programs have included the Galaxy Evolution Explorer (GALEX), Solar Radiation and Climate Experiment (SORCE), the Active Cavity Radiometer Irradiance Monitor (ACRIMSAT), and Far Ultraviolet Spectroscopic Explorer (FUSE).

Remote Sensing

In the mid-1990's, we helped to establish the commercial remote sensing market with the development and launch of the OrbView series of satellites. OrbView-1 helped scientists to study lightning patterns and to collect data on dangerous weather systems. OrbView-2 was the first commercial satellite to supply daily imagery of the Earth. It has enabled researchers to better monitor the health of oceans and land vegetation and has allowed fishermen to more efficiently locate schools of tuna. The OrbView-3 high-resolution imaging satellite provides imagery for commercial, environmental and national security applications.
Magnetic Torquers for Spacecraft Attitude Control
solutions for Space projects from small, low-cost single satellites to large-scale constellations. • Torquer engineering and attitude control subsystem design
www.smad.com/analysis/torquers.pdf Cached page PDF file

DSCS-3 Military Communications Satellite
... with increased radiated power for users with small ... terminals and to permit AJ communications and ... satellites ... Attitude Control Subsystem (ACS). The ACS is a three-axis, zero momentum ...
www.fas.org/spp/military/program/com/dscs_3.htm Cached page

Bristol Aerospace - Defence and Space
Small Satellites Bristol has been selected by the Canadian Space Agency to build the ... these include t and Data Handling (C&DH) Unit, the Attitude Control System (ACS), the Power Subsystem ...
www.bristol.ca/SmallSatellites.html Cached page

AeroAstro's Spacecraft Subsystem and Component Products
... and non-AeroAstro satellites for coarse and fine attitude sensing ... ideal for the needs of many smal being ... in concert, with the attitude control ...
www.aeroastro.com/products/components/products_attitude-d.php Cached page

AeroAstro's Spacecraft Subsystem and Component Products
... MicroCore Avionics Module serves the needs of small satellite ... Power Control, Power Switching, and Power PC 750 ... Avionics Module include university satellites ...
Show more results from "www.aeroastro.com".

What Is a Satellite?
Some satellites are natural, like the moon, which is ... TV is a system for receiving television using a ven attitude control subsystem maintains the communications ...

MR SAT: Missouri-Rolla Satellite Project: Attitude Determination and ...
... thermal properties of each material used on the satellites has been made. Batteries have a very smal Subsystem: Attitude Determination and Control Communications Launch Vehicle Onboard ...
web.umr.edu/~mrsat/thermal.html Cached page

Spacecraft » Attitude Dynamics & Control
Small changes in process may be made without much concern or documentation, until the subsystem for or test. ... system includes three reaction wheels for attitude control ...
krishl.us/spacecraft/?cat=4 Cached page

Formation Flying Demonstration Missions Enabled by CanX Nanosatellite ...
Conference on Small Satellites 1 Formation Flying ... to the otherwise passive thermal control subsystem communicate with both satellites. The attitude determination and control ...
Science & Technology Satellites
Over the past two decades, Orbital has delivered nearly 100 small satellites that have performed national commercial communications, Earth and space science, remote imaging and technology.

Images of Saturn and All Available Satellites
Target is Saturn (and available satellites) To see images of just one... Imaging Science Subsystem - N:

Images of Mars and All Available Satellites
Target is Mars (and available satellites) To see images of just one... Thermal Emission Imaging System

Wired News: A Big Leap for Small Satellites
... pave the way for a future in which every country would have its own fleet of smart, small satellites... in cooperating with Europe on satellite technologies, particularly Earth-imaging...

Satellites to study Earth's magnetosphere in the future
... out as 10 times the diameter of the Earth. This way, scientists can measure small... feature three unc...

AeroAstro's Publications

Indian Small EO Satellites To Study Atmosphere
... series of dedicated small satellite missions to study the earth's... the new proposal called the Small S

Small Satellites May Play Big Role In Future Interplanetary Missions
Proponents of small satellites say that tiny spacecraft have potentially... several hundred kilograms—ar... largely to low Earth... and would circle the planet at a lower altitude, imaging the...

JINSA Online -- Commercial Spy Satellites Challenge Pentagon Planners
Web Results
Page 1 of 270,665 results containing SAR mission (0.45 seconds)

Search & Rescue Info: SAR-Related Links
SAR Mission Report Form University of Alberta SAR Magazines Advanced Rescue Technology Magazines First Responders & Rescuers Search & Rescue Magazine California, USA
www.sarinfo.bc.ca/Sarlinks.htm Cached page

Search & Rescue Info - Tech Tips!
Show more results from "www.sarinfo.bc.ca".

SAR Technology Inc. - Home Page
of your mission! SAR Technology announces the release of 'Incident Commander 5.0 ... Manages Search & Rescue missions! - Familiar ICS structure for ...

Search Manager V3 - Example Mission
sartechnology.ca/sartechnology/SearchManagerV3_ExampleMission_viewlet.swf.html Cached page

NASA GSFC Search and Rescue Mission Office
Search and Rescue (SAR) Mission Manager + View Bio James E. Mentall, SAR Mission Deputy Manager James W. Christo, SAR Mission Ground Systems Manager

Isespace.com [TERRA SAR Mission]
The TerraSAR mission has its origin in an industrial initiative to provide market-derived X- and L-band SAR images from a pair of spacecraft operating in tandem in a sun-synchronous orbit.
www.isespace.com/missions/terrasar.php Cached page

Isespace.com [SAR LUPE Mission]
The SAR-Lupe System consists of 5 identical satellites, which will be launched 6 months. It serves the German Federal Armed Forces as a national ...
www.isespace.com/missions/sarlupe.php Cached page
Show more results from "www.isespace.com".

SAR Mission
setting out the mission of SAR ... President's Message Who We Are Native American Fellowships Cathedra
www.sarweb.org/home/mission.htm Cached page

U.S. Coast Guard Search and Rescue
Information source for the U.S. Coast Guard’s Search and Rescue (SAR) program. Includes points of contact for Rescue Coordination Centers, SAR statistics, links to other SAR resources, the ...
www.uscg.mil/hq/g-o/g-op/sar.htm Cached page

The X-SAR User Kit
Welcome to the X-SAR User Kit! Edited by Michael Eineder and Hartmut Runge (c) DLR/DFD, all rights r
Actuators in Action

We offer a complete line of linear actuators and accessories to... Applications vary from processing mi... They are used to open, close or position satellite antennas...

www.tksimplex.com/html/actuators_in_action.html Cached page

Electronic Projects

The satellite actuators can draw upwards of 15 Amps... One of these applications is a small lighting h... good judgement when sizing the power MOSFETs for higher power applications.

www.redrok.com/electron.htm Cached page

C-Band Books

... link analysis, adjacent satellite interference and dish sizing... and terrestrial mobile applications... and III is available at a small additional cost. DISH SIZING...

66.225.242.100/cyberstore/Cband/Books.htm Cached page

Army FY04.3 SBIR Solicitation Topics

A04-054 Miniature Actuators for Small Arms... Superconductor Technology for SATCOM App... 134 Multi-Band Satellite Terminal Feed...

www.acq.osd.mil/sadbu/sb/sb/sb/o43/army/o43.htm Cached page

Boating & Marine Supply Blog | Outdoor Marine

... so all you have to do is find the antenna for the applications... reinforced stainless steel and powerful hydraulic actuators... Marine Satellite Radios Marine Antennas Reviews will include:

blog.outdoor-marine.com Cached page

ATI

Back-of-the envelope equations for actuator sizing... and protocols; regulatory bodies; satellite services applications; steps... Designing the small satellite power system. 7. Spacecraft...

www.aticourses.com/Vol/82H.pdf Cached page PDF file

Titles available from 2001

Microelectromechanical Systems (MEMS) Actuators for... Preliminary Sizing of Vertical Take-Off Rocke... Communications for Aeronautics Applications-Technology Development and Demonstration

Creative Career Systems

... contract and tool records, handling rush orders, the small... special duct problems and duct maintenan... sizing, air... television, how satellite television works, popular applications for satellite...

www.creative.on.ca/courses/industrial.htm Cached page

DARPA SBIR 2003

... system completely integrated: sensors and actuators... as well as tools to predict routing sizing... mi... interferences, as is required for small satellite applications.

www.darpa.mil/sbir/20032SBIR2Awards.html Cached page

LabTrader Scientific Equipment, autoclave, centrifuge, hplc, fermentor...