Award Number: DAMD17-01-1-0360

TITLE: Effects of Moderate Aerobic Exercise Combined with Caloric Restriction on Circulating Estrogens and IGF-I in Premenopausal Women

PRINCIPAL INVESTIGATOR: Nancy I. Williams, Sc.D.

CONTRACTING ORGANIZATION: The Pennsylvania State University
University Park, PA 16802-7000

REPORT DATE: August 2005

TYPE OF REPORT: Annual Summary

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
This proposal entitled “Effects of moderate aerobic exercise combined with caloric restriction on circulating estrogens and IGF-1 in premenopausal women” examined the effects of exercise training combined with caloric restriction, resulting in weight loss, on two hormonal biomarkers for breast cancer i.e., circulating estrogens and insulin-like growth factor I (IGF-I). In 33 women who completed the study, exercise 4 X per wk at 79 ± 6 % of maximal heart rate combined with an 32% decrease in caloric intake over four menstrual cycles produced significant increases in aerobic capacity (27 ± 5%), decreases in body weight loss ranging from 1-9 kg, and loss of body fat ranging from 5 to 12% of initial percent fat. Light conditioning resulted in significant gains in aerobic capacity (30±5%), but only produced a trend toward a decrease in body fat percent (-1.2%), and only a small change in body weight (-0.8 kg). Despite the highly significant changes in body composition and body weight in the exercising group, preliminary results indicate no significant changes in serum estradiol or serum estrone. IGF-I did not change significantly either, indicating that chronic exercise and dieting do not result in favorable changes in two hormonal biomarkers for breast cancer.
Table of Contents

Cover .. 1

SF 298 .. 2

Introduction ... 4

Body .. 5

Key Research Accomplishments ... 16

Reportable Outcomes ... 16

Conclusions ... 24

References ... 24

Personnel Report ... 24

Appendices ... 25
INTRODUCTION

This proposal entitled "Effects of moderate aerobic exercise combined with caloric restriction on circulating estrogens and IGF-I in premenopausal women" was designed to provide important scientific contributions with respect to the primary prevention of breast cancer in women. Specifically, this study examined potential mechanisms relating to the role of physical activity in the reduction of the risk of breast cancer by experimentally testing whether moderate aerobic exercise can reduce the levels of two hormonal biomarkers, circulating estrogens and insulin-like growth factor I (IGF-I). Since elevated levels of both of these hormones have been associated with an increased risk of breast cancer, and because exercise and weight loss has been shown to induce disturbances in menstrual cyclicity that may reduce circulating estrogens, we wished to extend previous findings from epidemiological and cross-sectional studies by performing a tightly controlled, prospective clinical study that addressed previously unanswered questions related to the role of exercise in the modulation of estrogen and IGF-I. Although previous studies have shown that negative energy balance, and not other stressful aspects of physical exercise, can modulate reproductive function and reduce circulating estrogen levels, no studies to date have determined the magnitude of energy deficit required for these changes during long-term training, and no studies have attempted to differentiate between the exercise-induced changes in ovarian versus adipose sources of circulating estrogens. Since both estradiol (ovarian) and estrone (adipose tissue) are biologically active, and because the importance of estrone as a risk factor increases with age and adiposity, it is important to consider the degree to which exercise which creates a negative energy balance affects both of these sources of circulating estrogens.

Circulating levels of IGF-I correlate with breast cancer risk, yet studies examining the responses of this hormone and its binding proteins to chronic exercise are lacking. Since IGF-I levels are very sensitive to nutritional status, previously reported stimulatory effects of exercise on IGF-I can be overridden if exercise is performed in the face of negative energy balance. In this regard, exercise that promotes weight loss can be viewed as a way to reduce levels of IGF-I, and therefore potentially reduce the risk of breast cancers. To date, no studies have addressed whether a program of moderate aerobic exercise and dietary restriction producing a negative energy balance that is carried out over a long duration will significantly alter IGF-I levels. Further, the degree to which these levels might be altered in individuals of differing initial energy stores has not been addressed.

Metabolic energy availability is an important contributing factor in the development of reproductive cancers. However, current methods for assessing energy availability, which include anthropometric measures, calculations of energy balance, evaluation of various serum and urinary biomarkers are prone to measurement error, not sensitive to alterations in energy availability, and are sometimes affected by disease states. The current project includes an introduction of a novel approach to estimating energy status by measuring metabolic hormones in plasma, insulin, IGF-I, IGFBP-1 and leptin. Recently, dried blood spot (DBS) sample collection techniques have allowed for endocrine based population studies examining a wide variety of ecological factors that contribute to variation in human reproduction. In order to use the proposed method of energy status assessment in large population-based applications, such as those addressing the role of physical activity and or diet in the risk of breast cancer, the battery of metabolic hormones that comprise the proposed method must be amenable to collection and assays. Although the DBS technique has been partially validated for some hormonal assays, it has not yet been properly validated for insulin, IGF-I, IGFBP-1 and leptin, and it is unclear whether the technique is responsive to physiological changes of these compounds. Therefore, the current work calls for the validation of the DBS sampling technique for these assays under physiological conditions.

The proposed studies will yield new and important information regarding the degree to which an exercise and diet program that results in an energy deficit will reduce the risk of breast cancer.
Study Design: The study utilized a prospective, randomized design that tested the effects of a moderate exercise program (4X/wk; 4 months) combined with moderate dietary restriction that results in an average daily energy deficit of ~20%-35% kcals (Figure 1). Previously sedentary, eumenorrheic women aged 25-40 years were assigned to exercise or light conditioning groups. Initially, we had targeted both normal weight (BMI 21-25 kg/m²) and overweight (BMI 26-30 kg/m²) women to be assigned to either the Exercise (exercise 4 X epr week; 20-30% dietary restriction) or Light Conditioning groups (exercise 2X/wk; no dietary restriction) groups; 4 groups, n=15 each group. Subjects were studied for a total of six menstrual cycles, i.e., 2 control followed by 4 cycles with training and dietary restriction.

Progress According to the Approved Statement of Work (2004-2005):

(See previous Annual Summary for 2003-2004)

Proposed Months 38-42, October, 2004-February, 2005:

- Requested extension for final report for this study (IDEA Award) from DAMD;
- Perform urinary LH, E1G, and PDG assays, and serum metabolic assays when final cohort is finished;
- Perform insulin, IGFBP-2, estradiol, and estrone on remaining completed subjects;
- Send completed DBS samples from completed subjects to Salimetrics
- Perform data analysis;
- Obtain results of DBS samples from Salimetrics,
- Submit abstract for ERA of HOPE Meeting in December, 2004

Actual Months 38-42, October, 2004-February, 2005:

- Extension requested and granted for final report for this study (IDEA Award); **We are unclear why another request for a Final Report was made in October of 2005.**
- Urinary assays for LH, E1G, and PdG assays from 47 subjects were performed during February – March of 2005.
- Assays for estrone, estradiol, and insulin performed on samples
Results obtained from DBS samples sent to Salimetrics
Data Analysis Performed
Abstract submitted for ERA of HOPE meeting

Proposed Months 43-48, March 2005- May 2005:

Write and submit manuscripts:

Manuscript #1: In Progress: Effect of Exercise Training on Estrogen Metabolism in Premenopausal Women. Kim C. Westerlind, Jennifer Bell, Nancy I. Williams

This manuscript is in progress, and is being written in collaboration with Dr. Kim Westerlind, AMC Cancer Center, Boulder, Colorado. An increasing body of data provides evidence that being physically active reduces a woman’s risk for developing breast cancer. To date, the mechanism for this reduction in risk remains unknown. The current study was designed to examine how exercise combined with caloric restriction alters circulating estradiol and estrone, and circulating concentrations of IGF-I. Another hypothesis is that exercise may exert more subtle changes in steroid hormone profiles, specifically that exercise may result in an increase in the hydroxylation of the parent estrogens through the 2-hydroxylation pathway with a concomitant decrease through the 16 OHE pathway. Higher levels of 2OHE1 have been associated with decreased breast cancer risk. In animal tumor models, increased 2OHE1 results in reduced tumorigenesis. In contrast, 16OHE1 has potent estrogenic effects and has been reported to be elevated in normal and malignant tissue from women with breast cancer. We proposed that exercise increases the ratio of 2/16 OHE1. We reasoned that this in turn might be a factor in the physical activity-mediated reduction in breast cancer risk that has been observed in epidemiological and some animal studies. We sought to examine the effect of exercise training on estrogen metabolism. We hypothesized that exercise training would result in an increase in the 2/16 ratio.

Urine samples from the mid-follicular and mid-luteal phases from each cycle from each subject in the study were sent for analysis by Dr. Westerlind. Samples were shipped on dry ice to the AMC Cancer Research Center where they were stored at -80 until all samples from a given subject were available to be assayed. The funds for these assays were awarded from a separate grant that Dr. Westerlind wrote in collaboration with Dr. Williams. Estrogen metabolite levels were measured using a commercially available competitive, solid-phase enzyme-linked immunoassay (ESTRAMET, ImmunaCare, Corp) and the ratio of 2/16 computed. The frozen urine samples were brought to room temperature before testing. Samples were diluted 1:4 prior to testing with manufacturer-supplied diluent. In urine, 2-OHE1 and 16OH are found in the glucuronide conjugate from and require removal of the sugar moiety before recognition by the monoclonal antibodies. Samples are deconjugated with b-glucoronidase and arylsulphatase, then neutralized. Samples are incubated for 3 hrs at room temperature then kinetically read every 2 min for 20 minutes using a Thermomax Microplate Reader (Molecular Devices, Sunnyvale, CA). Estrogen metabolite values were determined from a calibration curve derived from six standards with the kit (0.625 – 15.0 ng/ml). All samples, controls, and standards are assayed in triplicate and all of the samples from a given subject were batch assayed to minimize interassay variability. Any sample outside of the range of the standard curve or with a coefficient of variation greater than 10% was reassayed. In house and manufacturer-supplied controls were included in each of the assays performed. Urinary 2OHE1 and 16OHE1 were normalized to urinary creatinine concentration and expressed in ng/ml/mg creatinine. Urinary creatinine was measured in duplicate using a Diagnostic Chemicals Limited Assay (company, state). The ratio of 2/16 OHE1 was computed by dividing the absolute concentration of 2OHE1 by 16OHE1. Results were analyzed using SPSS Statistical software, version 13.0. Statistical tests included t-tests and repeated measures ANOVAs or ANCOVAs.
Preliminary results from the analyses of these samples indicate that the ratio of 2/16 was significantly higher in the exercise women (1.96) compared to the controls (1.41). This was factored into the statistical analyses. Estrogen metabolite values for the subjects overall were stable over the control and intervention periods. 2OHE1 and 16OHE were higher during the luteal phase than the follicular phase as would be expected as the concentration of the metabolites parallels the changes in estradiol during the menstrual cycle. The 2/16 ratio was not significantly different between the follicular and luteal phase for any of the months of assessment (P values ranged from 0.30 to 0.99). In order to evaluate the change in 2/16 over time, the percentage change between each of the months of the studies was calculated and graphed. Data for the 2/16 were evaluated by calculating the percent change over the course of the intervention programs. 2/16 increased linearly in the follicular phase (p=0.004) but did not differ between groups (p=.91). In the luteal phase, initial 2/16 ratios were lower in the Light Conditioning group (1.41) vs the Exercise group (1.94) (p=0.04). After adjusting for initial differences, significant increases over time were observed (p<0.001) but no difference was observed between groups (P=0.53). Evaluating the data further, we analyzed the relationship between a woman’s initial 2/16 values in both the follicular and luteal phases and her exercise-associated changes in 2/16. Correlations between baseline follicular and luteal 2/16 ratios was r = 0.79. Baseline values for 2/16 were significantly associated with the percent change in the ratio over the exercise periods. Most dramatically, the 2/16 ratios in the follicular and luteal phase of the baseline month were correlated r = -0.59 (p=0.002) and r = -0.72 (p<0.001) with the total percent change (defined as the percent change between baseline and the fourth exercise month) in 2/16 luteal phase. When we divided the women into quartiles (n=6/quartile) based on either their baseline follicular or luteal 2/16 ratios with experimental groups combined (Tables 1 and 2), we observed a significant effect of exercise on the ratio of 2/16. Women within the lowest quartile, i.e., those with the lowest ratio of 2/16, had the largest increase in the ratio in response to exercise. Absolute estrogen metabolite values as well as percentage change over time were not associated with any change in body composition, BMI, or weight.

Table 1. Study 2: Total Percent Change in 2/16OHE1 based on baseline follicular 2/16OHE1 ratio

<table>
<thead>
<tr>
<th>Quartiles 2/16 OHE1 (n=6/quartile)</th>
<th>1 (X = 0.78)</th>
<th>2 (X = 1.57)</th>
<th>3 (X = 2.20)</th>
<th>4 (X = 3.18)</th>
<th>SIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Change 2/16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follicular phase</td>
<td>116 + 29%</td>
<td>-6 + 11 %</td>
<td>30 + 28%</td>
<td>29 + 28%</td>
<td>P=.007</td>
</tr>
<tr>
<td>Luteal phase</td>
<td>75 + 14%</td>
<td>32 + 10%</td>
<td>-8 + 24%</td>
<td>2 + 5%</td>
<td>P=.004</td>
</tr>
</tbody>
</table>

Overall significance determined by ANOVA with post-hoc LSD

a significantly different than quartiles 2, 3, 4

b significantly different than quartiles 3 and 4; NS between quartile 1 and 2 (p=0.54)

Table 2. Total Percent Change in 2/16OHE1 based on baseline luteal 2/16 OHE1 ratio

<table>
<thead>
<tr>
<th>Quartiles 2/16 OHE1 (n=6/quartile)</th>
<th>1 (X = 0.77)</th>
<th>2 (X = 1.53)</th>
<th>3 (X = 2.38)</th>
<th>4 (X = 3.16)</th>
<th>SIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Change 2/16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follicular phase</td>
<td>88 + 36%</td>
<td>22 + 27%</td>
<td>16 + 26%</td>
<td>43 + 18%</td>
<td>P=.226</td>
</tr>
<tr>
<td>Luteal phase</td>
<td>70 + 17%</td>
<td>37 + 19%</td>
<td>3 + 10%</td>
<td>-9 + 22%</td>
<td>P=.007</td>
</tr>
</tbody>
</table>

Overall significance determined by ANOVA with post-hoc LSD

a significantly different than quartiles 2, 3, and 4
In conclusion, the data suggest that women who have low 2/16 ratios may respond positively to exercise training with an increase in 2/16. Literature suggests that women with low 2/16 ratios may be at higher risk for developing breast cancer. Thus, exercise training may be of significant benefit to reducing breast cancer risk, particularly for those women at greatest risk. This manuscript is on track to be submitted in January, 2007 to *Cancer Epidemiology and Biomarker Prevention*. An abstract describing this work has been submitted for presentation at the American College of Sports Medicine, June, 2006 in Boulder, Colorado:

Estrogen Metabolism is Altered with Exercise Training Kim C. Westerlind, FACSM, Jennifer Bell, and Nancy I. Williams, FACSM. AMC Cancer Research Center, Denver, CO and Noll Laboratory, Penn State University, University Park, PA

- **Manuscript #2: In Progress:** Susceptibility to energy-related menstrual disturbances is reduced with increased age. Nancy I. Williams, Heather Leidy, Brandy Weller. Penn State University, University Park, PA 16802.

 Although energy deficiency is known to disrupt reproductive function in exercising women, no studies have examined whether the susceptibility to menstrual disturbances is altered with increased age. Therefore, the purpose of this study was to determine whether increased age is associated with reduced susceptibility to menstrual disturbances caused by chronic energy deficiency. A subset of twenty-four premenopausal women (12 young and 12 middle aged) from a larger study were matched according to the amount weight lost during a three month diet and exercise intervention. Menstrual status was assessed with daily urine samples and measurement of estrogen (E1G) and progesterone (PdG) conjugates using ELISA. The occurrence of menstrual disturbances, i.e., short luteal phases, inadequate luteal phases, oligomenorrheic cycles, and anovulatory cycles was quantified according to the number of defects/number of cycles observed. Independent samples t-tests were conducted to determine if there was a significant difference between younger and older women in the occurrence of menstrual disturbances.

 The results are shown below:

<table>
<thead>
<tr>
<th></th>
<th>Age</th>
<th>Gynecologic Age</th>
<th>Occurrence of Defects</th>
<th>Weight Loss</th>
<th>% Energy Deficit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young (n=12)</td>
<td>20.2 ± 1.9</td>
<td>8.0 ± 2.0</td>
<td>1.92 ± 2.02</td>
<td>-4.6 ± 1.4</td>
<td>-20.0 ± 17.2</td>
</tr>
<tr>
<td>Middle Aged (n=12)</td>
<td>33.5 ± 4.2</td>
<td>21.4 ± 4.8</td>
<td>0.58 ± 0.90</td>
<td>-4.6 ± 1.4</td>
<td>-37.7 ± 11.3</td>
</tr>
<tr>
<td></td>
<td>p<0.00*</td>
<td>p<0.00*</td>
<td>p<0.05*</td>
<td>p<0.95</td>
<td>p<0.05*</td>
</tr>
</tbody>
</table>

 In conclusion, older age was associated with significantly fewer disturbances in response to weight loss resulting from a diet and exercise intervention. These results suggest that factor(s) associated with increased age confer protection against menstrual disturbances caused by energy deficiency. An abstract describing this work has been submitted for presentation at the American College of Sports Medicine, June, 2006 in Boulder, Colorado:

Susceptibility to energy-related menstrual disturbances is reduced with increased age. Brandy Weller, Ann Albert, Matthew Johnson, Nancy Williams, Penn State University, University Park, PA 16802
Report of Final Results:

Subject Recruitment:

Over the three years in which the study took place, 572 contacts through phone or email were made with women interested in the study. Of those 572 women, 85 signed informed consents for the study, 52 were excluded from the study at various time points for the following reasons: 10 for medical reasons, 17 because of time constraints or other personal reasons, 3 became pregnant during the study, 1 had abnormal prolactin levels, 6 exceeded limits for body composition or body weight, 2 dropped out because they were not able to receive financial compensation due to visa restrictions, 11 had existing menstrual abnormalities, and 2 were asked to leave because of non-compliance. There were 33 women who completed the study.

Table 1. Initial Subject Characteristics

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>OVERALL (n=33)</th>
<th>Light Conditioning (n=16)</th>
<th>Exercise (n=24)</th>
<th>SIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>32.4 + 0.8</td>
<td>35 + 1.0</td>
<td>31.5 + 0.9</td>
<td>P=0.049</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>164.0 + 1.1</td>
<td>164.8 + 2.5</td>
<td>163.7 + 1.3</td>
<td>P=0.663</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>64.1 + 1.4</td>
<td>64.5 + 1.9</td>
<td>63.3 + 1.8</td>
<td>P=0.728</td>
</tr>
<tr>
<td>BMI</td>
<td>23.7 + 0.5</td>
<td>23.9 + 1.3</td>
<td>23.6 + 0.6</td>
<td>P=0.811</td>
</tr>
<tr>
<td>Body Fat (%)</td>
<td>32.3 + 0.9</td>
<td>34.3 + 1.8</td>
<td>31.6 + 1.0</td>
<td>P=0.192</td>
</tr>
<tr>
<td>VO2 Max (ml/kg/min)</td>
<td>31.7 + 1.0</td>
<td>28.8 + 1.1</td>
<td>32.7 + 1.2</td>
<td>P=0.027</td>
</tr>
</tbody>
</table>

Data are presented as Mean + SE. Significance determined by t-test between Control and Exercise groups.

Dietary Intake During the Intervention:
The target macronutrient composition for all subjects during the intervention was 55% carbohydrate, 30% fat, and 15% protein. Using the average total daily caloric intake from the each subject’s three day diet log, in combination with the Harris Benedict equation as adjusted for daily physical activity (Harris 1919), an estimate of the eucaloric (weight maintenance) energy needs of each subject were calculated. In order to promote weight loss, this level of dietary intake was reduced by 20-40 % for exercising subjects, and this new level was their target daily caloric intake throughout the intervention. For light conditioning subjects, the target level of daily dietary intake during the intervention remained that which represented their eucaloric energy needs. Prior to the intervention the GCRC dietician taught all subjects how to use the food exchange system (American Diabetes Association, 2003 Edition, Chicago, IL) to obtain their targeted caloric intake, and the targeted macronutrient composition. Subjects kept track of their daily food exchanges by recording them on monitoring forms for seven days at a time, every two weeks. Estimates of daily caloric intake from food exchange monitoring sheets were determined using Dietician's Assistant v. 2.99 (Compu-Cal Inc., Olympia, WA). Once per menstrual cycle during the intervention subjects also completed a 3 day diet log. Total calories and macronutrient content was determined using Nutritionist Pro (First Data Bank, Indianapolis, IN). If difficulties arose with subjects meeting their targeted caloric intake, the dietician counseled on how to overcome these challenges. If subjects in the Light Conditioning group were experiencing weight changes, or if subjects in the Exercise group were not losing weight, appropriate changes to the target caloric intake were made. Dietary counseling sessions for both Light Conditioning and Exercise groups included discussion of food education modules including Shopping Tips, Low Fat/Low Calorie food, Food Preparation, Dining Out, Iron, Calcium, Fiber, and Vitamins in Food.

Exercise Training During the Intervention

Subjects in both groups attended supervised exercise sessions in the training room in Noll Laboratory that were monitored by a Head Trainer and several personal trainers who had experience in fitness assessment and personal training. Workouts for the exercise group were four times per week and consisted of a 5 minute warm-up followed by approximately 40-90 min of aerobic activity at a heart rate 60-90% (average 79 ± 0.7/6.0 % (sem/SD)) of the maximal heart rate (obtained from the VO2 max test achieved during exercise sessions), followed by a 10 min cool-down. Modes of aerobic activity included treadmill walking, stationary cycling, and stair stepping. Average attendance for subjects in the Exercise group was 96 ± 0.9/4.6 (sem/sd) % of the total workouts. The duration of exercise for the Exercise group was equal in minutes to that required to expend a target amount of calories, determined to be 20% of the subjects’ eucaloric intake. For example, if the pre-determined eucaloric intake was 2000 calories, then this subject’s exercise calorie target would be 400 calories. The total amount of calories expended during each exercise session was measured using the OwnCal feature on the Polar S610 heart rate monitor (Polar Electro Oy, Kempele, Finland). Throughout the study the heart rate monitors were continually reinitialized with the most recent values of weight, maximum heart rate, maximal aerobic capacity, and age.

Light conditioning subjects exercised 2 times per week; sessions were comprised of 36 ± 2.9/8.3 (sem/sd) minutes of aerobic activity at 77 ± 0.8/2.3% (sem/sd) of maximum heart rate, and 10 minutes of light stretching and calisthenics. Compliance to these sessions was 94 %. These sessions were designed to provide a sufficient training stimulus for subjects to see some improvement in aerobic capacity and strength and flexibility, but not to expend a significant amount of calories such that weight loss would be observed. Earlier attempts at recruiting subjects who would agree to be randomized to a non-exercising control group were unsuccessful.

Results

Descriptive characteristics for completed subjects are presented in Table 2. No differences were observed in any of the parameters after women were randomized to Light Conditioning versus the Exercise groups with the exception of age (P= 0.049; independent t-test). Light Conditioning women were significantly older when compared to the exercise women.
The effects of the intervention on body composition, body weight, and fitness are shown in Table X. In general significant improvements were observed in all variables over the course of the intervention, with the exception of no change in fat free mass. Significant group interactions were observed for all variables where significant changes occurred over time, except \(\text{VO}_{2\text{max}} \), indicating that although changes were favorable in both groups, the Exercise group exhibited significantly greater gains as a result of the intervention. Average percent changes from baseline for \(\text{VO}_{2\text{max}} \) for Light Conditioning and Exercise groups respectively were +30 ±5%, and +27 ± 5%. Average percent changes from baseline for percent body fat for Light Conditioning and Exercise groups respectively were -3.8 ±1.7 %, and -15 ± 2.3%. Light Conditioning subjects lost 1.2 ± 0.6 % of their initial body weight, while Exercise subjects lost 6.0 ± 0.9%. Daily caloric intake from the average of three day diet logs recorded during the baseline period, and during the fourth menstrual cycle exhibited a significant decrease over time (P<0.001), and this difference varied between the Light Conditioning and Exercise groups (interaction effect P = 0.004) such that the Exercise group experienced a 32% decrease and the Light Conditioning group experienced an 8% decrease. Average macronutrient content across the intervention was not different between groups with the exception of the percent of daily calories derived from fat. Light Conditioning subjects consumed 34.8 ± 4.5 % fat versus the Exercisers who consumed 27.5 ± 5.2 % (P = 0.035; one – way anova on average 3 day diet macronutrients for Exercise 1, Exercise 2, and Exercise 3, and Exercise 4). The overall macronutrient distribution for both groups during the intervention was 55 ± 1.2 % carbohydrate, 18.7 ± 0.7% protein, 29.1 ± 1.3 % Fat, and 6.5 ± 0.8 % alcohol.

When serum measurements of estradiol and estrone are examined across Control Cycle 2 (n=10 measurements per subject), and Exercise 4 cycles (n=10 measurements per subject) are averaged, and then compared with paired samples T-tests, no differences are observed in either the light conditioning or exercising groups, despite the loss of body fat. A composite graph of these changes, depicted according to cycle day are depicted in Figures 1 and 2. A representative depiction of the changes in both serum estrone and estradiol and urinary E1G in one subject is depicted in Figure 3.
Figure 1. Composite graph of estradiol measurements from Control Cycle 2 (Pre) and Exercise 4 (Post) cycles in Exercising Subjects.

Figure 2. Composite graph of estradiol measurements from Control Cycle 2 (Pre) and Exercise 4 (Post) cycles in Light Conditioning Subjects.
Figure 3. Representative example of a single subject’s urinary (E1G) and serum estrogens (estrone and estradiol) before (Control 2) and after (Exercise 4) exercise training combined with caloric restriction.

Changes in Circulating IGF-I. During Exercise Combined with Diet Intervention:

Figure 4. IGF-1 does not decline despite significant fat and weight loss in Exercise or Light Conditioning
Change in IGF1 vs Change in Weight

\[y = -0.5547x + 44.255 \]
\[R^2 = 0.0022 \]

Figure 5, and there is no correlation between change in body weight and change in IGF-1 from pre to post.

Results for Dried Blood Spot Samples:

Example results for leptin DBS samples are illustrated below. In comparison to the simultaneous venipuncture measurement of leptin as assayed in our laboratory, a significant correlation exists (P<0.05; Pearson Correlation) (Table 3, and Figure 4)

Table 3. Correlation between serum and DBS sample for leptin

<table>
<thead>
<tr>
<th></th>
<th>Av Control Month Leptin (ng/ml)</th>
<th>PreLeptinBlood Spot (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Av Control Month Leptin (ng/ml)</td>
<td>Pearson Correlation 1</td>
<td>.677(*)</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed) .677(*)</td>
<td>.011</td>
</tr>
<tr>
<td></td>
<td>N 36</td>
<td>13</td>
</tr>
<tr>
<td>PreLeptinBloodSpot (ng/ml)</td>
<td>Pearson Correlation .677(*)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed) .011</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>N 13</td>
<td>13</td>
</tr>
</tbody>
</table>

* Correlation is significant at the 0.05 level (2-tailed).
Figure 4. Scatterplot of leptin DBS vs venipuncture results
KEY RESEARCH ACCOMPLISHMENTS

Thus far:
Two Abstracts Submitted to 2006 Annual Meeting of the American College of Sports Medicine (listed above):

1) Estrogen Metabolism is Altered with Exercise Training Kim C. Westerlind, FACSM, Jennifer Bell, and Nancy I. Williams, FACSM. AMC Cancer Research Center, Denver, CO and Noll Laboratory, Penn State University, University Park, PA 16802

2) Susceptibility to energy-related menstrual disturbances is reduced with increased age. Brandy Weller, Ann Albert, Matthew Johnson, Nancy Williams, Penn State University, University Park, PA 16802

Manuscripts in Progress from DAMD Funding:

1) Effect of Exercise Training on Estrogen Metabolism in Premenopausal Women. Kim C. Westerlind, Jennifer Bell, Nancy I. Williams

 This manuscript is drafted and will be submitted in January, 2006.

2) Susceptibility to energy-related menstrual disturbances is reduced with increased age. Nancy I. Williams, Kelly Dougherty, Brandy Weller, Ann Albert. Penn State University, University Park, PA 16802

 This manuscript is drafted and will be submitted in February, 2006.

3) Effects of Exercise Combined with Caloric Restriction on Circulating Estradiol and Menstrual Cyclicity in Premenopausal Women. Nancy I. Williams, Brian Frye, Kelly Dougherty

 Methods and Results have been written.

4) Effects of Exercise Combined with Caloric Restriction on Circulating IGF-1. Nancy I. Williams, Heather Leidy

 Methods and Results have been written.

REPORTABLE OUTCOMES (2001-2005)

Funding Applied for and Received Based on Work Supported by this Award:

1. PR054531 10/05-10/09
 United States Department of Defense CDMRP Program

 “Increased Caloric Intake to Reverse Energy Deficiency in Exercising Women: Impact on Bone & Menstrual Cyclicity”
This study investigates the effects of increasing caloric intake in exercising women with reduced bone mass and amenorrhea on menstrual and bone health status.

Role: Co-Principal Investigator (With MJ De Souza)

2. Cancer Research and Prevention Foundation
 1/04-12/05
 $76,865 0%

 “Exercise and Estrogen Metabolism: Implications for Breast Cancer Prevention”

 The major goal is to test the hypothesis that a diet and exercise intervention produces favorable alterations in the ratio of key catechol estrogens that are associated with a reduced risk of breast cancer.

Role: Co-Investigator (PI is Kim Westerlind, AMC Cancer Research Center, Denver, CO)

.Pending Funding Applied for and Received Based on Work Supported by this Award:

1. National Institutes of Health (NIH)
 4/1/05-3/31/09
 $856,295 15%

 “Antioxidant Status, Diet and Early Pregnancy”

Role: Co-Investigator (PI is Terryl Hartmen, Dept. Nutrition, Penn State)

2. National Institutes of Health (NIH)
 1 RO1 HD39245-01
 7/1/05-6/30/09 20%
 $ 2,020,090

 “Bioenergetics of Exercise-Induced Menstrual Disturbances”

Role: Principal Investigator

3. National Athletic Training Association
 Research Grant
 1/1/06-12/31/06
 $89,113

 “Reversing Energy Deficiency in Amenorrheic Athletes: Effects on Bone Turnover and Physical Performance”

Role: Principal Investigator

Student Training:

The following individuals have been supported in Dr. Williams’ Laboratory during the funding period covered by DAMD17-01-1-0360:

Masters Students
2002 Megan Senior "Screening for Subclinical Eating Disorders in Female Athletes: The Use of an Indirect Interview Technique " (Nutrition)

2004 Michael Perry “Effects of chemotherapy followed by exercise training on reproductive status and stress hormones in breast cancer patients” (Kinesiology)

2004 Kelly Dougherty “No relation between leptin and exercise-associated reproductive disturbances in healthy normal weight young women” (Kinesiology)

2004 Brian Frye “Predictors of weight loss in a diet and exercise intervention in young women” (Kinesiology)

2005 Sarah Giambuzzi (Kinesiology – In Progress)

2005 Jennifer Ward (Physiology- In Progress)

Doctoral Students

2004 Heather Leidy “Role of ghrelin in energy homeostasis”(Physiology)

2005 Jennifer Bell (In progress, Physiology)

2005 Brandy Weller (In progress, Kinesiology)

MANUSCRIPTS DURING THE ENTIRE PERIOD OF SUPPORT BY DAMD17-01-1-0360 (2001-2005)

(TOTAL 15 PUBLISHED, 3 IN REVIEW, 5 IN PROGRESS)

MANUSCRIPTS IN REVIEW

1. Leidy HJ, **Williams NI**. Meal energy content affects the meal-related pattern of ghrelin but has no affect on the nocturnal pattern in normal weight, healthy young women (In Review, Hormone and Metabolic Research)

2. De Souza MJ, Hontscharuk R, Olmsted M, Burke, T, Kerr, G, and **Williams NI**. Drive for thinness is a strong predictor of energy deficiency in exercising women (In Review, Physiology and Behavior)

MANUSCRIPTS IN PROGRESS

1. **Williams, N.I.**, Berga S.L., and Cameron, J.L. Synergistic effects of multiple stressors on menstrual cyclicity in cynomolgus monkeys. (Written, In review by co-authors; To be submitted to Journal of Clinical Investigation)

2. Westerlind KC, Bell J, **Williams, NI**. Effect of Exercise Training on Estrogen Metabolism in Premenopausal Women. (Written, In review by co-authors: To be submitted to Cancer Epidemiology and Biomarker Prevention)

3) **Susceptibility to energy-related menstrual disturbances is reduced with increased age.** Nancy I. Williams, Kelly Dougherty, Brandy Weller, Ann Albert. Penn State University, University Park, PA 16802

 This manuscript is drafted and will be submitted in February, 2006.

4) **Effects of Exercise Combined with Caloric Restriction on Circulating Estradiol and Menstrual Cyclicity in Premenopausal Women.** Nancy I. Williams, Brian Frye, Kelly Dougherty

 Methods and Results have been written.

5) **Effects of Exercise Combined with Caloric Restriction on Circulating IGF-1.** Nancy I. Williams, Heather Leidy

 Methods and Results have been written.
ABSTRACTS DURING THE ENTIRE PERIOD OF SUPPORT BY DAMD17-01-1-0360 (2001-2005)

(TOTAL = 27)

Senior MK, Williams NI, McConnell HJ, Clark KC. Screening for subclinical eating disorders in female athletes: validation of an indirect interview technique. (Presented at the 24th Annual meeting of the Mid-Atlantic Regional Chapter of the American College of Sports Medicine, Bushkill, PA, November 2-3, 2001).

Kim C. Westerlind, Jennifer Bell, and Nancy I. Williams, Estrogen Metabolism is Altered with Exercise Training (Submitted for presentation at 2006 American College of Sports Medicine Meeting, Denver, Colorado, 2006)

Brandy Weller, Ann Albert, Matthew Johnson, and Nancy I. Williams Susceptibility to energy-related menstrual disturbances is reduced with increased age. (Submitted for presentation at 2006 American College of Sports Medicine Meeting, Denver, Colorado, 2006)

INVITED PRESENTATIONS DURING THE ENTIRE PERIOD OF SUPPORT BY DAMD17-01-1-0360 (2001-2005)

(TOTAL = 17)

"Physiological Connections Between Factors of the Female Athlete Triad" Penn State Athletic Training Conference", April 12, 2002, Penn State University, University Park, PA

"Exercise and Women's Health: Lessons from the Female Athlete Triad", Department of Health and Exercise Science, April 25, 2002, Wake Forest University, Winston-Salem, NC

"Subclinical Eating Disorders and Menstrual Cycle Irregularities in Female Athletes" Eating Disorders on Campus, The Institutional Response, June 7, 2002, Eighth Annual Conference, Penn Stater Conference Center Hotel, Penn State University, University Park, PA

“Effects of Exercise on the Menstrual Cycle: Physiological mechanisms and practical considerations” February, 2003, School of Kinesiology and Health Science, York University, Ontario, Canada.

“Exercise-associated menstrual disturbances: Physiological mechanisms and role of caloric restriction”, November 24, 2003, *Department of Health and Kinesiology, Texas A and M University*, College Station, TX

“Exercise-associated menstrual disturbances: Physiological mechanisms and role of caloric restriction”, November 25, 2003, *Department of Nutrition, Texas A and M University*, College Station, TX

“Exercise-associated menstrual disturbances: Physiological mechanisms and role of caloric restriction”, December 4, 2003, *Department of Endocrinology, Endocrine Research Conference*, Hershey Medical Center, Penn State University, Hershey, PA

“Exercise-associated menstrual disturbances: Phyiological mechanisms and clinical sequelae”, March 2, 2004, Department of Exercise Science, University of Massachusetts, Amherst, MA

“Exercise-associated menstrual disturbances: Phyiological mechanisms and clinical sequelae”, April 30, 2004, Department of Physical Therapy, Faculty of Medicine, University of Toronto, Toronto, Ontario

“Estrogen and Cardiovascular Disease”. University of Toronto, Faculty of Physical Education and Health, November 21, 2005.

“The effects of caloric restriction on the menstrual cycle”. Keynote Speaker, Mid-Atlantic American College of Sports Medicine Meeting, Harrisburg, PA November, 2005

SYMPOSIUM PRESENTATIONS DURING THE ENTIRE PERIOD OF SUPPORT BY DAMD17-01-1-0360 (2001-2005)

(TOTAL = 3)

CONCLUSIONS:

- Caloric restriction combined with an amount of moderate aerobic exercise shown to be associated with reduced breast cancer risk produces significant weight loss and fat loss in healthy premenopausal women over four menstrual cycles.

- Although previous prospective studies have shown that weight loss can significantly impact menstrual cyclicity and ovarian steroid excretion in young premenopausal women (Bullen, et al. 1985), a exercise and diet stimulus that promotes a similar magnitude of weight loss does not perturb menstrual cyclicity, circulating serum estradiol, estrone, or urinary excretion of estrone -1 -glucuronide (E1G).

- Although previous prospective studies have shown that weight loss can significantly impact menstrual cyclicity and ovarian steroid excretion in young premenopausal women (Bullen, et al. 1985), a exercise and diet stimulus that promotes a similar magnitude of weight loss does not significantly change circulating IGF -1 concentrations.

- The Dried Blood Spot technique represents a viable alternative to determining metabolic status in humans.

- Therefore, these positive lifestyle changes do not appear to reduce breast cancer risk, as it is indicated by these specific circulating biomarkers.

REFERENCES: None

PERSONNEL RECEIVING SUPPORT FROM DAMD17-01-1-0360

Nancy I. Williams, Sc.D. Principal Investigator 2001-2005
Ann Albert Project Coordinator 2005
Matthew Johnson Research Assistant 2005
NANCY I. WILLIAMS
Curriculum Vitae

BIOGRAPHICAL

University Address
Department of Kinesiology
Room 108 Noll Laboratory
Penn State University
University Park, PA 16802

Home Address
1994 North Oak Lane
State College, PA 16803

Citizenship: USA

Phone: 814-231-2021

Date of Birth: 3/13/62

Phone: 814-865-1346
Fax: 814-865-1275
Email: niw1@psu.edu

EDUCATION

1984 B.S. Biology, Bucknell University, Lewisburg, PA

1986 M.S. Exercise Physiology, The Ohio State University, Columbus, OH

1992 Sc.D. Applied Anatomy & Physiology, Boston University, Boston, MA

1992-1996 Postdoctoral fellowship, University of Pittsburgh School of Medicine, Center for the Study of Reproductive Physiology (Judy L. Cameron PhD, mentor)

PROFESSIONAL EXPERIENCE

2003-present Associate Professor
Department of Kinesiology and Noll Physiological Research Center
Joint Appointments:
Intercollege Program in Physiology, Department of Nutrition, Life Science Consortium (Nutrition Science Option);
Penn State University
University Park, PA

1997-2003 Assistant Professor
Department of Kinesiology and Noll Physiological Research Center
Joint Appointments:
Intercollege Program in Physiology, Department of Nutrition, Life Science Consortium (Nutrition Science Option);
Penn State University
University Park, PA

1996-1997 Visiting Assistant: Human Anatomy & Physiology
Professor
Department of Biological Sciences
Ohio University
Athens, Ohio

1992-1996 Postdoctoral Fellow: Center for the Study of Reproductive Physiology
School of Medicine
University of Pittsburgh
Pittsburgh, Pennsylvania

1987-1992 Graduate Fellow: Department of Health Sciences
Sargent College
Boston University
Boston, Massachusetts

Research Projects:
- NIH grant: "Effects of exercise on pituitary hormone secretion"
- NIH grant: "Exercise as an adjunct therapy for persons with mental illness"

Health/Fitness Center Coordinator: Faculty/Staff Fitness Program
Department of Health Sciences
Sargent College
Boston University
Boston, Massachusetts

1986-1987 Project Director: Exercise Physiology Laboratory
Department of Exercise Science
The Ohio State University
Columbus, Ohio

NIH Grant: "Effects of chronic exercise training on aging"

1984-1986 Research Assistant: Exercise Physiology Laboratory
Department of Exercise Science
The Ohio State University,
Columbus, Ohio

NIH Grant: "Effects of chronic exercise training on aging"

HONORS AND AWARDS

Canada Research Chair Nomination (declined), York University, Toronto, Ontario, Canada 2003
Department of Defense Breast Cancer Research Program, Career Development Award, 2001

Fellowship Status: American College of Sports Medicine, 1998
NIH Individual National Research Service Award (NRSA), 1994-1996
Endocrine Society; Women in Endocrinology Travel Award, 1995
Association of Women in Science Education Foundation Award, 1990
American Association of University Women Predoctoral Fellowship, 1990
American College of Sports Medicine, New England Chapter Scholarship Award; 1989
Phi Sigma Biological Honor Society; 1984
Scholar/Athlete of the Year, Southern New Jersey Courier Post, 1980

PROFESSIONAL MEMBERSHIPS/AFFILIATIONS

Collaborative Scientist, Oregon National Primate Research Center 2003-present
American College of Sports Medicine 1984-present
Endocrine Society 1996-present
New England Chapter ACSM 1987-1992
Association for Women in Science 1987-1992
Mid-Atlantic Chapter ACSM 1997-present
Female Athlete Triad Coalition 2004-present

TEACHING

COURSES TAUGHT AT BOSTON UNIVERSITY:

HS 276 *Physiology of Exercise Laboratory*
HS 302 *Exercise Physiology (Lecture)*
HS 535 *Clinical Fitness Evaluation*
HS 573 *Physiology of Activity (Lecture)*
HS 573 *Physiology of Activity (Laboratory)*

COURSES TAUGHT AT OHIO UNIVERSITY:

BIOS 450/550 *Principles of Endocrinology* (section on neuroendocrinology)
BIOS 446/546 *Exercise Physiology Laboratory*
BIOS 345 *Human Physiology*
BIOS 346 *Human Physiology Laboratory*
COURSES TAUGHT AT PENN STATE UNIVERSITY:

<table>
<thead>
<tr>
<th>Sem/Year</th>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall 1997</td>
<td>Kines 481W</td>
<td>Scientific basis of Exercise for Older Adults</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Kines 496C</td>
<td>Independent Study</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Spring 1998</td>
<td>Kines 456</td>
<td>Fitness Appraisal</td>
<td>4</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Kines 496C</td>
<td>Independent Study</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Kines 395b</td>
<td>Practicum</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Summer 1998</td>
<td>Kines 496C</td>
<td>Independent Study</td>
<td>1-3</td>
<td>3</td>
</tr>
<tr>
<td>Fall 1998</td>
<td>Kines 456</td>
<td>Fitness Appraisal</td>
<td>4</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Kines 456h</td>
<td>Fitness Appraisal</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(honors option)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kines 496c</td>
<td>JumpStart to Health/Fitness</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Kines 496c</td>
<td>Independent Study</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Kines 496c</td>
<td>Independent Study</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Schreyer Student)**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kines 596c</td>
<td>Supervised Teaching</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Kines 597i</td>
<td>Neuroendocrine-Immune Interactions</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Kines 395b</td>
<td>Practicum</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Spring 99</td>
<td>Kines 456</td>
<td>Fitness Appraisal</td>
<td>4</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Kines 424</td>
<td>Female in Exercise and Sport</td>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Kines 496c</td>
<td>Independent Study</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>Summer 99</td>
<td>Kines 456</td>
<td>Fitness Appraisal</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>Fall 99</td>
<td>Kines 424</td>
<td>Female in Exercise and Sport</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Kines 496c</td>
<td>Independent Study</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Physio/Bio 572</td>
<td>Animal Physiology</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Spring 00</td>
<td>Kines 456</td>
<td>Fitness Appraisal</td>
<td>4</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Kines 424</td>
<td>Female in Exercise and Sport</td>
<td>3</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Kines 496c</td>
<td>Independent Study</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Summer 00</td>
<td>Kines 456</td>
<td>Fitness Appraisal</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Fall 00</td>
<td>Kines 424</td>
<td>Female in Exercise and Sport</td>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Physio/Bio 572</td>
<td>Animal Physiology</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Kines 496c</td>
<td>Independent Study</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Spring 01</td>
<td>Kines 424</td>
<td>Female in Exercise and Sport</td>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Kines 496c</td>
<td>Independent Study</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Fall 01</td>
<td>Kines 424</td>
<td>Female in Exercise and Sport</td>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Kines 496c</td>
<td>Independent Study</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Fall 02</td>
<td>Kines 424</td>
<td>Female in Exercise and Sport</td>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td>Fall 03</td>
<td>Kines 424</td>
<td>Female in Exercise and Sport</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>Fall 04</td>
<td>Kines/WMST 424</td>
<td>Female in Exercise and Sport</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>Fall 05</td>
<td>Kines/Physio 597d</td>
<td>Estrogen in Physiology and Disease</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

*Supervised the writing of new laboratory experiment and handout for Kines 456

**Supervise students who work in my laboratory on research project examining the interactions between reproductive function disturbances, eating habits, and body image
STUDENT TRAINING

Preceptor

NIH GM08619-07 Research Training in Physiological Adaptations to Stress. National Institute of General Medical Sciences, 1996-2005. Director is J. Jefferson, Hershey Medical Center, Penn State University

Committee Chair- Undergraduate Honors Thesis Students

2000 Kathleen Flecker – Shreyer’s Honor’s College: "Weight and diet concerns among female athletes with menstrual cycle irregularities" (Winner 3rd place Undergraduate Research Exhibition; attended medical school)

2003 Meredith Snook- Shreyer’s Honor’s College: “Effects of a diet and exercise on interactions between thyroid hormone, resting metabolic rate, and anthropometric measurements in normal weight healthy young women” (Earned full scholarship to University of Pittsburgh Medical School in a special clinical program designed to train clinicians to conduct clinical research)

Committee Chair- Masters Students

1999 Paula Wilkins "Body Image, Social Physique Anxiety, and Menstrual Dysfunction in the Female Athlete" (Physiology)

2000 Heather McConnell "Determining the validity of ovulation detection methods in an athletic population" (Physiology)

2000 Angelique Matuch "Quantifying physiological responses prior to competitive exercise" (Kinesiology)

2002 Megan Senior "Screening for Subclinical Eating Disorders in Female Athletes: The Use of an Indirect Interview Technique " (Nutrition)

2004 Michael Perry “Effects of chemotherapy followed by exercise training on reproductive status and stress hormones in breast cancer patients” (Kinesiology)

2004 Kelly Dougherty “No relation between leptin and exercise-associated reproductive disturbances in healthy normal weight young women” (Kinesiology)

2004 Brian Frye "Predictors of weight loss in a diet and exercise intervention in young women" (Kinesiology)

2005 Sarah Giambuzzi (Kinesiology – In Progress)

2005 Jennifer Ward (Physiology- In Progress)

Committee Chair - Doctoral Students

1999 *Jill Bush "Proenkephalin peptide F concentrations in different blood bio-compartments: The effect of an acute resistance exercise protocol" (Kinesiology)

* = co-chaired this committee in lieu of the early departure of her major advisor, William Kraemer

2004- Heather Leidy “Role of ghrelin in energy homeostasis”(Physiology)

Committee Member- Masters Students

1997 Scott Mazetti "The influence of direct supervision of heavy resistance training on muscular performance and hormonal responses" (Kinesiology)

1998 Sang Kyung Kim "The effects of menstrual function on plasma peptide F immunoreactivity in response to high intensity cycle exercise" (Kinesiology)
1998 Jennifer DeSanto "Body Composition and energy balance: Comparison between eumenorrheic and amenorrheic athletes" (Kinesiology)

1998 Wallace Baker "Characterization of leukocyte infiltration after muscle damage" (Kinesiology)

1998 Steve Tokeshi "Maximal isokinetic force generation in upper body musculature during concentric and eccentric actions: a gender comparison" (Kinesiology)

1999 Jannell MacAulay "Submaximal cycle ergometry as a predictor of maximal aerobic capacity in women on oral contraceptives" (Kinesiology)

2000 Brittney Salkeld "The effect of oral contraceptive use on measures of fatigue and energy metabolism" (Kinesiology)

2003 James Butler (Media Studies)

2003 Micheal Curren “Octreotide improves orthostatic tolerance in women” (Physiology)

2005 Rayisa Hontchurak University of Toronto: “Understanding the Female Athlete Triad: A Closer Look at the Components of the Female Athlete Triad and Their Relationships”

2005 Dan Lee- University of Toronto : “ Metabolic Status and Menstrual Cyclicity in Exercising Women”

Committee Member- Doctoral Students

1998 Jeff Volek "Fasting and postprandial serum lipoprotein responses to a hypocaloric low carbohydrate diet rich in monounsaturated fat and supplemented with n-3 fatty acids" (Kinesiology)

2002 Greg Daniels "Walking and running: Information and energetics" (Kinesiology)

2004-present Stephen Yang (Kinesiology)

2005- Nancy Johnston “Bio-markers of pre-term labor” (Nursing)

2005-present John Florian (Kinesiology)

Undergraduate Research Advising:

Summer 1998 Minority High School Student Research Apprentice Program at Penn State University

Mentored student who helped with research projects in laboratory

Fall 98 to 2001 WISE program; Women in Science in Engineering

Have averaged two female students per year who have worked in laboratory

Summer 2001 Minority Access to Research Careers (MARC)

Mentored student who helped with research projects in laboratory

Summer 2002 McNair Scholars Programs

Mentored first generation college student who performed research project
RESEARCH

INTRAMURALLY FUNDED GRANTS

(Completed)

 Sargent College of Allied Health Professions
 Boston University, Boston, Massachusetts

 Principal Investigator:
 "Effects of exercise and caloric restriction upon luteinizing hormone secretion"

2. Penn State University
 College of Health and Human Development
 Interdisciplinary Seed Grant Program, 1997-1998;
 $5000

 Principal Investigator:
 “Prevalence of Female Athlete Triad Disorders: Estimation by Questionnaires and Subsequent
 Follow-up with Clinical and Laboratory Assessments of Physiological Status”

3. Penn State University
 College of Health and Human Development
 Interdisciplinary Seed Grant Program, 1998-1999;
 $6000

 Principal Investigator:
 “Disturbances in Reproductive Function caused by Metabolic Stress: Possible Increased
 Susceptibility in Individuals with Elevated Levels of Perceived Psychological Stress “

4. Penn State University
 College of Health and Human Development
 Interdisciplinary Seed Grant Program, 1999-2000;
 $6000

 Co-Investigator: (PI Jay Hertel)
 "Changes in risk factors of anterior cruciate ligament ruptures in female collegiate
 athletes across the menstrual cycle"

5. Penn State University
 Pathology Initiation Grant
 Hershey Medical Center, Dept. Pathology, January 2002-January 2003 5%
 $15,170

 Co-Investigator (PI is Williams' Doctoral student, Thomas Whipple, MS, PT)
 "The Role of Resistance Exercise and Energy Availability on Bone"
6. Penn State University
Children's Youth and Family Consortium
Penn State University, CHHD
January 2002- January 2003 5%
$13,925

Co-Principal Investigator (with Moira Petit, PhD (PSU-Hershey))
"Designing Intervention Programs to Optimize Bone Development: Application of Bone Markers to Monitor the Short-term Response to Exercise"

EXTRAMURALLY FUNDED GRANTS

(Completed)

1. **NIH National Research Service Award (NRSA)**, 1994-1996
Center for the Study of Reproductive Physiology
School of Medicine
University of Pittsburgh
Pittsburgh, Pennsylvania

Principal Investigator:
"Metabolic cues governing reproductive hormone secretion"

2. **Pharmavite Corporation**, Seattle, Washington
Research Grant-in-Aid, 1998-1999; $20,000

Principal Investigator:
"Consumer Taste and Education of a Nutritional Sports Supplement"

US Army Breast Cancer Program
1998-2001 5%
$292,539

Co-Investigator:
"Use of Exercise to Increase CD4 Lymphocytes following Chemotherapy Treatment for Breast Cancer"

4. **NIH**
1 RO1 HD39245-01
(Williams)
5/1/01 - 4/30/04
30%
$1,538,361

Principal Investigator:
"Bioenergetics of Exercise-induced Menstrual Disturbances"

5. **Retirement Research Foundation**
2000-2004 2%
$56,832

Co-Investigator: (PI is J.L. Cameron, PhD)
6. Cancer Research and Prevention Foundation
1/04-12/05
$76,865 0%

“Exercise and Estrogen Metabolism: Implications for Breast Cancer Prevention”

The major goal is to test the hypothesis that a diet and exercise intervention produces favorable alterations in the ratio of key catechol estrogens that are associated with a reduced risk of breast cancer.

Role: Co-Investigator (PI is Kim Westerlind, AMC Cancer Research Center, Denver, CO)

7. Children's Youth and Family Consortium
1/02-1/06

Penn State University, College of Health and Human Development

"Designing Intervention Programs to Optimize Bone Development: Application of Bone Markers to Monitor the Short-term Response to Exercise"

The major goal is to test the hypothesis that acute high impact exercise with produce favorable changes in biochemical markers of bone turnover in young women.

Co-Principal Investigator (PI is Moira Petit, PSU Hershey)

8. US Army Medical Research and Materiel Command
9/17/01- 9/16/05 15%
US Army Breast Cancer Program (IDEA AWARD)
$408,878

Principal-Investigator:
"Effects of Moderate Aerobic Exercise Combined with Caloric Restriction on Circulating Estrogens and IGF-1 in Premenopausal Women (IDEA Award)"

9. US Army Medical Research and Materiel Command
9/17/01- 9/16/05 50%
US Army Breast Cancer Program (CAREER DEVELOPMENT AWARD)
$312,081

Principal-Investigator:
"Effects of Moderate Aerobic Exercise Combined with Caloric Restriction on Circulating Estrogens and IGF-1 in Premenopausal Women (Salary Only)"

(Funded but Declined)

1. Canada Research Chair, Canada Foundation for Innovation (CFI)

Infrastructure Fund “Research Facility for Reproductive Endocrinology
2. Ontario Innovation Trust (OIT)

Ontario Distinguished Researcher Award
Fall, 2003
$220,340 (CDN)

Active Support

1. PR054531
United States Department of Defense CDMRP Program

“Increased Caloric Intake to Reverse Energy Deficiency in Exercising Women: Impact on Bone & Menstrual Cyclicity”

This study investigates the effects of increasing caloric intake in exercising women with reduced bone mass and amenorrhea on menstrual and bone health status.

Role: Co-Principal Investigator (With MJ De Souza)

2. HD-02-012
NIH Cooperative Reproductive Science Research Centers at Minority Institutions

“The efficacy and safety of metformin and lifestyle factors in the amelioration of Hyperandrogenemia and its associated symptomology”

The major goal is to test the hypothesis that a metformin combined with a lifestyle intervention consisting of diet and exercise resulting weight loss will stimulate the resumption of ovulatory menstrual cycles in adult women with PCOS, and lessen the effects of high circulating androgens in adolescent girls with PCOS.

Role: Co-Investigator

3. NASA

“Improving Orthostatic Tolerance in Women: Control of Splanchnic and Cutaneous Vascular Capacitance”

The major goal is to test the hypothesis that increased distribution of blood flow to the splanchnic region contributes to the higher incidence of orthostatic intolerance in women versus men.

Role: Co-Investigator (PI is James Pawelczyk, PSU)

Pending Support:
1. National Institutes of Health (NIH)
4/1/05-3/31/09
$856,295 15%

“Antioxidant Status, Diet and Early Pregnancy”
Role: Co-Investigator (PI is Terryl Hartmen, Dept. Nutrition, Penn State)

2. National Institutes of Health (NIH)
1 RO1 HD39245-01
7/1/05-6/30/09 20%
$2,020,090

“Bioenergetics of Exercise-Induced Menstrual Disturbances”
Role: Principal Investigator

3. National Athletic Training Association
Research Grant
1/1/06-12/31/06
$89,113

“Reversing Energy Deficiency in Amenorrheic Athletes: Effects on Bone Turnover and Physical Performance”
Role: Principal Investigator

(Not funded)

1. National Institutes of Health (NIH)
1 RO1
(Principal Investigator with Mary Jane De Souza, Univ. Toronto)
7/01/02 - 6/30/07 15%
PHS/NICHD
$2,433,044
"Clinical Sequelae Exercise-Induced Hypoestrogenism"

2. National Institutes of Health (NIH)
Co-Investigator (PI is Terryl Hartman, PSU)
4/01-3/31/08 20%
$2,085,448
“Female Cancer Survivors Weight and Activity Intervention”

3. Dairy Farmers of Canada
1/1/05-12/31/06 10%
Co-Principal Investigator (PI is Mary Jane De Souza, University of Toronto)

“Can Increased Dietary Calcium Improve Recovery of Bone Health in Exercising Women Undergoing a Lifestyle Intervention for Severe Menstrual Disturbances?”

4. National Institutes of Health (NIH)
4/1/05-3/31/09 15%
Co-Investigator (PI is Terryl Hartmen, Dept. Nutrition, Penn State) $856,295

“Antioxidant Status, Diet and Early Pregnancy”

5. National Institutes of Health (NIH)
4/1/05-3/31/09 28.8%
Co-Principal Investigator (PI is Susan Bloomfield, Texas A&M)
$2,000,000

“Impact of Food Restriction on Bone Health in Active Females

RESEARCH REPORTS TO SPONSORS

Williams NI, Christante DH, Swavely K, Laufer E, McBrearty C, and Clark KC. Penn State University JogMate Study: Product Effectiveness and Consumer Appeal
Submitted to Pharmavite Corp, Seattle, WA, July 15, 1999

Annual Reports to NIH for

Annual Progress Reports to DAMD for

Annual Progress Reports to DAMD for

PUBLISHED MANUSCRIPTS

MANUSCRIPTS IN REVIEW

1. Leidy HJ, Williams NI. Meal energy content affects the meal-related pattern of ghrelin but has no affect on the nocturnal pattern in normal weight, healthy young women (In Review, Hormone and Metabolic Research)

2. De Souza MJ, Hontscharuk R, Omsted M, Burke, T, Kerr, G, and Williams NI. Drive for thinness is a strong predictor of energy deficiency in exercising women (In Review, Physiology and Behavior)

MANUSCRIPTS IN PROGRESS

Williams, N.I., Berga S.L., and Cameron, J.L. Synergistic effects of multiple stressors on menstrual cyclicity in cynomolgus monkeys. (To be submitted to Journal of Clinical Investigation)

Westerlind KC, Bell J, Williams, NI. Effect of Exercise Training on Estrogen Metabolism in Premenopausal Women. (To be submitted to Cancer Epidemiology and Biomarker Prevention)

ABSTRACTS

N.I. Williams, K.A. Greaves, G.R. Brodowicz, T.E. Kirby, and D.R. Lamb, FASCM. Cardiovascular effects of endurance training during submaximal exercise in elders. Exercise Physiology Laboratory, The Ohio State University, Columbus, Ohio, 43210. (research abstract presented at the Midwest American College of Sports Medicine Winter Meeting, Boyne Mountain, Michigan, February, 1986)

N.I. Williams, K.A. Greaves, and D.R. Lamb, FACSM. “Cardiovascular function in lean and obese children during acute submaximal exercise”. Exercise Physiology Laboratory, The Ohio State University, Columbus, Ohio, 43210. (research abstract presented at the Midwest American College of Sports Medicine Winter Meeting, Boyne Mountain, Michigan, February, 1987)

Miles MP, Mackinnon LT, Williams NI, Bush JA, Marx JO, Mastro AM, Kraemer WJ. NK cell activity and LFA-2 expression after running (presented at the American College of Sports Medicine Annual Meeting, Seattle, WA June 3-6, 1999)

Mackinnon LT, Miles MP, Grove DS, Williams NI, Bush JA, Marx JO, Kraemer WJ. Effects of prolonged exercise on expression of perforin mRNA in peripheral blood natural killer (NK) cells (presented at Sports Medicine Australia, 1999)

Flecker KA, Williams NI. Body Image, disordered eating and menstrual status in collegiate athletes. (presented at the National Conference for Undergraduate Research (NCUR), University of Montana, Missoula, Montana, April 27-29, 2000)

Senior MK, Williams NI, McConnell HJ, Clark KC. Screening for subclinical eating disorders in female athletes: validation of an indirect interview technique. (Presented at the 24th Annual meeting of the Mid-Atlantic Regional Chapter of the American College of Sports Medicine, Bushkill, PA, November 2-3, 2001).

De Souza, M.J., E. O'Donnell, R. Hontscharuk, T. Burke, J. Goodman, **Williams, NI.**

Kim C. Westerlind, Jennifer Bell, and Nancy I. Williams, Estrogen Metabolism is Altered with Exercise Training (Submitted for presentation at 2006 American College of Sports Medicine Meeting, Denver, Colorado, 2006)

Brandy Weller, Ann Albert, Matthew Johnson, and Nancy I. Williams Susceptibility to energy-related menstrual disturbances is reduced with increased age. (Submitted for presentation at 2006 American College of Sports Medicine Meeting, Denver, Colorado, 2006)

INVITED PRESENTATIONS

"Cardiovascular/Medical Applications for Aerobic Exercise", Aerobics and Fitness Association of America (AFAA), National Primary Certification Workshop, Boston, Massachusetts, October 3, 1987.

"Principles and Benefits of Exercise Training for Seniors", Annual Health Program, Leo Yasenoff Jewish Community Center, Columbus, Ohio, June 6, 1987.

"Exercise and Female Hormones: What are the Health Risks and Benefits?" American College of Sports Medicine Health Fitness Summit, April 14-18, 1999, New Orleans, LA

"Women's Health and Fitness Issues" Panel Discussion at American College of Sports Medicine Health Fitness Summit, April 14-18, 1999, New Orleans, LA

"Modulation of Reproductive Runction by Metabolic Cues", invited speaker for Bucknell University Biology Department Seminar Series, March 3, 2000. Bucknell University, Lewisburg, PA

"Career Development for Women" Women and Sciences and Engineering (WISE) program for potential college students from surrounding area and other states, June 19, 2000, Penn State University

"Physiological Connections Between Factors of the Female Athlete Triad" *Penn State Athletic Training Conference*, April 12, 2002, Penn State University, University Park, PA

"Subclinical Eating Disorders and Menstrual Cycle Irregularities in Female Athletes" *Eating Disorders on Campus, The Institutional Response*, June 7, 2002, Eighth Annual Conference, Penn Stater Conference Center Hotel, Penn State University, University Park, PA

“Exercise-associated menstrual disturbances: Physiological mechanisms and role of caloric restriction”, November 24, 2003, *Department of Health and Kinesiology, Texas A and M University*, College Station, TX

“Exercise-associated menstrual disturbances: Physiological mechanisms and role of caloric restriction”, November 25, 2003, *Department of Nutrition, Texas A and M University*, College Station, TX

“Exercise-associated menstrual disturbances: Physiological mechanisms and role of caloric restriction”, December 4, 2003, *Department of Endocrinology, Endocrine Research Conference*, Hershey Medical Center, Penn State University, Hershey, PA

“Exercise-associated menstrual disturbances: Phyiological mechanisms and clinical sequelae”, March 2, 2004, Department of Exercise Science, University of Massachusetts, Amherst, MA

“Exercise-associated menstrual disturbances: Physiological mechanisms and clinical sequelae”, April 30, 2004, Department of Physical Therapy, Faculty of Medicine, University of Toronto, Toronto, Ontario)

“Estrogen and Cardiovascular Disease”. University of Toronto, Faculty of Physical Education and Health, November 21, 2005.
“The effects of caloric restriction on the menstrual cycle”. Keynote Speaker, Mid-Atlantic American College of Sports Medicine Meeting, Harrisburg, PA November, 2005

SYMPOSIUM PRESENTATIONS

WORKSHOPS ATTENDED

The X and Y: Current Topics in Gender – Specific Medicine, April 6-7, 2001
Harvard Medical School, Department of Continuing Education, Boston, Massachusetts

SERVICE

PROFESSIONAL SERVICE

COMMITTEES

American College of Sports Medicine Student Affairs Committee,
Student Representative for New England Chapter, 1988-1990

American College of Sports Medicine Executive Committee,
Member at Large, New England Chapter, 1990-1991

American College of Sports Medicine, Strategic Health Initiative Committee: Women, Sports and Physical Activity, June 2000-2002

American College of Sports Medicine, Credentials Committee, Spring 2003-present

American College of Sports Medicine, Position Stand Review Committee, “Female Athlete Triad,” Spring 2002-present

REVIEWER
Journals

- Journal of Applied Physiology, ACSM Health Fitness Journal
- Medicine, Science, Sports and Exercise, Journal Clinical Endocrinology and Metabolism

Grants

Editorial Board

- American College of Sports Medicine Health and Fitness Journal (2002-present)

Fellow

- American College of Sports Medicine, June, 1998

Participant

- "Biopsychology of Infertility Workshop"
 - Sponsored by National Institutes of Health (National Institute of Child Health and Human Development); September 21-22, 1995; NIH Campus, Bethesda, Maryland

UNIVERSITY SERVICE

Advisory Board: The Tremin Trust Research Program on Women's Health, Penn State University, University Park, PA, 2001-present

COLLEGE SERVICE

Presenter: College of Health and Human Development, Development Council Retreat. October 15-17, 20004, Westin Grand Hotel, Washington, DC.

University Committees

- Faculty Senate (Spring 2002)-Senate Committee on Intra-University Relations

College Committees and Service (College of Health and Human Development)

- College of Health and Human Development Seed Grant Review Committee (Fall 00)
- Faculty Council (Fall 00- Spring 2001)
- Presentation to Alumni Council at Annual Alumni Council Retreat, Washington DC, October, 2004
- Women’s Leadership Initiative- Fall 05

Intercollege Program Committee (Physiology)

- Candidacy Exam Committee (Intercollege Program in Physiology) (Spring 01-present)

Department Committees (Department of Kinesiology)

- Curriculum Committee
 - Fall, 1998 to Spring 2002
- Candidacy Committee
 - Fall, 1998 to 2002
- Search Committee
 - Fall, 1998
 - (Noll Laboratory Exercise Physiology positions)
- Search Committee
 - Spring 99
 - (General Education Fitness Position)
- Search Committee
 - Fall 01-Spring 02
 - (Department of Kinesiology Chair)
Curriculum Revisions (ad hoc) Spring 01-Spring 02
Advisory Committee for Fitness Assessment Program Spring 02-present
Search Committee
 (Director, Noll Laboratory) Fall 02-Spring 04)
Advisory Committee Fall 02-present
Search Committee
 (Pedagogy Positions) Spring 2003-present
Search Committee
 (Noll Endowed Professorship) Summer 04-present
Promotion and Tenure Committee Fall 04-Spring 05
Promotion and Tenure Committee (Chair) Fall 05-present
Search Committee (Chair) December, 2005
 (Kinesiology Assistant Professor in Exercise Psychology)

University Presentations

Fall 1997 Kinesiology Proseminar “Professional Development”
Fall 1998 Kinesiology Proseminar “Professional Development”
Fall 1997 Nutrition Ingestive Behavior Journal Club “Reproductive disturbances and low energy availability: aberrant eating habits”
Fall 1997 Kinesiology Colloquium “Low energy availability and the female athlete: Clinical and Hormonal Effects”
Fall 1997 Population Research Institute “Modulation of Reproductive Function by Metabolic Cues”
Spring 1998 Nutrition Dept. Colloquium “Modulation of Reproductive Function by Metabolic Cues”
Spring 1998 Biobehavioral Health Dept. Colloquium “Reproductive disturbances caused by low energy availability: Interaction with psychological stressors”

OTHER SERVICE

News article, Kinesiology Today, Spring 1999 issue, “Study links Body Image to Athletes’ Fertility”

Interview/article, The Penn Stater, September/October 1999 issue “Research and Discovery Section” by Nick McCarthy

Interview/article, The Penn Stater, 2000 issue of undergraduate research, “Research and Discovery”

Interview/article, Intercom, July, 1999. featured in “Focus on Research” article, by Barbara Hale.

2000 Undergraduate Exhibition
Served as Judge for the 2000 Undergraduate Exhibition in April, 2000.