Award Number: DAMD17-01-1-0110

TITLE: Molecular Determinants of Radio Resistance in Prostate Cancer

PRINCIPAL INVESTIGATOR: Robert G. Bristow, M.D., Ph.D.
Lathar Lilge, Ph.D.
Jeremy Squire, Ph.D.
Michael Milosevic, M.D.
Padraig Warde

CONTRACTING ORGANIZATION: University Health Network
Toronto, Ontario M5G 2C4
Canada

REPORT DATE: August 2005

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Molecular Determinants of Radio Resistance in Prostate Cancer

Abstract

We are studying the radiation response of prostate tissues in relation to the sensing and repair of DNA breaks. Specific aims relate to determining the expression and interaction of DNA repair proteins in vitro using immunofluorescent confocal microscopy and biochemical DNA rejoining assays under both hypoxic and oxic conditions. An in vivo program of prostate xenograft radioresponse and patient biopsy studies will determine the level of DNA repair *in situ* using immunohistochemistry and immunofluorescent markers. Our studies show that DNA repair protein expression is abnormal in malignant versus normal prostate epithelial cultures, and that particularly the Rad51 protein is defective in localizing to the nucleus following DNA damage. We have accrued 13 patients onto a pre-operative radiotherapy trial and post-irradiation immunohistochemistry supports an induction of p53-pathway signaling following 25Gy in 5 fractions. Future experiments will be designed to determine whether DNA protein focal interactions using 2-photon microscopy can predict the radioresponse of prostate xenografts and human tumors, in vivo. Our studies support the use of novel molecular based therapies that target DNA repair for prostate cancer therapy.

Subject Terms

prostate cancer, DNA repair, xenografts, cell death
Table of Contents

- Cover... 1
- SF 298.. 2
- Table of Contents... 3
- Introduction.. 4
- Body.. 4
- Key Research Accomplishments.. 7
- Reportable Outcomes... 8
- Conclusions... 13
- References...
- Appendices... 15
Introduction:

The funding for the study entitled “Molecular mechanisms of radioresistance in prostate cancer”, is now complete. This study investigated the role of DNA break repair in the radiation response of normal and malignant prostate epithelium.

The overall hypothesis of this project was that the radiation response of normal and cancerous prostate tissues can be correlated to the appropriate sensing and repair of DNA breaks by repair complexes following exposure to ionizing radiation.

Specific aims relate to determining the interaction of DNA repair proteins in vitro using immunoflorescent confocal microscopy and biochemical DNA rejoining assays under both hypoxic and oxic conditions (given in vivo tumour cell populations).

An in vivo program of prostate xenograft radioresponse is also being initiated to determine the level of DNA repair in situ using immunohistochemistry and immunoflorescent markers. These initial studies will determine the heterogeneity in fractionated response in a series of prostate xenografts as relates to DNA repair capacity, which may be translated to novel markers for radiation response in patients who receive prostate radiation therapy.

The relevance of this project is that this in vitro to in vivo pre-clinical approach may derive clinical biomarkers of radiation response which can predict which patients will most benefit from radiation therapy for prostate cancer. The project will also determine the molecular mechanisms behind radiation response, in general, in prostate epithelial tissues.

Body:

Task 1: Radiobiological and DNA-dsb Repair Studies in Normal and Malignant Prostate Epithelium

Initially, the first task was to primarily complete in vitro studies on PC-3; LNCaP, DU145 and normal prostate (PRSE and PREC) cells relating to senescent populations which was quantitated and found to be dose responsive and correlated to their clonogenic survival (using a novel fluorescent flow cytometric proliferation assay). This work has been published in Prostate Cancer and Prostate Diseases (see Appendix 1). THIS TASK WAS FULLY COMPLETED.

Task one projects were also completed for all 5 cell lines in determining the ability for the cells to repair double strand breaks, single strand breaks and DNA base damage (and oxidative damage) following ionizing radiation using the comet assay. We observed a series of novel observations which currently suggests that malignant prostate cancer cells have a DNA repair defect in the repair of DNA-dsbs, DNA-ssbs and DNA-base damage and oxidative damage in relation to the two normal prostate epithelial and stromal cell cultures. Primary prostatic cultures were initiated as prostatectomy specimen cultures available through Coriell Laboratories. We were successful in culturing both the prostate stromal and the prostate epithelial cell cultures in vitro to be utilized in a radiobiology and DNA repair experiments. DNA double stand break repair gene and protein expression was determined using RNA protection
analyses and Western Blotting techniques. DNA repair studies were completed using the Comet Assay and chromosomal repair assays.

The results showed that despite an increased expression of DNA-dsb repair complexes in malignant prostate cells, the repair of DNA-dsbs was compromised. This suggested that prostate cancer progression may be related to altered DNA repair and increased genetic instability. THIS TASK WAS FULLY COMPLETED. This work was published in Cancer Research (see Appendix II).

We have therefore completed all endpoints for Task 1.

Task 2: Complete in vivo radiobiologic studies on human prostate xenografts (months 12-24).

We have determined that there are cell cycle phase specific changes in Rad51 or H2AX foci formation in relation to DNA-dsb rejoining, by irradiating cells under both asynchronous and G0-G1 synchronized conditions. Counterstaining with PCNA and CENP-F has determined that foci are specifically forming in a cell-cycle phase specific manner in malignant prostate cells.

Single dose (2 and 10Gy) and fractionated experiments (5 x 2 Gy) have been completed for the PC-3, 22RV1 and DU-145 xenografts. We have now hired a new technician (Ms. Helen Zhao) to continue to develop the prostate xenograft program and she has developed a new 22RV1 system in the lab. This moderately-differentiated prostate cancer xenograft maintains androgen sensitivity and WTp53 function, such that it makes a useful addition to our program when investigating p53-related responses.

All current xenografts were removed and stained for immunohistochemical markers pertaining to p53, apoptosis related genes (BAX, BCL2 and TUNEL assay; as well as survivin) and DNA repair markers (RAD50, BRCA1, BRCA2, RAD50, DNAPKcs, KU70, KU80, ATM, P21, RB, MYC and RPA). The xenograft histology was also stained for proliferation markers such as MIB-1, KI-67 and PCNA.

Our results continue to suggest that RAD51, and H2AX, but not Ku70, increase in expression both in terms of the nuclear intensity of staining as well as a number of cells positively staining for protein following 10 Gy single dose or 5 x 2 Gy fractioned irradiation in vivo at 1-24 hours. The RAD51 data is consistent with cells moving into the G2 phase of the cell cycle during an irradiation-induced checkpoint. This has not been reported in the literature before. A manuscript is being prepared for these xenograft studies.

We have continued to collaborate with Dr. Peter Glazer’s laboratory at Yale University to show that RAD51 expression is decreased under hypoxia conditions in vitro. We have confirmed these findings in vivo as RAD51 staining in hypoxic areas (as determined with EF-5 and CA-IX) is decreased, suggesting an inverse relationship between HR-related DNA repair proteins and hypoxia. This may explain in part hypoxia-mediated genetic instability.

We further investigated the expression of other DNA-dsb repair genes in terms of the homologous (HR) and non-homologous (NHEJ) recombination pathways of DNA-dsb repair and showed that other RAD51-related protein members of the HR pathway were also downregulated by hypoxia. The expression of homologous recombination (HR) and non-homologous recombination (NHEJ) genes following gas hypoxia (0.5%) or exposure to HIF1 alpha-inducing agent, CoCl2 (100uM), was determined
for normal diploid fibroblasts (GM05757) and the pre-malignant and malignant prostate cell lines, BPH-1, 22RV-1, DU145 and PC3. RNA and protein levels were determined using RT-PCR and Western blotting. Additionally, p53 genotype and function, the level of hypoxia-induced apoptosis, and cell cycle distribution, were determined to correlate to changes in DNA-dsb gene expression. Induction of hypoxia was confirmed using HIF1-alpha and VEGF expression in gas- and CoCl2-treated cultures. Hypoxia (48-72 hours of 0.2% O2) decreased RNA expression of a number of HR-related genes (e.g. Rad51, Rad52, Rad54, BRCA1, BRCA2) in both normal and malignant cultures. Similar decreases in RNA pertaining to the NHEJ-related genes (e.g. Ku70, DNA-PKcs, DNA Ligase IV, Xrcc4) were observed. In selected cases, hypoxia-mediated decreases in RNA expression led to decreased DNA-dsb protein expression. CoCl2-treated cultures did not show decreased DNA-dsb protein expression. The ability of hypoxia to down-regulate Rad51 and other HR-associated genes under hypoxia was not correlated to c-Abl or c-Myc gene expression, p53 genotype or function, propensity for hypoxia-mediated apoptosis, or specific changes in cell cycle distribution.

Hypoxia can therefore down-regulate expression of DNA-dsb repair genes in both normal and cancer cells. If associated with a functional decrease in DNA-dsb repair, this observation could provide a potential basis for the observed genetic instability within tumor cells exposed to hypoxia. THIS SUB-TASK IS FULLY COMPLETED. Two manuscripts have been published in Molecular ad Cellular Biology and Radiotherapy and Oncology from this sub-task. These are appended as Appendices III and IV, respectively.

Despite an initial contamination of our animals from our supplier with Pseudomonas Aeruginos (when our entire colony of mice (greater than 70 animals) bearing Rotterdam-xenografts had to be sacrificed before we could complete in vivo fractionation experiments in 2003-2004); we have hired a new technician (Helen Zhao; October 1, 2004) who will be re-growing the prostate xenograft facility to encompass fractionated and hypoxia experiments in vivo. These studies have shown that hypoxia exists within non-irradiated and irradiated xenografts using hypoxic markers EF5, CA-IX, HIF-1alpha. These results support the findings of induction fo these proteins by hypoxia in vitro as outlined in Appendix IV. THIS SUB-TASK IS COMPLETE and a manuscript is in preparation. Data pertaining to this project are shown in Figures 1-3 in Appendix V.

Task 3: (Months 18-36) Expression of DNA Repair Proteins in Clinical Specimens

We reviewed the need for biomarkers for prostate radiotherapy in a manuscript that was published in CANCER and is appended as Appendix VI.

We therefore have completed a pre-operative radiotherapy study consisting of 12 patients who had paired pre-operative and post-operative biopsies available for the study of radiotherapy-induced gene expression. We have sequenced all patients for their p53 gene status for all 11 exons and all patients are wild-type for p53. Immunohistochemistry for p53, p21, TUNNEL, Bax, Bcl-2, BRCA1/2/Rad51/DNA-PKcs/KU70/KU80 and PCNA is completed. We have quantitated the staining pre and post-radiotherapy using the Image Pro Plus analysis program. During radiotherapy, one patient complained of mild dysuria (RTOG GU-1) and another complained of diarrhea (RTOG GI-2). Of the 15 patients entered on trial, 2 patients were lymph-node positive and their prostatectomy was aborted. Of the remaining 13 patients, median blood loss was 1000 cc. and only one patient had signs of intraoperative inflammation. None of the patients had post-operative infections or bleeding.
Gleason scores ranged from 6 to 10 in this cohort. Survivin was elevated in malignant disease prior to radiotherapy and did not alter its expression post-radiotherapy. The majority of irradiated prostate tumor tissues showed increased expression of p-ATM, p-p53 and p21WAF. The mean expression (ME) of P-ATM increased post-RT ($p=0.293$). p21WAF was negative pre-RT and positive in 7 post-RT cases. The ME of p21 increased from 0 to 50% ($p=0.001$). P53 expression increased in 7 cases post-RT. The ME of p53 increased from 41.1 to 51.8% ($p=0.623$). Ser15 p53 expression decreased in 6 cases post-RT. The ME of ser15 p53 decreased from 50.8 to 10% ($p=0.025$). Cell proliferation (Ki-67) was reduced with no evidence of apoptosis (TUNEL). MIBI expression decreased in 11 cases post-RT. The ME of MIBI decreased from 11.7 to 3.8% ($p=0.001$). ISEL decreased in 8 cases post-RT from a ME of 5.7 to 3.3% ($p=0.334$).

This is the first study to assess biomarkers of ATM and p53 radio-response in prostate cancer prior to and immediately following RT. Our observations of increased p21, decreased ser15 p53, and a decrease in MIBI expression are consistent with decreased prostate cancer cell proliferation via p21-mediated cell cycle arrest at the G1/S checkpoint. Our results do not support apoptosis as a dominant mode of cell kill. Clinically, intra-operative morbidity is low following short-course pre-operative conformal radiotherapy. A Phase II trial is planned to determine late toxicity and PSA responses. Additionally, a Phase I trial of intra-radiotherapy biopsies to measure expression of genes during radiotherapy relative to radiotherapy outcome has been approved by our REB.

THIS TASK IS COMPLETE and a manuscript is in preparation. Data relating to this project are shown in Figures 4-7 in Appendix V. We continue to optimize utilize 2-photon microscopy for better resolution of the innate foci with indirect immunofluorescence.

We also introduced a new tissue microarray to our program in the last 6 months of funding to track the expression of DNA-dsb repair proteins across normal, pre-malignant and malignant prostate epithelium to support our in vitro studies published as Appendix II. Preliminary data showing increased RAD51 expression in malignant versus normal or pre-malignant tissues was observed using this novel array which consists of tissues derived from 100 patients with either BPH, PIN or Gleason scores 6-10. Our data therefore do support the concept that aberrant DNA-dsb repair gene expression correlates with more aggressive prostate cancers. We therefore wrote a recent review (see Appendix VII) that explores the use of this information in a clinical setting with molecular targeted drugs.

KEY RESEARCH ACCOMPLISHMENTS FOR ENTIRE PERIOD OF STUDY:

1. The dominant mode of cell kill during prostate cancer radiotherapy is mitotic catastrophe and terminal growth arrest and NOT apoptosis during irradiation of normal and malignant prostate epithelial cultures in vitro.

2. DNA repair complexes can be visualized using confocal microscopy and the appearance and disappearance of these foci correlate to the kinetics of DNA biochemical rejoining assays (ie. Comet assay).

3. Malignant prostate epithelium may have an effect has an inherent DNA defect in terms of DNA double strand break repair, single strand break repair and base damage repair. This is correlated to
increased expression of proteins involved in each of these pathways (APE/REF1, RAD51, BRCA2, PARP, etc.). In the case of Rad51, altered expression is discordant from altered function and we believe that there is an intracellular trafficking defect in Rad51 related to post-translational modification.

4. Increased expression of DNA-dsb repair proteins in tissue microarrays (TMA) may be a novel biomarker of prostate cancer progression.

5. Completed accrual to the phase I pilot study of preoperative radiotherapy. Immunohistochemical markers for DNA repair and apoptosis related proteins has been completed. ATM/p53 activation occurs in vivo with fractionated treatments. Little evidence for apoptosis following radiotherapy in vivo during fractionated radiotherapy.

Reportable Outcomes for 2001-2005:

Manuscripts Directly Relating or Associated With Research In This Grant:

Book Chapters:

8. **Bristow R.** Targeting DNA-dsb Repair To Improve Radiotherapy Outcome. 7th Proceedings of International Conference on Dose, Time and Fractionation in Radiation Oncology Meeting, *In press* 2005. *(Principal Author)*

Manuscripts in preparation

1. Coleman A, Smith K, Trachtenberg J, Ozlich, Narod S and **Bristow RG**. BRCA2 mutations, DNA Repair and Prostate Cancer: Implications for Local and Systemic Management (Review). *(Senior Responsible Author)*

Published Abstracts and Presentations:

2. Bromfield, G P, **Bristow, R G.** “Relative Importance of Non-Apoptotic and Apoptotic Cell Death Pathways in Irradiated Prostate Cells”. Presented at the 15th Meeting of the Canadian Association of Radiation Oncologists, Quebec City. Radiotherapy and Oncology, 23(Suppl): 2001. *(Senior Responsible Author)*

18. **Coleman A, Jonkman J, Bristow R.** “DNA-dsb Repair In Situ In Normal and Malignant Cells”. Presented at the 18th Meeting of the Canadian Association of Radiation Oncologists (CARO), Halifax. Radiotherapy and Oncology, 72 (Suppl 1): S222; 2004. (Senior Responsible Author)

19. **Faulhaber O, Blin N, Bristow R.** “HDAC Inhibition and Demethylation as a Means for Radiosensitization in Prostate Cancer”. Presented at the 18th Meeting of the Canadian Association of Radiation Oncologists (CARO), Halifax. Radiotherapy and Oncology, 72 (Suppl 1): S204; 2004. (Senior Responsible Author)

Other reportable outcomes:

There is continued development of the tissue bank relating to irradiated prostate specimens as it relates to the phase I and phase III clinical trials; the latter has accumulated > 200 biopsies of patients having undergone radical radiotherapy at PMH-UHN. Our REBs has been re-approved for all human studies. Funding continues from a number of grants that were leveraged by initial monies from the US Army DOD Prostate Cancer Research Program:

(1) A Canadian Foundation of Innovation Award worth more than $ 300,000 in infrastructure relating to DNA repair studies
(2) An Ontario Cancer Research Network grant worth more than $ 300,000 for operating costs relating to novel DNA repair inhibitors to be used with radiotherapy in prostate cancer;
(3) Canadian Cancer Society Research Scientist Award to the PI (Bristow) worth more than $ 500,000 over 6 years is salary support;
(4) a new NCIC Operating grant on hypoxia and DNA repair worth > $ 500,000 over 5 years to PI(Bristow).

Conclusions:

We have gained excellent momentum regarding the importance of DNA-dsb repair as an important endpoint in the radiation response of prostate cancer and potentially, prostate carcinogenesis. A number
of manuscripts have been accepted or are in press. We have also leveraged the original US Army grant to more than 2.0 million Canadian dollars in external funding.

Our studies suggest that there are defects in DNA repair relating to intracellular trafficking or chaperoning of DNA repair factors to the nucleus. This is a novel concept and could give rise to new treatments targeting nuclear import and export of proteins in prostate cancer. Other DNA repair pathways amenable to study and targeting are the DNA-ddb and base excision repair (BER) pathways which also are abnormal in prostate cancer cells. Our data with human biopsies pre and post-clinical radiotherapy also supports the quantification of DNA damage signaling pathways and repair factors as potential determinants of radioresponse.
Hypoxia down-regulates DNA double strand break repair gene expression in prostate cancer cells

Alice X. Meng, Farid Jalali, Andrew Cuddihy, Norman Chan, Ranjit S. Bindra, Peter M. Glazer, Robert G. Bristow

Abstract

Background and purpose: Intratumoral hypoxia has been correlated with poor clinical outcome in prostate cancer. Prostate cancer cells can be genetically unstable and have altered DNA repair. We, therefore, hypothesized that the expression of DNA double-strand break (DNA-dsb) repair genes in normal and malignant prostate cultures can be altered under hypoxic conditions.

Methods and materials: The expression of homologous recombination (HR) and non-homologous recombination (NHEJ) genes following gas hypoxia (0.2%) or exposure to HIF1α-inducing agent, CoCl_{2} (100 μM), was determined for normal diploid fibroblasts (GM05757) and the pre-malignant and malignant prostate cell lines, BPH-1, 22RV-1, DU145 and PC3. RNA and protein levels were determined using RT-PCR and Western blotting. Additionally, p53 genotype and function, the level of hypoxia-induced apoptosis, and cell cycle distribution, were determined to correlate to changes in DNA-dsb gene expression.

Results: Induction of hypoxia was confirmed using HIF1α and VEGF expression in gas- and CoCl_{2}-treated cultures. Hypoxia (48-72 h of 0.2% O_{2}) decreased RNA expression of a number of HR-related genes (e.g. Rad51, Rad52, Rad54, BRCA1, BRCA2) in both normal and malignant cultures. Similar decreases in RNA pertaining to the NHEJ-related genes (e.g. Ku70, DNA-PKcs, DNA Ligase IV, Xrcc4) were observed. In selected cases, hypoxia-mediated decreases in RNA expression led to decreased DNA-dsb protein expression. CoCl_{2}-treated cultures did not show decreased DNA-dsb protein expression. The ability of hypoxia to down-regulate Rad51 and other HR-associated genes under hypoxia was not correlated to c-Abl or c-Myc gene expression, p53 genotype or function, propensity for hypoxia-mediated apoptosis, or specific changes in cell cycle distribution.

Conclusions: Hypoxia can down-regulate expression of DNA-dsb repair genes in both normal and cancer cells. If associated with a functional decrease in DNA-dsb repair, this observation could provide a potential basis for the observed genetic instability within tumor cells exposed to hypoxia.

Keywords: Hypoxia; DNA repair; Rad51; Prostate cancer; Genetic instability

Despite improvements in physical targeting techniques, up to 40% of prostate cancer patients may fail radical radiotherapy [37]. This is likely due to genetic or micro-environmental factors that increase radioresistance or systemic spread [7]. Intratumoral hypoxia is an adverse clinical prognostic factor for prostate and other cancers and is associated with decreased disease-free survival. The hypoxic microenvironment may select for aggressive tumor cell variants [12,46,36,27], as hypoxic prostate cancer cells acquire increased cell proliferation, decreased sensitivity to apoptosis and increased angiogenesis [17,22]. Both experimental and spontaneous metastatic capacity can be increased when tumor cells are exposed to hypoxia or hypoxia followed by re-oxygenation [11].

Metastatic cells acquire autonomy from growth factors and normal apoptotic controls. Hypoxia-induced metastasis is associated with gene amplification, point mutation, hypermutagenesis and induction of DNA strand breaks [4]. Indeed, anoxia can induce a DNA replication arrest activating the ATR kinase, whereas re-oxygenation can lead to the formation of DNA breaks activating the ATM kinase [25]. These non-repaired DNA breaks could activate oncogenes or...
inactivate tumor suppressor genes, giving rise to a mutator phenotype and the selection of tumor cell variants with increased growth potential [6].

The non-repair or mis-repair of DNA double-strand breaks (DNA-dsbs) is one of the most highly-carcinogenic processes leading to chromosomal deletions, translocations and rearrangements in the affected cell [3,4,24,39]. Human DNA-dsbs are repaired through two different pathways that can interact with each other across cell cycle transitions to complete DNA-dsb repair. These include homologous recombination (HR) and non-homologous recombination (i.e., end-joining or NHEJ) [20,41,49]. HR is an error-free pathway operational in S and G2 phases and involves RAD51, its paralogs RAD51B/C/D, XRCC2/3, and p53, RPA, BRCAS2, BLM and MUS81 [3]. In contrast, NHEJ can occur without the use of homologous sequences and can be precise or imprecise, depending on the structure of the DNA end [48]. NHEJ can be utilized during all phases of the cell cycle and involves KU70/80, DNA-PKcs, Artemis, XRCC4, DNA Ligase IV and more recently, ATM, p53 and MDM2 [14,38,48]. Initial DNA-dsb sensing and nucleotide processing towards HR or NHEJ repair has been associated with the MRN (MRE11-RAD50-NBS1) complex [48]. Importantly, inhibition of HR or NHEJ activity has been linked to increased carcinogenesis and genetic instability [14,48]. However, little is known about the molecular expression and function of DNA-dsb repair proteins under conditions of hypoxia.

We have previously reported that hypoxia specifically down-regulates the expression and function of RAD51 protein, independent of cell cycle distribution and the expression of hypoxia-inducible factor, HIF1α [5]. In other work, we have suggested that DNA-dsb repair may be defective in prostate cancer cell lines when compared to normal prostate epithelium, despite malignant cells expressing high levels of DNA-dsb repair proteins [20]. In this study, we compare the expression of a number of HR- and NHEJ-related genes following gas hypoxia or CoCl₂ treatments in normal diploid fibroblasts and four prostate cancer cell lines. We also measure that many of the DNA-dsb-associated genes are down-regulated specifically by hypoxia and that this is not correlated with p53 status, propensity for hypoxia-mediated apoptosis or S-phase cell cycle arrests. Our findings support the concept that hypoxia may alter DNA repair to promote genetic instability during prostate carcinogenesis and tumor progression.

Materials and methods
Prostate cell cultures and hypoxic or CoCl₂ treatments

The human malignant prostate cell lines DU145 and PC3 were purchased from American Type Culture Collection (ATCC; Manassas, VA) and the 22Rv-1 cell line was a kind gift of Dr Yoni Pinhas (PMH). These cell lines were supplemented with 10% fetal calf serum and 1% l-glutamine in α-Modified Eagles Medium (MEM), Ham’s F12K and RPMI1640, respectively. The normal diploid fibroblast strain GM05757 was purchased from Coriell Cell Repository (Camden, NJ). The SV-40-immortalized, benign prostatic hyperplasia cell line, BPH-1, was a gift from Dr Simon Hayward (Vanderbilt University Medical Center). Both GM05757 and BPH-1 cells grow in α-Modified Eagles Medium with 15% fetal calf serum. Approximate doubling times for cell cultures under these conditions were as follows: DU-145 and BPH-1, 18 h; PC-3, 24 h; GM05757, 18 h; 22Rv-1, 40 h [20].

For all experiments, 1-3 x 10⁶ cells were plated in 10-cm dishes, such that cells were logarithmically growing at all time points tested. Cells were incubated in 5% CO₂ and air at 37°C. To render cells low-oxygen hypoxic, dishes were placed in a modular incubator chamber (Billups-Rothenberg, Del Mar, CA). They were then flushed with 0.2% O₂ (hypoxia) or 21% O₂ (oxia) with 5% CO₂ and balanced with N₂ as previously described [52]. To test for HIF1α-associated gene and protein responses, cells were treated with 100 μM CoCl₂ (Sigma-Aldrich, Inc, St Louis, MO) for 3-72 h.

p53 genomic DNA (gDNA) sequencing

Genomic DNA was isolated from the harvested cells using DNeasy™ Tissue Kit (QIAGEN Sciences, Inc. Germantown, MA). In order to have a high fidelity amplification of p53 gene, gDNA were amplified by PCR (Expand High Fidelity PCR System, Roche Applied Science, Indianapolis, IN) for exons 2-4, 5-9 and 10-11. Target PCR products were analyzed and extracted from a 1% agarose gel using a QIAquick Gel Purification Kit (QIAGEN Sciences, Inc. Germany). The samples were then treated with RNase and digested with DpnI restriction enzyme. DNA was purified using QIAquick Spin PCR Purification Kit (QIAGEN Sciences, Inc. Herlev, Denmark) and sequenced using BigDye Terminator Cycle Sequencing Ready Reaction Kit (Life Technologies, Inc., Carlsbad, CA) according to the manufacturer’s instructions. Sequencing reactions were analyzed on an ABI 310 and ABI 3730 DNA sequencer housed in the UHN DNA Sequencing Facility verified the sequences of the p53 PCR fragments [20].

Cell cycle and apoptosis assays

The level of cellular apoptosis was scored as previously described using a nuclear morphology endpoint [8,9]. Both floating and adherent cells from normoxic or hypoxic cultures were collected following treatment and stained with 10 μM Hoechst 33342 dye in 4% formalin-PBS for 30 min. Stained cells were visualized under a fluorescence microscope for evidence of distinct nuclear fragmentation and apoptotic bodies. The number of apoptotic cells per one hundred cells counted was quantified as the apoptotic index for each cell line. For each cell line, at least 2 independent experiments were performed.

The cell cycle distribution of cells grown under normoxia or hypoxia was quantitated using flow cytometry as previously described [8,9]. Briefly, treated cells were collected, washed and fixed in 70% ethanol. For flow cytometric analysis of cell cycle distribution, cells were washed with PBS without Mg²⁺-Ca²⁺ prior to staining with 50 μM propidium iodide (Sigma-Aldrich, Inc., St Louis, MO) and 50 μg/ml Dnase-free RNase. Flow cytometry was performed using a FACSCalibre flow cyrometer (BD Biosciences, San Jose, CA) and cell cycle distribution profiles were analysed using CellQuest software (BD Biosciences, San Jose, CA).

Western blot analyses for protein expression

Lysates for Western blotting were processed as previously described [20]. SDS-PAGE was performed using 8-10% bis-acrylamide gels at room temperature. Each well was loaded with 30 μg of total protein plus loading buffer (final
concentration 6% glycerol, 0.83% β-mercaptoethanol, 1.71% Tris-HCl (pH 6.8), and 0.002% bromphenol blue). Samples were resolved by electrophoresis at 80-110 V for 1.5-2.5 h and then transferred onto nitrocellulose (Schleicher & Schuell BioScience, Keene, NH). Pre-hybridization staining with Ponceau solution confirmed optimal transfer between running lanes. After transfer, membranes were incubated in appropriate secondary antibodies and protein bands detected using ECL Detection Reagent (Amersham Bioscience) prior to quantification using Scion Image (Scion Corporation, Frederick, MD).

Primary antibodies were used at dilutions ranging from 1:200 to 1:1000 as suggested by the supplier and included the following: HIF1α (BD Transduction Laboratories, Franklin Lakes, NJ), ACTIN (Sigma-Aldrich, Inc., St Louis, MO); p21^WAF^, RAD51 (Oncogene Research Products, San Diego, CA); XRCC3, RAD51C, RAD51D, RAD50 (Novus Biologicals, Inc., Littleton, CO); Ku70 (Santa Cruz Biotechnology, Santa Cruz, CA) and MRE11 (Genetex, San Antonio, TX). Results shown are representative of at least 2-6 independent experiments.

RNA extraction and reverse transcriptase-polymerase chain reaction (RT-PCR) for RNA expression

Total RNA was extracted using TRI reagent (Sigma-Aldrich, Inc., St Louis, MO) and digested initially with DNase I (Invitrogen, Carlsbad, CA). The digested products were then reverse-transcribed with random hexamer (0.2 or 2.0% DNase I (Invitrogen, Carlsbad, CA) and digested initially with Aldrich, Inc., St Louis, MO) and digested initially with DNA extraction and reverse transcriptase-polymerase chain reaction (RT-PCR) for RNA expression.

Results

Initial experiments confirmed the gas hypoxic response (0.2 or 2.0% O2 concentrations) in logarithmically-growing normal (normal diploid fibroblast strain, GM05757) and malignant (DU145 prostate cancer) cell cultures. Fig. 1 demonstrates up-regulation of VEGF RNA and increased expression of HIF1α protein at 48 and 72 h for both GM05757 and DU145 cells. Repeated experiments showed similar induction at times ranging from 24 to 72 h for all cultures tested at 0.2% and 2% oxygen gassing conditions (data not shown). Increased endogenous HIF1α expression following gassing with 2% oxygen in DU145 and PC3 cells was consistent with the reported increased basal expression and hyper-inducibility of HIF1α in malignant prostate cells [43].

Although the expression and function of Rad51 can be down-regulated following hypoxia [5]. It was unknown whether Rad51 expression following hypoxic exposure is differentially affected in normal cells relative to malignant cells. Fig. 2(a) and (b) shows the relative expression of RAD51 protein in DU145 and PC3 cells relative to GM05757 normal fibroblasts, in which RAD51 protein levels are uniformly decreased at 72 h following hypoxia in both normal and malignant cultures. We, therefore, chose this time-point to determine Rad51 RNA and RAD51 protein levels amongst a group of immortalized and malignant prostate cell cultures (see Fig. 2(c) and (d)). In all cases, Rad51 RNA and RAD51 protein were decreased, with final protein levels in the malignant cell lines approaching that of GM05757. However, there is discordance between RNA and protein levels amongst the cell lines following hypoxia: RNA expression can be ablated by hypoxia without the total ablation of Rad51 protein (c.f. RNA and protein expression of DU145 and PC3 cells). The latter observation may be due to...
to the long-half life of the RAD51 protein in relation to the half-life of Rad51 RNA [5].

In human cells, the majority of DNA-dsbs are repaired by either the HR and/or the NHEJ pathways in a cell cycle and cell-type specific manner [41,48]. We, therefore, compared the RNA and protein expression of selected genes within each of these pathways following hypoxic exposure (Fig. 3). At the RNA level, we observed that the Rad51 paralogs (e.g. Rad51C, Rad51D, Xrc4) and the HR-related genes, BRCA1, BRCA2, Rad54, Rad52, were all down-regulated in both normal and malignant hypoxic cultures, independent of c-Abi gene expression alterations (the latter reported to transcriptionally up-regulate Rad51; see Fig. 3(a)) [13,45].

Similar decreases in expression were also noted for DNA-PKcs, Ku70 and DNA-Ligase IV genes, but not for the Xrc4 gene or the Rad50 and Mre11 genes (the latter involved in the MRN complex and DNA damage sensing; see Fig. 3(b)). Again, we observed discordance between RNA and final protein levels for some of these genes (c.f. Fig. 3(a) and (b) with (c)). For example, the RNA level for Ku70 was decreased by hypoxia, yet there was not a resultant decrease at the protein level. Further biochemical studies will be required to determine whether hypoxia solely alters HR protein, rather than NHEJ, protein expression. However, we did not observe a similar down-regulation of RAD51-associated proteins following CoCl2 treatment (100 μM for 3 or 72 h) when compared to gas hypoxia (for more detail see Appendix 1 in the online version of this article). This illustrates the potential for disparate results when using gas hypoxia or chemical inducers of HIF1α such as CoCl2 or desferrioxamine (DFX).

Finally, the relative level of Rad51 expression or function following hypoxic exposure could be biased by a number of molecular and cellular factors including p53 expression and function (e.g. ability to up-regulate p21WAF), the capacity for hypoxia-mediated apoptosis, the level of c-Myc expression and relative cell cycle distribution [1,18,19,20,23,26,34,47,51,52]. Endogenous expression of HR-associated genes is increased within malignant prostate cell lines[20] and the expression or function of Rad51 and other HR-associated genes can vary with differential p53 status and interact with p21WAF-mediated G1 checkpoint control or be affected by cells undergoing apoptosis or cell cycle arrest during S-phase[19].

DU145 and PC3 cells lack p53 function and p21WAF up-regulation following DNA damage, due to mutant or null p53 expression, respectively [20]. Our sequencing experiments revealed there were no mutations within exons 2-11 of the p53 gene in GM05757, BPH-1 and 22RV-1 cells. Indeed, the latter three lines all up-regulated p21WAF following DNA damage, consistent with wild type p53 function (see Fig. 4(a)). Decreased Rad51 expression following hypoxia is, therefore, not correlated to p53 expression nor function in our cell lines.

We next determined the cell cycle distribution of the five cell cultures pre- and post-hypoxia, using flow cytometry (representative profiles in Fig. 4(b) and mean quantitative data in Fig. 4(c)). The S-phase fractions in the wild type p53-expressing cell lines varied minimally after 72 h of hypoxia, whereas the two cell lines which lack p53 function showed either decreased or increased S-phase fractions. This is supported by minimal changes in the expression of the c-Myc gene (Fig. 4(d)) which has been linked cell proliferation, apoptosis and HR [1,47]. All the cell lines showed a decrease in G2 phase cells and an increase or sustaining of the G1 fraction, consistent with the hypoxia-induced G1 arrest being p53-independent [26]. These slight cell cycle changes do not, however, account for the large RNA decreases observed for DNA-dsbr repair genes within both the HR and NHEJ pathways.

Finally, we scored all cultures for apoptotic morphology (pre- and post-hypoxia) to rule out decreased Rad51 expression as a consequence of hypoxia-induced apoptosis. We observed a large and significant increase in hypoxia-induced apoptosis solely in the wild-type p53-expressing 22RV-1 cells (P<0.05; Fig. 4(e)). Altogether, there is no
Fig. 2. Decreased Rad51 gene expression in normal and malignant cultures following hypoxia. (a) Western for protein expression showing decreased expression of the RAD51 protein following 24 or 72 h of 0.2% O₂ in malignant DU145 and PC3 prostate cells or normal GM05757 fibroblasts. The relative ACTIN protein levels are shown as a loading control. (b) Similar Western blot as in (a), but for normal GM05757 fibroblasts. (c) RNA expression of the Rad51 and VEGF genes following 72 h of 0.2% O₂ in the prostate cell lines DU145, PC3, BPH-1 and 22RV-1 and normal GM05757 cells. The relative levels of Actin RNA are shown as a loading control. (d) Western blot for RAD51 protein expression following 72 h of 0.2% O₂ in malignant and normal cultures described in (c). The relative ACTIN protein levels are shown as a loading control.

The correlation between decrease in HR-related gene expression and p53 status, apoptotic capacity or c-Myc levels or S-phase fraction following hypoxic exposure.

Discussion

To our knowledge, this is the first report that documents gene expression relating to members of the HR and NHEJ pathways following hypoxia in normal, immortalized and malignant cells. We observed decreases in HR-related DNA-dsb repair protein expression within several immortalized and malignant prostate cell lines following gas hypoxia, but not CoCl₂-treatment. In our study, the HIF1α-induced gene expression induced by CoCl₂ was insufficient to alter Rad51 protein expression. In a previous study using MCF-7 cells, DFX treatment led to a decrease in Rad51 RNA and also in protein levels [4,5]. The differences between the two studies may relate to HIF1α-independent effects of DFX relative to CoCl₂ and reinforces the point that the use of DFX or CoCl₂ may not directly mimic the gene expression or cell biology under low oxygen conditions.

Our observation that RNA expression was reduced for a number of DNA-dsb genes speaks to a mechanism by which hypoxia reduces HR-gene transcription through altered expression of transcriptional activators and/or repressors [4,10,50] such as has been described for RAD51 expression and p53 status, apoptotic capacity or c-Myc levels or S-phase fraction following hypoxic exposure.

To our knowledge, this is the first report that documents gene expression relating to members of the HR and NHEJ pathways following hypoxia in normal, immortalized and malignant cells. We observed decreases in HR-related DNA-dsb repair protein expression within several immortalized and malignant prostate cell lines following gas hypoxia, but not CoCl₂-treatment. In our study, the HIF1α-induced gene expression induced by CoCl₂ was insufficient to alter Rad51 protein expression. In a previous study using MCF-7 cells, DFX treatment led to a decrease in Rad51 RNA and also in protein levels [4,5]. The differences between the two studies may relate to HIF1α-independent effects of DFX relative to CoCl₂ and reinforces the point that the use of DFX or CoCl₂ may not directly mimic the gene expression or cell biology under low oxygen conditions.

Our observation that RNA expression was reduced for a number of DNA-dsb genes speaks to a mechanism by which hypoxia reduces HR-gene transcription through altered expression of transcriptional activators and/or repressors [4,10,50] such as has been described for RAD51 expression and p53 status, apoptotic capacity or c-Myc levels or S-phase fraction following hypoxic exposure.

To our knowledge, this is the first report that documents gene expression relating to members of the HR and NHEJ pathways following hypoxia in normal, immortalized and malignant cells. We observed decreases in HR-related DNA-dsb repair protein expression within several immortalized and malignant prostate cell lines following gas hypoxia, but not CoCl₂-treatment. In our study, the HIF1α-induced gene expression induced by CoCl₂ was insufficient to alter Rad51 protein expression. In a previous study using MCF-7 cells, DFX treatment led to a decrease in Rad51 RNA and also in protein levels [4,5]. The differences between the two studies may relate to HIF1α-independent effects of DFX relative to CoCl₂ and reinforces the point that the use of DFX or CoCl₂ may not directly mimic the gene expression or cell biology under low oxygen conditions.

Our observation that RNA expression was reduced for a number of DNA-dsb genes speaks to a mechanism by which hypoxia reduces HR-gene transcription through altered expression of transcriptional activators and/or repressors [4,10,50] such as has been described for RAD51 expression and p53 status, apoptotic capacity or c-Myc levels or S-phase fraction following hypoxic exposure.

Our observation that RNA expression was reduced for a number of DNA-dsb genes speaks to a mechanism by which hypoxia reduces HR-gene transcription through altered expression of transcriptional activators and/or repressors [4,10,50] such as has been described for RAD51 expression and p53 status, apoptotic capacity or c-Myc levels or S-phase fraction following hypoxic exposure.

Our observation that RNA expression was reduced for a number of DNA-dsb genes speaks to a mechanism by which hypoxia reduces HR-gene transcription through altered expression of transcriptional activators and/or repressors [4,10,50] such as has been described for RAD51 expression and p53 status, apoptotic capacity or c-Myc levels or S-phase fraction following hypoxic exposure.

Our observation that RNA expression was reduced for a number of DNA-dsb genes speaks to a mechanism by which hypoxia reduces HR-gene transcription through altered expression of transcriptional activators and/or repressors [4,10,50] such as has been described for RAD51 expression and p53 status, apoptotic capacity or c-Myc levels or S-phase fraction following hypoxic exposure.
Hypoxia and DNA repair genes in prostate cancer

Fig. 3. Decreased HR- and NHEJ-related gene expression following hypoxia. (a) RNA expression of selected homologous recombination-related, VEGF and c-Abl genes following 72 h of 0.2% O₂ in the prostate cell lines DU145, PC3 and normal GM05757 fibroblasts. (b) RNA expression of selected non-homologous recombination and Mre11, Rad50, VEGF and c-Abl genes following 72 h of 0.2% O₂ in the prostate cell lines DU145, PC3 and normal GM05757 fibroblasts. The relative levels of Actin RNA are shown as a loading control for (a) and (b). (c) Western blot for selected homologous and non-homologous recombination protein expression following 72 h of 0.2% O₂ in malignant DU145, PC3 and normal GM05757 cultures. ACTIN protein levels are shown as a loading control.

When taken together with our previous studies [5], the present experiments suggest that a discordance between cell proliferation, induction of DNA breaks, and defective DNA repair, could drive genetic instability and emergence of aggressive cell clones within hypoxic sub-regions of tumors [4,20]. Other investigators have reported that the expression of genes relating to base excision repair (BER), DNA-single strand break (DNA-ssb) repair and mismatch repair (MMR) can also be modified under hypoxic conditions [15,29,31,32]. When placed in the context of hypoxia-induced genetic changes leading to hypoxic adaption and clonal selection, hypoxic tumor cells which have decreased expression of DNA repair genes may acquire increased DNA-dsbs, DNA-ssbs, oxidative damage and errors of replication to drive tumor progression with a mutator phenotype [20].

Functional assessments of the level and fidelity of DNA-dsbr repair are still required to link altered expression with altered function. Hypoxia can reduce the initial number of DNA-dsbs by a factor of 2 to 3 [21,22,27,30]. However, the subsequent repair of these breaks by HR or NHEJ under hypoxic conditions and whether this is altered in malignant versus normal cells is not well-characterized. We are currently determining the relative ability of oxic and hypoxic cells to conduct HR using endpoints relating to intranuclear RAD51 repair foci in situ and gene conversion events using an intra-chromosomal, GFP-based plasmid reporter system [49]. These models will be helpful in determining whether repair-deficient clones are selected for by acute hypoxia and/or re-oxygenation or adaption to chronic hypoxia [50].
Fig. 4. DNA-dsb repair expression following hypoxia does not correlate directly with p53 status, hypoxia-induced apoptosis or cell cycle distribution. (a) Western blot for induction of the p21\(^{WAF}\) protein at 0, 2, 6 and 24 h following a dose of 10 Gy in malignant prostate and normal diploid fibroblast cultures. ACTIN protein levels are shown as a loading control. (b) DNA histograms as flow cytometric profiles of GM05757 normal diploid fibroblasts and DU145 malignant prostate cancer cells cultured under normoxic conditions or under 0.2% O\(_2\) for 72 h. Shown are the histograms used for quantitation of G1, S and G2/M fractions. (c) Mean fractions of cells in G1, S and G2/M when cultured under normoxic conditions or under 0.2% O\(_2\) for 72 h. Data represents the mean values of each cell cycle phase based on two independent experiments. (d) RNA expression for the c-Myc gene following normoxia or 0.2% O\(_2\) for 72 h for the prostate cell lines DU145, PC3 and normal GM05757 fibroblasts. The relative levels of Actin RNA are shown as a loading control. (e) Relative fraction of cells with apoptotic morphology (based on Hoechst 33342 nuclear staining) for malignant and normal cells cultures exposed to normoxia (grey bars) or 0.2% O\(_2\) (black bars) for 72 h. The data represents the mean, and standard errors of the mean, based on replicate experiments. The differences in apoptosis amongst the 4 positive cultures were significant (P<0.05). Less than 1% apoptosis was scored within the normal GM05757 fibroblasts following either treatment.
Hypoxic tumor cells remain an important target for oncology [10]. We have previously hypothesized that relative DNA-dsb repair expression and function amongst normal and malignant prostate cells, may be disparate under in vitro versus in vivo conditions due on microenvironmental factors [19]. The data in the current report support this hypothesis. As a result, the staining of DNA damage and response proteins within histologic sections of prostate, or other cancers, as biomarkers of carcinogenesis or genetic instability, will need co-staining with markers of intratumoral oxygen to avoid bias [2,16,20,42].

Intratumoral hypoxia can be modified by androgen deprivation [40,44] and is associated with the development of aggressive androgen-independent prostate cancer cells, which is a cause of mortality in prostate cancer patients. Our findings, therefore, support investigation of novel strategies that augment DNA repair as a means to prevent carcinogenesis and tumor progression. They also support the study of molecular-based strategies [35] which target hypoxia or abnormal DNA-dsb repair in prostate tumors as an adjunct to radiotherapy.

Acknowledgements
The authors would like to thank Drs D. Hedley, R.P. Hill and M. Milosevic for helpful discussions and encouragement. These studies are supported by operating grants to R.G.B. from the Terry Fox Foundation (Hypoxia Project Program Grant), Ontario Cancer Research Network PMH Foundation, US Army DOD Prostate Cancer Program and a grant to P.A.G. from the NIH (ES05775). R.S.B. was supported by NIH Medical Scientist Training Grant (GM07205). R.G.B. is a Canadian Cancer Society Research Scientist.

Supplementary Material
Supplementary data associated with this article can be found, in the online version at 10.1016/j.radonc.2005.06.025

* Corresponding author. Robert G. Bristow, Department of Radiation Oncology, Ontario Cancer Research Network, Princess Margaret Hospital, 610 University Avenue, Rm S-923, Toronto, Ont., Canada M5G2M9. E-mail address: rob.bristow@rmph.uhn.on.ca

Received 10 May 2005; received in revised form 13 May 2005; accepted 19 June 2005

References

Optimal Treatment of Intermediate-Risk Prostate Carcinoma with Radiotherapy

Clinical and Translational Issues

Alan M. Nichol, M.D.
Padraig Warde, M.B.B.S.
Robert G. Bristow, M.D., Ph.D.

Department of Radiation Oncology, University of Toronto and the Princess Margaret Hospital-University Health Network, Toronto, Ontario, Canada.

The clinical heterogeneity of intermediate-risk prostate carcinoma presents a challenge to urologic oncology in terms of prognosis and management. There is controversy regarding whether patients with intermediate-risk prostate carcinoma should be treated with dose-escalated external beam radiotherapy (EBRT) (e.g., doses > 74 gray [Gy]), or conventional-dose EBRT (e.g., doses < 74 Gy) combined with androgen deprivation (AD). Data for this review were identified through searches for articles in MEDLINE and in conference proceedings, indexed from 1966 to 2004. Currently, the intermediate-risk prostate carcinoma grouping is defined on the basis of prostate-specific antigen (PSA), tumor classification (T classification), and Gleason score. Emerging evidence suggests that additional prognostic information may be derived from the percentage of positive core needle biopsies at the time of diagnosis and/or from the pretreatment PSA doubling time. Novel prognostic biomarkers include protein expression relating to cell cycle control, cell death, DNA repair, and intracellular signal transduction. Preclinical data support dose escalation or combined AD with radiation as a means to increase prostate carcinoma cell kill. There is Level I evidence that patients with intermediate-risk prostate carcinoma benefit from dose-escalated EBRT or AD plus conventional-dose EBRT. However, clinical evidence is lacking to support the uniform use of AD plus dose-escalated EBRT. Patients in the intermediate-risk group should be entered into well designed, randomized clinical trials of dose-escalated EBRT and AD with sufficient power to address biochemical failure and cause-specific survival endpoints. These studies should be stratified by novel prognostic markers and accompanied by strong translational endpoints to address clinical heterogeneity and to allow for individualized treatment. Cancer 2005;104:891–905.

The authors thank Dr. Charles Catton for critical reading of this review and the members of the Princess Margaret Hospital-University Health Network Genito-Urinary Oncology Group for stimulating discussions.

Robert G. Bristow is a Canadian Cancer Society Research Scientist.

Dr. Nichol’s current address: Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.

Address for reprints: Robert G. Bristow, M.D., Ph.D., Department of Radiation Oncology, Princess Margaret Hospital-University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada; Fax: (416) 946-4586; E-mail: rob.brinstow@rmp.uhn.on.ca

Received January 18, 2005; revision received March 29, 2005; accepted April 25, 2005.

© 2005 American Cancer Society
DOI 10.1002/cncr.21257
Published online 8 July 2005 in Wiley InterScience (www.interscience.wiley.com).

KEYWORDS: prostate carcinoma, androgen ablation, radiotherapy, prognostic factors, genomics, cell death, molecular therapy, prostate-specific antigen, combined-modality treatment, dose escalation

In 2004, the American Cancer Society estimated that 230,110 men would be diagnosed with prostate carcinoma and that 29,900 would die of the disease (available from URL: http://www.cancer.org [accessed January 10, 2005]). Recent data from the Cancer of the Prostate Strategic Urological Research Endeavor (CaPSURE) registry indicate that there has been a stage migration of prostate carcinoma over the last 15 years, when prostate-specific antigen (PSA) screening became widely available in the U.S.1 The CaPSURE data base uses the risk stratification for prostate carcinoma defined by D’Amico et al.2 In their scheme, intermediate-risk prostate carcinoma is defined as clinical T1–T2 disease, Gleason score < 8, and PSA ≤ 20 ng/mL with at
least 1 of the following adverse factors present: clinical T2b disease, PSA > 10 ng/mL, or Gleason score = 7. According to CaPSURE, between 1989 and 2002, the proportion of patients presenting with high-risk disease (clinical T3–T4 disease, or Gleason score = 8–10, or PSA > 20 ng/mL) decreased from 41% to 15%, and the proportion of patients presenting with low-risk disease (clinical T1c–T2a disease, Gleason score = 2–6, and PSA ≤ 10 ng/mL) increased from 31% to 47%. Therefore, despite the introduction of PSA screening, nearly one-third of all new patients with prostate carcinoma continue to present with intermediate-risk disease.

Treatment approaches for low-risk prostate carcinoma include watchful waiting, hormone therapy (e.g., androgen deprivation [AD]), radical prostatectomy, brachytherapy, or external beam radiotherapy (EBRT), depending on tumor and patient characteristics. A number of nonrandomized, retrospective studies have shown equipoise between surgical, brachytherapy, and EBRT approaches for low-risk disease. High-risk disease now is approached routinely with combined hormone-radiotherapy based on randomized studies that have shown improvements in overall survival. Between 1990 and 2000, the use of neoadjuvant androgen deprivation (NAD) and EBRT rose from 4.9% to 73.5% in the intermediate-risk group, despite the absence of any randomized clinical trial (RCT) for this risk group.

There is considerable controversy regarding the optimal treatment of patients with intermediate-risk prostate carcinoma in relation to the role of dose-escalated EBRT (e.g., total dose > 74 gray [Gy]) versus conventional-dose EBRT (e.g., total dose < 74 Gy) and AD. To address this controversy, we have reviewed the categorization and prognostication of intermediate-risk prostate carcinoma. In this report, we also discuss new molecular and cellular biomarkers that may triage intermediate-risk patients further into subgroups for refined prognostication and treatment. Finally, we critically appraise the available pre-clinical and clinical evidence for dose-escalated EBRT alone or in combination with AD for this heterogeneous group of patients.

Defining Intermediate-Risk Prostate Carcinoma

Prognostic variables for PSA-based outcomes after treatment for localized prostate carcinoma can be defined in terms of biochemical freedom from survival (bFFS) or biochemical no evidence of disease (bNED) and have been studied within both univariate and multivariate models. Consequently, biochemical prognostic groupings are based on initial clinical tumor classification (T classification), pretreatment PSA level, and Gleason score (see Table 1). The biochemical outcome of the intermediate-risk subgroup is highly dependent on the selected definition of biochemical failure. This currently is defined by the American Society for Therapeutic Radiology and Oncology (ASTRO) consensus definition as three consecutive rises in the PSA level after treatment. Other biochemical failure definitions are being studied, but...
none had supplanted the ASTRO definition at the time of this writing.

Several authors and organizations have defined variably the interface between the intermediate and high-risk groupings (Table 1). For example, the initial risk groupings defined by Roach et al. were derived from a metaanalysis of the Radiation Therapy Oncology Group (RTOG) randomized trials that were conducted in the peri-PSA era. Application of these risk groupings to a recent cohort of patients has validated them again in the modern PSA-era, in which a PSA value > 20 ng/mL confers a high risk of biochemical failure, lower progression-free survival, and lower overall survival. Also in 2003, Roach et al. defined an intermediate-risk group (e.g., patients with a 15–35% risk of lymph node involvement, as determined by the following formula: percent risk = 2/3*PSA + 10*[Gleason score = 6]) based on the results of the RTOG 94-13 study. Because this definition includes patients with clinical T3 disease and PSA values > 20 ng/mL, it would be classified otherwise as high-risk by a number of groups, including authors of the RTOG meta-analyses, the National Comprehensive Cancer Network (NCCN), and the Canadian Consensus. A recent report suggested that the use of a single-factor prognostic model (e.g., clinical T2b disease, or PSA > 10 ng/mL, or Gleason score = 7) to define intermediate-risk disease created prognostic groups with greater internal consistency than a 2-factor model (e.g., any 2 of clinical T2b disease, PSA > 10 ng/mL, or Gleason score = 7). For the purpose of the current review, we have defined patients with intermediate-risk prostate carcinoma using the single-factor interpretation of the NCCN criteria, which is the same as the Canadian Consensus definition. We have also confined our discussion to the use of EBRT in intermediate-risk disease; however, it is recognized that some groups may utilize brachytherapy (another form of dose-escalation) as a component of therapy for patients with intermediate-risk disease.

Prognostic Markers for Intermediate-Risk Prostate Carcinoma

Interrogating the relative slopes of EBRT dose-response curves (i.e., the PSA-based tumor control probability vs. the total radiotherapy dose) for prostate carcinoma leads to the conclusion that there is great heterogeneity within the intermediate-risk group. Understanding this heterogeneity may allow for more effective triaging a priori of intermediate-risk patients into subgroups with varying probabilities of local control or development of distant metastases. This can be illustrated using prostate-specific nomograms, such as the Memorial Sloan-Kettering Prostogram (version 4.02; available from URL://www.nomograms.org [accessed May 27, 2004]). For example, 2 patients who receive 78 Gy (1 patient with T1c disease, Gleason score = 6, and PSA = 10.1 and the other patient with T2b disease, Gleason score = 7, and PSA = 19.9) would have 5-year PSA progression-free probabilities of 88% and 54%, respectively. The well established prognostic factors of PSA, clinical T classification, and Gleason score determine < 50% of the variability of biochemical failure-free survival. Indeed, the clinical stage, as determined by digital rectal examination, historically has been an important prognostic variable; however, as more and more patients are diagnosed with nonpalpable disease, it has become less useful. Furthermore, the utility of computed tomography scanning and bone scans to address the heterogeneity within the intermediate-risk group is low. Clearly, better prognostic and predictive factors are required for this heterogeneous group of patients. A strong predictor of tumor radiocurability, independent of known prognostic factors, could lead to novel treatment strategies combined with radiotherapy or to a decision to abort radiotherapy altogether in favor of a radical prostatectomy.

There are a number of promising methods for improving our ability to stratify and select the appropriate treatment for patients with intermediate-risk prostate carcinoma. For example, information obtained from systematic prostate biopsies can identify patients with a greater volume of disease and, thus, a greater risk of PSA failure, metastatic burden, and prostate carcinoma-specific mortality (PSM). The percentage of positive biopsies (i.e., ≥ 50% diagnostic cores involved with malignancy) is an independent prognostic variable that may triage patients within the intermediate-risk group into relatively favorable or unfavorable risk groups. Results from more recent analyses suggest that the pretherapy PSA doubling time, or a high proliferative index (as measured by Ki-67 staining) can predict the risk for distant metastases and death in prostate carcinoma patients who are treated with radical intent. Other approaches to the determination of pretreatment local or systemic tumor bulk include magnetic resonance spectroscopy of metabolically active tumor cells within the prostate and the use of the polymerase chain reaction to detect potentially metastatic prostate carcinoma cells in the bloodstream. The latter assay, or one similar to it, could guide the use of systemic therapy in addition to radiotherapy. A number of intrinsic, pretreatment molecular biomarkers also may predict tumor cell radioresistance, extracapsular disease, and/or the presence of metas-
Radiotherapy induces damage within the DNA, the cytoplasm, and the outer plasma membrane of prostate carcinoma cells. This elicits a series of intracellular signal-transduction cascades leading to G1, S-phase, and G2 cell cycle arrests and attempted DNA repair. Initial sensing of cellular damage also activates the epidermal growth factor receptor (EGFR) pathway, including downstream RAS and phosphatase and tensin homolog (PTEN)-AKT signaling. Mutations in the genes involved in these pathways or increased levels of intratumoral hypoxia can lead to relative tumor cell resistance and decreased tumor cell kill. These radioresistance pathways are targets for a number of novel molecular agents that may be used in combination with radiotherapy. For prostate carcinoma cells that sustain lethal amounts of damage, tumor cell death occurs in a dose-responsive manner through terminal growth arrest, mitotic catastrophe, and possibly, apoptosis. Androgen deprivation likely increases radiation-induced cell death in vivo by augmenting terminal growth arrest. For patients with subclinical metastatic disease, androgen deprivation also may arrest the growth of systemic metastases terminally or transiently and alter rates of disease progression. To our knowledge, there is no assay currently available that directly determines the killing of prostate carcinoma clonogens in a quantitative manner. Instead, clinical surrogates for cell kill include postradiotherapy prostate-specific antigen (PSA) values and their nadir and/or the presence of active disease within prostate biopsies taken 2–3 years after radiotherapy and stained for biomarkers of cell proliferation. SA-β-gal: senescence-associated β-galactosidase.

FIGURE 1. Radiotherapy induces damage within the DNA, the cytoplasm, and the outer plasma membrane of prostate carcinoma cells. This elicits a series of intracellular signal-transduction cascades leading to G1, S-phase, and G2 cell cycle arrests and attempted DNA repair. Initial sensing of cellular damage also activates the epidermal growth factor receptor (EGFR) pathway, including downstream RAS and phosphatase and tensin homolog (PTEN)-AKT signaling. Mutations in the genes involved in these pathways or increased levels of intratumoral hypoxia can lead to relative tumor cell resistance and decreased tumor cell kill. These radioresistance pathways are targets for a number of novel molecular agents that may be used in combination with radiotherapy. For prostate carcinoma cells that sustain lethal amounts of damage, tumor cell death occurs in a dose-responsive manner through terminal growth arrest, mitotic catastrophe, and possibly, apoptosis. Androgen deprivation likely increases radiation-induced cell death in vivo by augmenting terminal growth arrest. For patients with subclinical metastatic disease, androgen deprivation also may arrest the growth of systemic metastases terminally or transiently and alter rates of disease progression. To our knowledge, there is no assay currently available that directly determines the killing of prostate carcinoma clonogens in a quantitative manner. Instead, clinical surrogates for cell kill include postradiotherapy prostate-specific antigen (PSA) values and their nadir and/or the presence of active disease within prostate biopsies taken 2–3 years after radiotherapy and stained for biomarkers of cell proliferation. SA-β-gal: senescence-associated β-galactosidase.
advanced prostate carcinoma who were treated within the RTOG 86-10 trial.30

Both gene expression profiling (e.g., DNA microarrays) and protein expression profiling (e.g., serum or tumor proteomics) soon may "fingerprint" those patients who harbor resistant disease on the basis of these genetic and/or microenvironmental factors. The recent use of DNA microarrays associated with robust bioinformatics has identified unique prognostic gene clusters and specific biomarkers that are independent of PSA, T classification, and Gleason score.51,52 For example, the genes hepsin, MUC1, and AZGP1 may be important new markers that can differentiate between the least aggressive and most aggressive prostate carcinomas.53,54

Other studies using comparative genomic hybridization have characterized unique molecular identifiers associated with Gleason score pattern 3 or 4.55,56 This may be useful in discerning the relative prognosis for patients who have tumors with a Gleason score of 7 within the intermediate-risk category (e.g., Gleason score 3 + 4 vs. 4 + 3), because it has been considered traditionally that tumors with a higher component of the 4 pattern indicate a worse prognosis.57,58 This information may help distinguish between truly aggressive tumors and the effect of "Gleason score shift" over the last decade. The latter shift or "creep" is the observed phenomenon of migration of Gleason scores upward associated with improved prognosis, most probably due to increased rates of PSA screening and altered pathologic scoring approaches.59-62 Improved biologic prognostic factors, thus, are required to prevent aggressive treatment based on a small component of Gleason score = 4 (e.g., 3 + 4) that may not be associated with an adverse prognosis.

Clinical Radiotherapy and Intermediate-Risk Prostate Carcinoma

The success or failure of radical radiotherapy depends on the daily proportionate killing of tumor clonogens, which make up \(< 1\%\) of the total population of cells within a tumor.63 Both preclinical and clinical data support a dose-response relation for prostate carcinoma, in which increased killing of tumor clonogens leads to increased local control.32,64-67 Currently, local control of prostate carcinoma after radical radiotherapy is inferred from postradiotherapy PSA kinetics and/or PSA nadir values or by the absence of active tumor within postradiotherapy biopsies.30,48,68,69 We now review the use of these endpoints and others to appraise critically the use of dose-escalated EBRT or conventional EBRT in combination with AD as therapeutic options for patients with intermediate-risk prostate carcinoma.

Clinical Outcomes after Dose Escalation for Intermediate-Risk Prostate Carcinoma

Three comprehensive, systematic reviews of dose escalation for patients with localized prostate carcinoma have been completed.70-72 These reviews summarize the results from cohort studies and describe multiple sources of bias inherent in the literature. Three important biases arise from the use of higher radiotherapy doses as technology improves over time. Regarding the first bias, many cohort studies report bFFS using the ASTRO consensus definition. This definition back-dates failure to the midpoint between the nadir PSA and the first of three consecutive PSA rises.73 Because of this bias, the ASTRO consensus definition favors cohorts with shorter follow-up.12,73,74 In addition, it has been shown on multivariate analysis that "treatment year" (a surrogate for stage migration) is a significant predictor of bFFS.75 Because the radiation dose tends to track with treatment year, this stage migration represents another bias that favors the patients with shorter follow-up. The third bias relates to Gleason score shift migration (see above). Pollack and colleagues have shown, using a matched-pair analysis, that upgrading of Gleason scores occurred over the period 1992–1997 in an early and late cohort treated with conformal radiotherapy. Over this period, increasing numbers of tumors were upgraded to Gleason scores \(\geq 6-8\). This led to an apparent improvement in biochemical outcome for the most recent cohort across all Gleason score groups.59 With these caveats, for the endpoint of bFFS, Vicini et al. identified improved outcomes in patients with intermediate-risk prostate carcinoma who were treated with dose-escalated EBRT.70 Brundage et al., as part of the Ontario Practice Guidelines process, also found considerable evidence for the use of dose-escalated EBRT (e.g., doses > 74 Gy) in the intermediate-risk group.71 Nilsson et al., using the principles adopted by the Swedish Council of Technology Assessment in Health Care, reached the same conclusion.72

Kuban et al. reported the bFFS of a multiinstitutional cohort of 4839 patients with T1 and T2 prostate carcinoma who were treated with EBRT alone and were followed for a minimum of 5 years.76 Their cohort included 2190 patients with intermediate-risk disease. With a median follow-up of 6.3 years, the authors observed a significant improvement in PSA outcomes for patients who received doses > 72 Gy compared with patients who received lesser doses (e.g. 70% vs. 55% 5-year bFFS; \(P < 0.0001\)). Those authors verified that differences in neither the duration of follow-up nor the treatment year had an im-
pact on their finding that a higher total radiation dose improved biochemical outcome.

The only definitive method for testing the hypothesis of an EBRT dose-response relation in prostate carcinoma is through prospective RCTs. In the RCT of dose escalation reported by Pollack et al., the patients with intermediate-risk prostate carcinoma (defined as PSA > 10 ng/mL) who were treated with a dose of 78 Gy had improved 5-year bFFS outcomes compared with patients who were treated with a dose of 70 Gy (62% vs. 43% 5-year bFFS). In the recently reported RCT by Zietman et al. comparing 70.2 Gy equivalent (GyE) (a combination of photons and protons) with 79.2 GyE in patients with low-risk and intermediate-risk disease, there was a significant benefit from dose escalation in the intermediate-risk group (78.7% vs. 60.5% bFFS; note that the majority of patients in the study had low-risk disease with Gleason scores ≤ 6 and PSA < 10 ng/mL). Within the next few years, other RCT data will become available to elucidate the benefit of dose-escalation in EBRT for patients with intermediate-risk prostate carcinoma.

Toxicity Associated with Dose-Escalated Radiotherapy

The normal tissue toxicity associated with dose-escalated EBRT also has been reviewed. Significantly worse rectal and bladder toxicity was reported by both physicians and patients for the 78-Gy cohort arm compared with the 70-Gy arm in the RCT by Pollack et al. However, this largely has historic interest, because these patients were treated with suboptimal radiation techniques compared with today's standards. With appropriate attention to dose-volume constraints for the bladder and rectum, and with the use of intensity-modulated radiotherapy (IMRT), doses of > 80 Gy can be given safely to patients with prostate carcinoma. For example, at a median follow-up of 3 years, Zelefsky et al. found that RTOG Grade 3 rectal toxicity and bladder toxicity occurred in 0.8% and 0.6% of patients, respectively. However, caution should be exercised in interpreting toxicity data with short follow-up. Late effects could continue to increase beyond the 5-year mark, and there is great interest in standardizing the approach to both the recording and analysis of late toxicity at periods > 5-10 years. Indeed, analysis of late toxicity in the second decade after combined photon and proton prostate radiotherapy to 77.4 Gy suggests that, although severe gastrointestinal toxicity is rare, genitourinary morbidity continues to develop well into the second decade associated with high rates of posttreatment hematuria.

Clinical Outcomes after Combined Hormonoradiotherapy for Intermediate-Risk Prostate Carcinoma.

An understanding of the interaction between AD and radiotherapy during prostate carcinoma cell kill may provide unique insights into the future role of AD as a modifier of tumor cell radiosensitivity. Initially, it was believed that the preclinical radiosensitization of prostate xenografts observed with AD and large, single radiation doses was secondary to increased radiation-induced apoptosis. However, this was not confirmed when AD was combined with more clinically relevant fractionated irradiation protocols. Instead, the radiosensitization in vivo was correlated with increased tumor cell growth arrest. In their preclinical studies of AD plus radiation, Kaminski et al. suggested that AD may lead to delayed tumor regrowth through both increased clonogen cell kill (see Fig. 1) and/or a reduced growth rate of surviving clonogens.

These preclinical data support the clinical use of AD plus EBRT in patients who harbor micrometastatic disease at the time of diagnosis (in whom the metastatic cells may be arrested permanently or significantly by AD) or in patients with radioresistant tumors that may be sensitized by adjunctive or concurrent AD. A review of RCTs and subgroup analyses in which AD was given concurrent with EBRT versus AD given in an adjuvant setting suggests that concurrent AD-EBRT synergistically improves local control in the prostate and pelvis. This is consistent with a unique biologic effect different from that of adjuvant AD given post-EBRT, because the latter would impact solely on systemic disease and would affect overall survival and not local control.

The RCT data presented in Table 2 show that improvement in local control and/or disease-free or overall survival can be achieved when AD is combined with conventional-dose EBRT. The trials with the greatest numbers of patients did not address combined-modality therapy in the intermediate-risk group. However, D'Amico et al. recently reported improved survival in 206 patients who were treated with 70 Gy plus 6 months of AD compared with patients who received 70 Gy alone (88% vs. 78%; P < 0.04). Approximately 80% of those patients could be classified with intermediate-risk disease. A number of concerns have been raised concerning the trial, however, including the fact that the difference in survival was based on only six prostate carcinoma-specific deaths in the control arm, compared with no prostate carcinoma-specific deaths in the experimental arm. Nonetheless, another study showed improved PSA-based outcomes using 64 Gy plus AD. In that RCT, 70% of patients could be classified with...
TABLE 2
Trials of Radiotherapy Alone versus Combined Radiotherapy and Androgen Deprivation

<table>
<thead>
<tr>
<th>Measure</th>
<th>D’Amico et al., 2004<sup>67</sup></th>
<th>Laverdière et al., 2004<sup>85</sup></th>
<th>RTOG 8531 (Pilepich et al., 2003<sup>48</sup> and Lawton et al., 2004<sup>34</sup>)</th>
<th>RTOG 8610 (Pilepich et al., 2001<sup>50</sup>)</th>
<th>EORTC 22983 (Bolla et al., 2002 and Bolla et al., 1997<sup>86</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients with</td>
<td>~163/206 (PSA = 10–20 or GS = 7)</td>
<td>~112/161 (T2 clinical stage)</td>
<td>0/977</td>
<td>0/456</td>
<td>0/415</td>
</tr>
<tr>
<td>intermediate-risk disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(definition)<sup>4</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment arms</td>
<td>70 Gy vs. 70 Gy + 2 mos each NAD, 2) 64 Gy + 3 mo NAD + 3 mo CAD and AAD</td>
<td>65–70 Gy vs. 65–70 Gy + IAD</td>
<td>65–70 Gy vs. 65–70 Gy + IAD</td>
<td>70 Gy vs. 70 Gy + 3 yr CAD and AAD</td>
<td>70 Gy vs. 70 Gy + 3 yr CAD and AAD</td>
</tr>
<tr>
<td>Time of reported endpoints</td>
<td>5 yrs</td>
<td>7 yrs</td>
<td>10 yrs</td>
<td>8 yrs</td>
<td>5 yrs</td>
</tr>
<tr>
<td>Local control</td>
<td>N/A</td>
<td>N/A</td>
<td>61% vs. 77%</td>
<td>58% vs. 70%</td>
<td>77% vs. 97%</td>
</tr>
<tr>
<td>Biochemical control (endpoint)</td>
<td>66% vs. 79%</td>
<td>42% vs. 2) 66%</td>
<td>9% vs. 30%</td>
<td>3% vs. 16%</td>
<td>45% vs. 76%</td>
</tr>
<tr>
<td></td>
<td>(No AD for salvage)</td>
<td>(PSA > 1.5)</td>
<td>(PSA > 1.5)</td>
<td>(PSA > 1.5)</td>
<td>(PSA > 1.5)</td>
</tr>
<tr>
<td>P = 0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease-specific mortality</td>
<td>93% vs. 100%</td>
<td>N/A</td>
<td>17% vs. 22%</td>
<td>23% vs. 32%</td>
<td>6% vs. 21%</td>
</tr>
<tr>
<td>Overall survival</td>
<td>88% vs. 78%</td>
<td>N/A</td>
<td>38% vs. 53%</td>
<td>44% vs. 53%</td>
<td>62% vs. 78%</td>
</tr>
<tr>
<td>P = 0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RTOG: Radiation Therapy Oncology Group; EORTC: European Organization for Research and Treatment of Cancer; GS: Gleason score; Gy: Gray; NAD: Neoadjuvant androgen deprivation; CAD: Concurrent androgen deprivation; AAD: Adjuvant androgen deprivation; tAD: Indefinite androgen deprivation; N/A: Not available in reference.

⁴ PSA: Prostate specific antigen (ng/mL).

Intermediate-risk disease. More recently, Dearmaley et al.¹⁰⁰ reported a nonsignificant trend toward improved freedom from PSA failure in patients who were treated with 74 Gy, rather than 64 Gy, after 3–6 months of neoadjuvant AD. The vast majority of patients in both arms in that trial had World Health Organization Grade 2 pathology (68–77%; 5–15% of patients had Grade 3 pathology), and 74–83% of patients had T2 or T3 tumors and median baseline PSA values of 14–15 ng/mL. In that study, the 5-year actuarial control rates were 71% versus 59%, respectively (P = 0.10); no survival data were reported at the time of the current report.

Despite these recent data, two issues confound current decision making with regard to the role of AD in patients with intermediate-risk prostate carcinoma. The first issue is that the largest randomized trials that have shown a benefit to adjunctive AD (either neoadjuvant or adjuvant) combined with EBRT largely have been completed in patients with high-risk disease. Thus, the conclusions from those trials may not be applicable to all patients with intermediate-risk disease. The second issue is that many of these trials were completed in the era of conventional-dose EBRT (e.g., doses < 74 Gy), when long-term bFFS rates with EBRT at these lower doses alone were approximately 40% in patients with intermediate-risk disease.^{101,102}

Nonrandomized, single-institution series have reported clinical outcome data regarding the role of AD in addition to dose-escalated EBRT for patients with intermediate-risk prostate carcinoma. Kupelian et al.¹⁰³ reported on the treatment outcomes in a cohort of 1041 consecutively treated patients with T1–T2 prostate carcinoma who were treated either with radical prostatectomy, EBRT, and brachytherapy (permanent seed implantation) or with combined brachytherapy and EBRT. Seven hundred eighty-five patients were treated with EBRT (484 patients received ≤ 72 Gy and 301 patients received > 72 Gy), and 143 of those patients were given neoadjuvant AD for ≤ 6 months. Although AD was found to be a significant predictor of biochemical outcome on univariate analysis for the entire patient cohort, when the group of patients who received ≤ 72 Gy was excluded, it was no longer significant (P = 0.91). Zelefsky et al. also reported in their cohort of 772 patients (89% with T1–T2 disease; treated with IMRT to a median dose of 81 Gy) that AD appeared to have no influence on bFFS (median fol-
low-up, 24 months. Furthermore, a lack of benefit (and a possible detrimental effect) of short-course AD on 5-year metastasis-free survival or cause-specific survival was reported by Martínez et al. in a large retrospective review of 1260 patients who were treated with combined EBRT and brachytherapy. Although these studies do not represent RCT data, their uniform findings suggest that the addition of AD to dose-escalated EBRT may not be required to optimize biochemical outcomes for patients intermediate-risk prostate carcinoma.

The recent RCT by D'Amico et al. is promising. Compared with the randomized trials of dose-escalation alone that had similar control arms of 64–70 Gy, only the study by D'Amico et al. showed a survival benefit; and their study also had a greater number of patients with intermediate-risk and high-risk disease. Further data showing similar survival benefits will be required before uniformly recommending AD plus conventional-dose EBRT versus dose-escalated EBRT for the intermediate-risk group. However, it is conceivable that selected patients may benefit from short-term AD plus dose-escalated EBRT if their tumors have adverse features that reflect local radioreistance and/or increased systemic spread.

Toxicity of Adjunctive AD
Long-term AD is the treatment of choice for patients with high-risk prostate carcinoma on the basis of randomized trials, which show a survival advantage. The physiological side effects of long-term AD are well known and include anemia, sarcopenia and osteoporosis. More relevant to the treatment of intermediate-risk prostate carcinoma is the toxicity of AD administration for a period of 3–6 months. Hot flashes occur in approximately 80% of men. Decreased libido, erectile dysfunction, and fatigue also are experienced in the majority of treated men. Reversible depression and cognitive impairment also have been linked to short-term use of hormones, but the correlation is not consistent across all studies.

When patients were treated with a luteinizing hormone-releasing hormone agonist and an antiandrogen as complete AD (CAD) therapy, a decline in hemoglobin (Hgb) of > 1.0 g/dL was observed in 75% of patients after 2 months. D'Amico et al. studied biochemical outcomes in a cohort of 110, mostly intermediate-risk patients (and some high-risk patients) treated with 6 months of CAD and radiotherapy. Based on values taken prior to and 1 month after AD, it was found that patients who had a drop in Hgb > 1 g/dL had significantly poorer biochemical outcomes (median follow-up, 20 months). This finding is somewhat unexpected, because patients with high-risk prostate carcinoma have improved biochemical outcomes with long-term AD (Table 2). However, the Hgb effect is similar to that observed during radical radiotherapy studies in patients with cervical carcinoma and head and neck carcinoma. It is possible that the AD, which improves survival by controlling metastatic disease in high-risk patients, impairs biochemical control by reducing local control in intermediate-risk patients. This awaits a formal subgroup analysis of the recent RCT of 6 months of CAD and EBRT versus EBRT alone. In the meantime, these results suggest that caution is warranted when AD and EBRT are used for the treatment of patients with intermediate-risk prostate carcinoma outside of the context of a clinical trial.

The Future Relevant Clinical Endpoints for Future Clinical Trials
Although overall survival and PCSM remain the gold standards in determining the efficacy of new treatment approaches, the natural history of prostate carcinoma necessitates prolonged observation periods to identify these endpoints. PSA-based failure may not always be a reliable surrogate for PCSM; because, in some studies, up to 20% of patients who died after developing PSA failure died of nonprostate carcinoma-related causes. The use of "time to second PSA failure" (or development of hormone-refractory disease) has been suggested as a potential surrogate endpoint for PCSM in localized disease, but this observation has yet to be validated in multiple data sets.

Reports of outcomes from trials of AD and EBRT that use a biochemical endpoint face several challenges. With neoadjuvant AD, it is difficult to choose a start point for follow-up that does not favor one arm over the other in the short term. In addition, there is a period of recovery of testosterone after cessation of the AD that may lead to a rising PSA profile. This is particularly problematic for the ASTRO consensus definition of bFFS and may lead falsely to the conclusion that neoadjuvant-treated patients fail at a higher rate. More recently, the groups of D'Amico et al. and Albertson et al. suggested that the posttreatment PSA doubling time can be a useful surrogate for PCSM. The rising testosterone profile seen in patients after treatment with AD likely would generate a falsely short PSA doubling time, rendering this measure difficult to interpret in AD-treated patients in the short term. Future definitions of biochemical failure that predict clinical failure better after radiotherapy may supersede the currently used ASTRO definition. These include failure defined when the PSA is greater than a current nadir + 2 ng/mL or 3 ng/mL and dated at call (i.e., the failure date called when that
TABLE 3
Unreported Trials of Dose Escalation and/or Androgen Deprivation that Included Patients with Intermediate-Risk Prostate Carcinoma from the MetaRegister of Controlled Trials *

<table>
<thead>
<tr>
<th>Study</th>
<th>Eligibility criteria</th>
<th>Treatment arms</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTOG 9408</td>
<td>T1b-T2b and PSA < 20</td>
<td>75.6 Gy vs. 75.6 Gy with 4 mos of NAD and CAD</td>
<td>1900</td>
</tr>
<tr>
<td>EORTC 22991</td>
<td>T1b-c and either PSA = 16-50 or GS = 7, or T2a and PSA < 50</td>
<td>70-78 Gy vs. 70-78 Gy with 6 mos of CAD and AAD</td>
<td>800</td>
</tr>
<tr>
<td>PMH 9907</td>
<td>T1b-T2b, PSA = 4-20 and GS = 7-10, or T1b-T2b, PSA = 10-20 and GS ≤ 6</td>
<td>75.6-79.8 Gy vs. 75.6-79.8 Gy with 3 mos of NAA and 2 mos of CAD</td>
<td>378</td>
</tr>
<tr>
<td>RTOG 9910</td>
<td>T1b-T4, GS = 2-6 and PSA 10-100; or T1b-T4, GS = 7 and PSA < 20; or T1b-T4c, GS = 8-10 and PSA < 20</td>
<td>70.2 Gy with 2 mos of NAD and CAD vs. 70.2 Gy with 6 mos of NAD and 2 mos of CAD</td>
<td>1540</td>
</tr>
<tr>
<td>MSKCC</td>
<td>At least 2 of: PSA > 10, GS > 7, or Stage T2b</td>
<td>88.4 Gy vs. 75.5 Gy with 2 yrs of NAD, CAD, and AAD</td>
<td>400</td>
</tr>
<tr>
<td>RTOG P-0126</td>
<td>T1b-T2b, GS = 2-6 and PSA 10-20, or T1b-T2b, GS = 7 and PSA < 15</td>
<td>70.2 Gy (39 fractions in 7.8 weeks) vs. 79.2 Gy (44 fractions in 8.8 weeks)</td>
<td>1520</td>
</tr>
<tr>
<td>MRC</td>
<td>T1b-T3a and PSA < 50</td>
<td>64 Gy vs. 74 Gy</td>
<td>800</td>
</tr>
<tr>
<td>FCCC</td>
<td>T1b-T3c and 1 of: PSA > 10, GS ≥ 7, or Stage ≥ T2b</td>
<td>76.0 Gy (36 fractions in 7.2 weeks) vs. 70.2 Gy (26 fractions in 5.2 weeks)</td>
<td>300</td>
</tr>
</tbody>
</table>

RTOG: Radiation Therapy Oncology Group; PSA: prostate-specific antigen; Gy: gray; NAD: neoadjuvant androgen deprivation; CAD: concurrent androgen deprivation; EORTC: European Organization for Research and Treatment of Cancer; GS: Gleason score; AAD: adjuvant androgen deprivation; PMH: Princess Margaret Hospital; NAA: neoadjuvant antiandrogen; CAA: concurrent antiandrogen; MSKCC: Memorial Sloan-Kettering Cancer Center; MRC: Medical Research Council; FCCC: Fox-Chase Cancer Center.
* PSA: prostate specific antigen (ng/mL).

A criterion was met, or 2 consecutive rises of at least 0.5 ng/mL beyond the nadir and back-dated. Based on a recent, multinstitutional, pooled analysis of 4839 patients, these latter definitions appear to have increased sensitivity and specificity relating to clinical and distant failure. Studies of neoadjuvant AD with surgery have shown significant reductions in the detection of positive surgical margins without a long-term improvement in bFFS. This observation supports the concept that AD alters the tissues and reduces the ability of pathologists to detect disease at the surgical margin without eliminating viable, unresected disease. Similarly, AD and/or EBRT therapy effects on tissue histology can confound biopsy interpretation and its role in predicting local control.

Furthermore, patients are reluctant to undergo biopsies if their PSA profile is stable, and clinicians are reluctant to insist on biopsies due to perceived risks of infection, bleeding, or patient discomfort. This may introduce a substantial bias in the reporting of biopsy endpoints unless a large proportion of similarly treated patients agree to undergo posttreatment biopsies. Nonetheless, local control, as assessed by prostatic biopsies 2–3 years after radiotherapy, perhaps also stained for relevant biomarkers (e.g., p21WAF, p16INK4a, Ki-67), also may provide relevant early endpoints for future trials of AD plus dose-escalated EBRT.

Ongoing Trials in Intermediate-Risk Disease

A search of the MetaRegister of Controlled Trials (available from URL: www.controlled-trials.com [accessed August 15, 2004]) identified a number of ongoing studies that involve intermediate-risk patients (Table 3). The RTOG P-0126 and MRC trials are investigating dose-escalation using conventional fractionation schemes. The Princess Margaret Hospital PMH 99-07 and the EORTC 22991 studies may provide some answers regarding the usefulness of neoadjuvant hormone therapy in intermediate-risk patients treated with dose-escalated EBRT. Both the RTOG studies, 94-08 and 99-10, use conventional doses of EBRT and will not address the issue of the utility of AD in the setting of high-dose EBRT. The Memorial Sloan-Kettering Cancer Center study is comparing high-dose EBRT alone with the use of neoadjuvant AD and EBRT. In the latter study, if an equivalent PSA-based outcome is achieved in both arms, then the study may be extremely useful for the radiobiologic calculation of the radiation dose-equivalent cell kill achieved by the addition of AD.

The Fox Chase Cancer Center study is comparing moderate dose escalation with a hypofractionated regimen. Recent analyses of clinical results have suggested that the α/β ratio for prostate carcinoma is approximately 1.5 Gy (much lower than the typical value of 10 Gy for many other tumors) and, thus, is comparable to or lower than the ratio of the surround-
ing, late-responding rectal mucosa (i.e., an α/β ratio of approximately 3 Gy127). The lower α/β ratio for prostate carcinoma compared, with surrounding, late-responding, normal tissue, creates the potential for therapeutic gain. Indeed, recent reports of protocols that delivered 70 Gy with 2.5 Gy per fraction128,129 or 50 Gy with 3.13 Gy per fraction130 are consistent with bNED rates of 60–80% and were associated with favorable toxicity profiles. This may result in future combined-modality trials using hypofractioned EBRT with or without AD.

Molecular-Based Protocols for Intermediate-Risk Prostate Carcinoma

Information regarding the molecular signaling pathways that are activated after ionizing radiation has increased exponentially over the last decade.131 A number of protein pathways have been associated with tumor radioresistance, including intratumoral hypoxia and the p53, RAS, epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGF), and phosphoinositide-3 kinase-phosphatase and tensin homolog (PTEN)/AKT pathways.35,36,132

The pretreatment assessment of biomarkers that represent these signaling pathways may lead to the appropriate choice of novel, molecular-targeted agents to use in combination with EBRT. For example, tumor cell kill as a result of terminal growth arrest explains the slow kinetics of decreasing PSA values and a final nadir occurring over a 12–16 month period after EBRT for prostate carcinoma.30,48 In light of this finding, new treatment strategies that augment EBRT-induced terminal growth arrest in vivo may be possible clinically using histone deactylase inhibitors or retinoids.133 These agents also may radioprotect normal tissues34,135 and currently are being tested prospectively in Phase I/II trials.136,137

New molecular therapies that target p53, MDM2, BCL-2, BAX, PTEN/AKT, RAS, or clusterin pathways also hold promise for augmenting radiation-induced tumor cell kill and improving local control.45,138–149 Improved outcomes also may be achieved with the use of hypoxia-targeted drugs in combination with EBRT. Preliminary data suggest that the neoadjuvant use of AD increases tumor oxygenation, which may be another mode of radiosensitization for this combination.150 Clinical interventions designed to improve oxygenation through direct hypoxic cell targeting or altered angiogenesis are underway in other tumor sites using a variety of agents (e.g., HIFI-α gene therapy; tirapazamine; VEGF inhibitors, such as SU5416 or SU6668; and cyclooxygenase-2 inhibitors) and could be used in hypoxic subgroups of patients with intermediate-risk disease.151–153 The recent success of the EGFR inhibitors (e.g., cetuximab) as radiosensitizers in head and neck carcinoma, leading to improved overall survival with minimal excess toxicity, serves as an excellent model for molecular-targeted EBRT approaches in future studies.140,154

Conclusions and Recommended Management of Intermediate-Risk Patients with Radiotherapy

The heterogeneity of intermediate-risk prostate carcinoma presents a challenge to genitourinary oncology in terms of prognosis and optimal management. Although there is reasonable evidence that these patients benefit from dose-escalated EBRT or adjunctive hormone therapy with conventional EBRT, to our knowledge there is little evidence to date that these patients uniformly benefit from adjunctive AD when the total dose is > 74 Gy.

Currently, patients in the intermediate-risk group should be entered into well designed, RCTs of combined dose-escalation and AD of sufficient power to answer the important questions raised by nonrandomized studies. These trials also should investigate the optimal duration of hormone therapy. In addition, they should be stratified by new prognostic markers and should be accompanied by strong, correlative, scientific endpoints that can address risk-group heterogeneity and potential predictive factors for local or systemic recurrence.

With the advent of molecular profiling and the use of tissue arrays that facilitate the simultaneous study of thousands of genes or proteins within large patient cohorts, clinicians soon will be able to acquire individual pharmacogenomic and prognostic profiles for use in the clinical management of patients. This likely will lead to individualized treatment for patients with intermediate-risk prostate carcinoma and will stimulate novel combined-modality protocols to decrease local and distant failure in this diverse clinical prostate carcinoma population.

REFERENCES

FIGURE 1

Sensors and Mediators

Signal Transducers & Effectors

G1, S, G2 Checkpoints (Survivin, p21^{WAF})
DNA Repair Foci
MAPK/SAPK/PI3K-AKT Signaling

Adequate repair → Survival

Apoptosis (BAX, BCL-2, TUNEL)

Mitotic Catastrophe

Terminal Arrest (p21^{WAF}, MIB1, p16^{INK4a})

Faulhaber and Bristow, 2004
HYPOXIA & RAD51 Expression

<table>
<thead>
<tr>
<th></th>
<th>A549</th>
<th>HeLa</th>
<th>SW480</th>
<th>A431</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01% O<sub>2</sub></td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Rad51</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>... 1α</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glut1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loading</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Decreased RAD51-BRCA2 & Homologous Recombination In Cells Adapted to Low Oxygen

Increased Genetic Instability & Progression (Metastases)

Bindra, Glazer, Bristow; 2004
Meng, Bristow; 2005

FIGURE 2
Measuring DNA-dsb Breaks In Vitro (22RV1 prostate cancer cells) And In Vivo (22RV1 Xenografts) Using gamma-H2AX

(i) In Vitro Irradiation-DNA repair complexes in situ

\[\gamma H2AX \]

DNA Breaks

Rendered 3-D View

DNA Breaks

(ii) In Vivo Xenograft Irradiation-increased staining

NIR

4Gy-1Hr

FIGURE 3
Pre-Operative Radiotherapy Study

- Between 2001 and 2004, 15 patients were entered on trial (PSAs: 7.5-39; Ages 55-68; Volumes 22-88 cc.).
 - Eligible patients included those with a high-risk of extraprostatic disease: T1/T2N0M0 tumors plus (i) Gleason ≥7, PSA >10 ng/ml and <35 ng/ml, or (ii), PSA >15 ng/ml and less <35 ng/ml (any Gleason).

- Patients received 25 Gy in 5 fractions of conformal radiotherapy followed by radical prostatectomy within 1-2 weeks (usually within 4 days). Trial endpoints included acute radiotherapy toxicity (RTOG scale) and intra-operative morbidity.

- Twelve(12) patients were studied for DNA damage signalling based on paired pre- and post-radiotherapy tissue samples; GS 7 (7/12); GS 6(4/12); GS 10(1/12) on pre-XRT biopsy
ATM-p53 Signaling in Patient Prostate Biopsies/Post-Op Tissues (25 Gy/5)

- Majority of irradiated prostate tumor tissues showed increased expression of p-ATM p53 and p21WAF

- Mean expression (ME) of p-ATM increased post-RT \((p=0.293)\)

- ME of p21WAF increased from 0 to 50\% \((p=0.001)\)

- ME of p53 increased from 41.1 to 51.8\% \((p=0.623)\).

\(N=12; \) all WT\textit{p53} by direct DNA sequencing

FIGURE 5
DNA Repair Proteins & TMAs

- No differences in DNA-PKcs, RAD51 or KU70 expression pre- and post-XRT.
- However, may be a relationship between DNA repair protein (e.g. ATM and RAD51) expression and tumour progression based on recent TMA results.
- Correlation with outcome? Pending...

Benign

GS 7
Conclusions: DNA Damage Biomarkers and Prostate Radiotherapy

- First study to show that the ATM-p53 axis is operational in human prostate tissues during radiotherapy
- Radiotherapy leads to a p21\(^{\text{WAF}}\)-induced arrest, rather than apoptosis
 - REB approval for intra-radiotherapy biopsies using 2 Gy per day (Fraction 3-5 of 39 fractions = 78 Gy total)
- May be used to triage patients to XRT vs surgery
- Implications for new drug design

<table>
<thead>
<tr>
<th>PRE-EBRT (Fiducial Markers)</th>
<th>INTRA-EBRT: MRSi Biopsy</th>
<th>POST-EBRT: MRSi Biopsy</th>
</tr>
</thead>
<tbody>
<tr>
<td>pO2 Measurements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biopsies + MRSi</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 7
Cell death in irradiated prostate epithelial cells: role of apoptotic and clonogenic cell kill

GP Bromfield2, A Meng2, P Warde1 & RG Bristow1,2*
1Department of Radiation Oncology, University of Toronto and the Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada; and 2Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada

Dose-escalated conformal radiotherapy is increasingly being used to radically treat prostate cancer with encouraging results and minimal long-term toxicity, yet little is known regarding the response of normal or malignant prostate cells to ionizing radiation (IR). To clarify the basis for cell killing during prostate cancer radiotherapy, we determined the IR-induced expression of several apoptotic- (bax, bcl-2, survivin and PARP) and G1-cell cycle checkpoint- (p53 and p21WAF1/CIP1) related proteins, in both normal (PrEC-epithelial and PrSC-stromal) and malignant (LNCaP, DU-145 and PC-3; all epithelial) prostate cells. For these experiments, we chose doses ranging from 2 to 10 Gy, to be representative of the 1.8–2 Gy daily clinical fractions given during curative radiotherapy and the 8–10 Gy single doses given in palliative radiotherapy. We observed that IR-induced bax and p21WAF1/CIP1 protein expression were attenuated selectively in normal stromal and epithelial cell cultures, yet maintained their p53-dependency in malignant cell lines. For each cell culture, we also determined total apoptotic and overall radiation cell kill using a short-term nuclear morphologic assay and a long-term clonogenic survival assay, respectively. Clonogenic survival, as measured by the surviving fraction at 2 Gy (SF2), ranged from 0.05 (PrEC) to 0.55 (DU-145), suggesting that malignant prostate cells are more radioresistant than normal prostate cells, for this series. IR-induced apoptotic cell kill was minimal (less than 6% cell after a dose of 10 Gy at times of 24–96 h) and was not dose-dependent. Furthermore, apoptotic kill was not correlated with either molecular apoptotic response or clonogenic cell kill. Using a flow cytometric proliferation assay with the PrSC (stromal) and DU-145 (epithelial) representative cultures, we observed that a senescent-like phenotype (SLP) emerges within a sub-population of cells post-irradiation that is non-clonogenic. Terminal growth arrest was dose-responsive at 96 h following irradiation and associated with long-term expression of both p21WAF1/CIP1 and p16INK4a genes. Future strategies for prostate radiotherapy prediction or novel treatments should additionally focus on terminal growth arrest as an important endpoint in prostate cancer therapy.

Keywords: prostate cancer; epithelium; senescence; apoptosis; radiosensitivity

Introduction

Dose-escalated (ie 76–80 Gy) radiotherapy is an important treatment option for men with intermediate-risk prostate cancer who present with T1 or T2 disease, a Gleason score greater than 6 out of 10 and serum prostatic specific antigen (PSA) values in the order of 10–20 µg/mL. Successful radiotherapy results in a gradual decline of the serum PSA over 12–24 months following treatment where a PSA nadir of less than 1.0 µg/ml predicts for 5 year, long-term local control.2 With three-dimensional conformal (3D-CRT) or intensity-modulated (IMRT) radiotherapy treatment protocols, 5 year PSA-free relapse rates are approximately 75–85% and associated with minimal late toxicity (less than 5%
with Radiotherapy Oncology Group (RTOG) Grade 3–4 rectal or bladder damage.2 Yet these same data predict that 15–25% will not achieve local control following radical radiotherapy, thought in part to be due to the intrinsic radiorresistance of prostate cancer cells secondary to genetic (eg, apoptosis, cell-cycle or DNA-repair-related gene expression) or microenvironmental factors (eg, hypoxia or altered growth factor expression).3 The success of radiation therapy in prostate cancer treatment is therefore dependent on the eradication of all prostate tumor clones (ie, tumor stem cells, estimated to be less than 1% of cells within a tumor) or senescence-like terminal growth arrest. A permanent cell-cycle arrest may also be a potential marker of terminal growth arrest associated with at least three prostate cell lines that exhibit senescence in the absence of treatment.4

Markers of senescence, such as senescence-associated
β-galactosidase (SA-β-gal) activity and permanently elevated levels of p16INK4a and p21WAF1/Cip1 are actively under investigation as biomarkers of terminal growth arrest in human tumors.5 Chang and co-workers6 observed that a number of DNA-damaging agents (including ionizing radiation) could induce a senescence-like phenotype (SLP) in 11/14 cell lines tested. Other laboratories7,8 and reviews have outlined a number of considerations regarding radiation-induced cell death, including cell-type dependency in defining the dominant mode(s) of death (ie, apoptosis, mitotic-linked death and reproductive death (SLP)/necrosis).9 An improved understanding of death processes has been afforded by novel flow cytometric methods to detect terminally arrested tumor cells following drug treatment,10 and ascertain their relative morphology and clonogenic potential.

The purpose of the current study was to examine the mode(s) of prostate cell death in vitro following exposure to ionizing radiation to possibly refine clinical biomarkers for prediction of radiotherapeutic response and suggest future treatment strategies. Apoptosis, proliferation and clonogenic survival were assessed in a panel of cell lines comprised of both normal (stromal-PrSC and epithelial-FREC) and malignant (LNCaP, DU-145, PC-3, all epithelial) cultures, to determine the overall cellular response. We demonstrate that apoptosis is not the dominant mode of cell kill in this panel of cell cultures post-IR. Instead, data on selected cell lines supports the concept that long-term proliferative arrest relates to clonogenic radiation cell killing in vitro.

Materials and methods

Cell culture

All cell cultures were incubated in vented tissue culture flasks under 5% CO2 and 37°C culture conditions. LNCaP cells (a gift from L. Chung, University of Virginia) were maintained in T-media (Gibco-BRL) and supplemented with 10% FCS. PC-3 and DU-145 cells were purchased from ATCC and maintained as suggested in Ham’s F12K, and alpha-Modified Eagles Medium respectively, supplemented with 10% FCS and 2 mM L-glutamine. FREC (normal prostate epithelial cells) and PrSC (normal prostate stromal cells) were purchased from Clonetics and maintained as suggested in Ham’s F12K, and SCGM media, respectively. Both cell cultures have limited lifespan and proliferative potential in culture according to the supplier and we have consistently observed decreased growth rates following passage 5 in vitro for both cultures. Immortalized myc-infected Rat-1 H015.19 fibroblast cells (a gift from Dr L Penn, OCI/PMF21) were maintained in Dulbecco’s H21 media supplemented with 10% FBS. Cultures were maintained without testosterone supplementation to ensure that radiation survival studies were completed under similar conditions in normal and malignant prostate cell cultures and as previous experiments have determined that exogenous testosterone may not always alter apoptotic responses, clonogenic survival or IR-induced p21WAF1/Cip1 expression and cell arrest in androgen-sensitive cells (J Tsihlias, personal communication22). Approximate doubling times for cell cultures under these conditions were as follows: PrEC, 36–48 h (highly variable); PrSC, 18 h; LNCaP, 36 h; PC-3, 24 h; DU-145, 18 h; Myc-expressing Rat-1H015.19, 16 h.
SF2Gy and clonogenic radiation survival curves

Logarithmically growing cells were rinsed with PBS/ HBSS, trypsinized for 5 min at 37°C, and then were seeded at appropriate densities for colony formation in six-well dishes (Nunc). Asynchronous cultures were irradiated 16–20h post-plating to reduce the immediate effects of trypsinization and such that the multiplicity index was less than 1.24 At least two dilutions of cells in triplicate were used for each dose point for any given individual experiment. At least three independent clonogenic radiation experiments were completed for each cell line. Plated cells were either mock irradiated or irradiated with 0–10 Gy under aerobic conditions using a 137Cs irradiator at ~1 Gy/min at room temperature. Plates were then incubated at 37°C for 7–14 days depending on cell doubling time in vitro and re-fed every 4–5 days before fixation and staining (methylene blue/50% methanol) of resulting colonies (aggregates of greater than 50 cells were scored as a colony). Radiation survival was calculated as the plating efficiency of treated cells divided by the plating efficiency of untreated cells and plotted as a function of dose on a semi-logarithmic plot as previously described.24 We were unable to derive colonies at doses greater than 2 Gy in the LNCaP and PrEC cell cultures due to poor plating efficiencies, and therefore only SF2 values are presented for these cultures. For a given cell culture, there was no correlation between the SF2 values and plating efficiency amongst individual experiments, although mean SF2 values were increased in cell lines which exhibited increased plating efficiency, as reported in the literature (ie DU-145 and PC-3).21

Western blotting

Logarithmically-growing cells were irradiated and lysed on ice for 20 min with E7 lysis buffer as previously described.24 Protein quantification was performed determining using a commercial Pierce-BCA assay kit to derive a mean concentration value based on three assays per lysate. SDS—PAGE was performed using 7–12% bis-acrylamide (29:1) gels with a 4% stacking gel run in a Novex X-cell semi-dry Mini Cell western blotting apparatus at room temperature. Each well was loaded with 20 μg of total protein plus loading buffer (final concentration 1 × 6% glycerol, 0.83% β-mercaptoethanol, 1.71% Tris-HCl pH 6.8, 0.002% Bromophenol Blue) after boiling for 3 min. Samples resolved by electrophoresis at 80–110 V for 1.5–2.5 h were transferred onto nitrocellulose overnight at 14 V/°C or for 1.5 h at 24 V/°C at room temperature in transfer buffer (75 mM glycine, 10 mM Tris, 20% methanol). For selected blots, pre-hybridization staining with Ponceau S confirmed equal loading and transfer between running lanes.

To detect protein, membranes were blocked in TBST/ 0–10% low fat milk and then exposed to the primary antibody 2–4 h at room temperature constant rotation. Membranes were then rinsed with TBST and exposed to the appropriate secondary antibody for 1 h under similar conditions, rinsed again with TBST, once with 10 × TBST and finally incubated in Amersham ECL chemiluminescence solution for 1 min. Membranes were exposed to Hyperfilm BCL from AmershamPharmacia and analyzed by densitometry (Molecular Dynamics Computing Densitometer, ImageQuant Mac version 1.2). Primary antibodies used in these studies included: p53-mouse monoclonal (Santa Cruz Bp53-12, 1:3000); p21WAF1-mouse monoclonal (Oncogene Ab-1, 1:3000); Bax-rabbit polyclonal (Santa Cruz N-20, 1:1000); Bcl-2-mouse monoclonal (Santa Cruz S09, 1:500); PARP-mouse monoclonal (BioMol SA-249, 1:1000), survivin-rabbit polyclonal (Alpha Diagnostics SURV1, 1:5000), and p16INK4A mouse monoclonal (Oncogene Ab-1, 1:1000).

Assays for apoptotic cell death

Radiation-induced apoptosis was quantified on the basis of distinct nuclear morphology and associated apoptotic bodies based on a previously standardized immunofluorescence protocol (Hoechst 33342 staining).24 For the morphology assay, logarithmically growing cells were re-plated at appropriate densities in triplicate and mock/irradiated with 0, 2, 10 or 20 Gy. These were scored for apoptotic morphology (ie with apoptotic bodies and nuclear condensation—see sample in Figure 2a) at periods of 24–96 h following irradiation. Total adherent and floating cells in each culture were fixed and stained in 4% formalin-PBS/10 μM Hoechst 33342 DNA-specific dye for 30 min at RT. Cell counts to evaluate any cell loss/lysis into culture media were also performed at each time point. All experiments utilized Rat-1 HO15.19 cell line as positive control for gamma-irradiation induced apoptosis (L. Penn, personal communication and Lee et al25).

Radiation survival in proliferating and non-proliferating irradiated cultures: the CFDA-SE flow cytometry proliferation assay

To determine if permanent arrest is associated with decreased clonogenic survival, a modification of the protocol by Chang et al19 utilized the CFDA-SE (CFSE) fluorometric dye.30,26 The CFSE compound (Molecular Probes, C-H57) is distributed throughout the cellular membranes and is divided evenly amongst subsequent progeny based on division of equal volumes of membrane at cell division. Multiple rounds of cell division are therefore represented by a corresponding decrease in total membrane fluorescence within a proliferating population, which can be detected by flow cytometry. Analyzing cell populations for relative fluorescence (FL1 (CFSE) parameter; increased non-proliferating cultures) and increasing side-scatter (SSC parameter; due to increased granularity associated with senescent cells) allows for flow cytometric analysis of senescent-like populations post-treatment.

Sub-confluent flasks of cells were trypsinized, collected and centrifuged into a pellet and 5 × 106 cells were re-suspended in 1 ml serum-free media plus 1 μl of stock solution (5 M CFSE in DMEM) at 37°C for 10 min with occasional inversion. Ice-cold RPMI 1640 + 10% FBS was then added prior to a subsequent cell centrifugation, and finally the cells were re-suspended in PBS. The cells were further washed twice in PBS, re-plated at low density (approximately 10% confluence) into multiple, 175 cm2
Falcon flasks for next-day irradiation (0–10 Gy). As a control, all cells (floating and adherent) from one untreated flask were harvested one day post-plating and analyzed with flow cytometry to find baseline fluorescence (FL1(CFSE)) intensity. Remaining cultures were followed until day 5 when all cells (floating and adherent) were harvested, analyzed and sorted by FACs into ‘non-proliferating’ (FL1(CFSE)lowSSClo), and ‘proliferating’ (ie all other cells than FL1(CFSE)highSSC hi) populations to determine clonogenic potential within each population. The 5 day time point was initially chosen as it represents the point at which surviving cells would begin to show their colony-forming ability.7 Sorted populations of DU-145 and PrSC were used to derive colonies in each sub-group as examples of epithelial and stromal (ie fibroblast-like) models. Pre-sort samples were analyzed on a Becton Dickinson Immunocytometry system FACStarPLUS or BDIS FAC S Vantage system. BDIS CELLQuest Software version 3.3 was used for both sorting and analysis. Cell lysates from adherent and floating cells in parallel cultures treated similarly (stained, irradiated with 0, 2 and 10 Gy) were also harvested on days 5–9, and analyzed for expression of the p16INK4a and p21WAF1 genes. Cultures were also stained for senescence-associated β-galactosidase (SA-β-gal) using the method of Chang et al,19 as a complementary biomarker of senescence-like death.

Results

Gene expression of apoptosis-related genes within irradiated prostate cell cultures

As different laboratories may contain variants of original cell stocks, we initially determined the p53 status of the malignant prostate epithelial cell lines using full-length DNA sequencing of exons 1–11 of the p53 gene. Consistent with previous reports, LNCaP cells were found to express two wild-type (WT) alleles, whereas the PC-3 cells were devoid of p53 protein expression due to chromosome 17p hemizygosity and a mutation in the remaining allele at codon 138 which results in a premature stop codon at position 169. The DU-145 cells express mutant (MT) p53 protein due to mutations at codons 223 and 274. We observed that the level of bax protein expression is p53-dependent following IR, given the increased expression in the WTp53-expressing LNCaP cells at 24 h following 10 Gy. This molecular response was attenuated or absent in the remaining PC-3 and DU-145 malignant epithelial cell lines, which have altered p53 protein expression. Of note, despite the western blots shown in Figure 1b, bax expression is detectable in DU-145 cells, albeit at a very low level. The response was also attenuated within the normal epithelial and stromal cultures (see Figure 1a, b and Table 1). Bcl-2 protein levels were low, yet detectable, using our antibody, and remained unchanged in all cell cultures following 10 Gy for periods up to 24 h following radiation (see Figure 1c, d). In other experiments in our laboratory, the relative levels of bax and bcl-2 protein have been confirmed at the mRNA level by RNA protection analyses

Minimal evidence of apoptotic cell death in irradiated prostate cultures

We next determined the level of radiation-induced apoptosis following various doses (2–20 Gy) and time points (0–96 h post-IR) using a distinct nuclear morphology assay (see Figure 2a) as previously described.24 A dose of 10 Gy has been shown to decrease clonogenic survival by 3 logs or more, in other malignant cell lines. The highly apoptotic adherent Rat-1 HO15.19 cell line formed a positive control for IR-induced apoptosis in these experiments and irradiated cultures were observed to contain decreasing numbers of cells over 24–96 h consistent with a rapid induction of cell death (data not shown). The level of apoptosis in Rat-1 HO15.19 control following 20 Gy became difficult to quantify at 24 h due to a large amount of cellular debris and may be underestimated, as presented in Figure 2b. The apoptotic response of our prostate cell panel at times of 24–96 h following 10 Gy as determined by morphology is presented in Figure 2b, and reveals that neither normal nor malignant prostate cells undergo high levels of apoptosis at any time point up to 96 h (a time at which the earliest colonies indicative of clonogenic survival can be detected). Additionally, careful total cell counts of adherent and floating cells within all the irradiated cultures suggested that there was no decrease at any time point up to 96 h in total cell number, which ruled out underestimating apoptotic responses (data not shown). Moreover, in contrast to the
Death in irradiated prostate epithelial cells

(a) bax protein expression in normal prostate epithelial (PrEC) and stromal (PrSC) cell cultures.

(b) bax protein expression in malignant prostate cell cultures (Rat-1 HO15.19 cell lysate shown as positive control).

(c) bcl-2 protein expression in normal prostate cell cultures.

(d) bcl-2 protein expression in malignant prostate cell cultures (human bcl-2 transfected Rat-1 fibroblast lysate shown as positive control).

Figure 1 Western blot analyses for apoptotic-related protein expression pre- and post-irradiation, in a panel of normal and malignant prostate cell cultures: (a) bax protein expression in normal prostate epithelial (PrEC) and stromal (PrSC) cell cultures; (b) bax protein expression in malignant prostate cell cultures (Rat-1 HO15.19 cell-lysate shown as positive control); (c) bcl-2 protein expression in normal prostate cell cultures; (d) bcl-2 protein expression in malignant prostate cell cultures (human bcl-2 transfected Rat-1 fibroblast lysate shown as positive control).

Rat-1 HO15.19 Myc-expressing control, there was no evidence for a dose-dependent increase in apoptosis in our panel of cultures (2 Gy range = 0–1%, 10 Gy range = 0–6%, 20 Gy range = 0–3%; see Figure 2c).

We observed a trend towards increased levels of apoptosis among the malignant cell lines as compared with the normal cell cultures, although these relative differences were not consistent. The data presented using the in vitro morphology assay was also supported by the absence of an apoptotic sub-G1 peak within DNA histograms of irradiated PC-3, DU-145 and LNCaP cells using flow cytometry, the lack of apoptotic morphology post-IR of the same cells as analyzed by the COMET DNA-damage assay, and minimal TUNEL staining of the PC-3 cell line either in vitro or in vivo (growing as a xenograft i.m., in a nude mouse host) following irradiation (data not shown). These results suggest that cellular apoptosis is not a major mechanism of IR-induced prostate cell death under the culture and treatment conditions used in this study.

Table 1 Apoptosis- and cell cycle-related gene expression in prostate cell cultures 24 h post-10 Gy irradiation, as compared to mock-irradiated controls

<table>
<thead>
<tr>
<th></th>
<th>p53</th>
<th>p21</th>
<th>bax</th>
<th>bcl-2</th>
<th>survivin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PrEC</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>PrSC</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Malignant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNCaP</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>PC-3</td>
<td>n.d.*</td>
<td>Low*</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
</tbody>
</table>

*n.d., non-detectable. *Low, barely detectable, no change post-XRT; ++ less than 2-fold change; ++ greater than 2-fold increase; ++ greater than 4-fold increase (quantified using relative densitometry).
Molecular analysis of checkpoint control in prostate cells

The p53 status in normal and malignant cells can be functionally related to either apoptosis or a G1 and G2 cell cycle arrest or checkpoint, and dependent on cell type, level of DNA damage or cell stressor. We therefore confirmed the presence or absence of a molecular p53-dependent G1 checkpoint in the normal and malignant prostate cells by determining the IR-induced upregulation of the cdk-inhibitory protein, p21WAF1/Cip1. Following IR-induced DNA damage, the p53 protein is stabilized post-transcriptionally, by alternate phosphorylation of its amino terminus at serine residues 15 and 20 through both direct and indirect actions of the ATM protein. Stabilized p53 protein can then lead to a transcriptional upregulation of the p21WAF1/Cip1 protein, which inhibits the G1 cyclin-ckd kinase complexes, and results in a G1 arrest secondary to hypo-phosphorylation of the pRB (retinoblastoma) protein. An increased level of p53 protein was observed following irradiation in all WTp53-expressing prostate cells and peaked at 2–6 h following IR-treatment (Figure 3). As expected, we observed a lack of p53 protein expression in irradiated null-p53 PC-3 cells and elevated endogenous levels of p53 protein in the MTp53-expressing DU-145 cells (consistent with a longer half-life for the MTp53 protein; Figure 3b), which were invariant post-IR. The PrEC and PrSC normal cultures both showed similar stabilization of the p53 protein relative to z-tubulin levels following irradiation. However, in the PrSC cells, the p21WAF1/Cip1 levels were upregulated and sustained at 24 h; in the PrEC cells, the response was relatively attenuated in level and was duration reaching almost pre-irradiation levels at 24 h (Figure 3a). We failed to observe an increase in p21WAF1/Cip1 expression in the MTp53-expressing and null-p53 cell lines (DU-145 and PC-3 respectively), however the WTp53-expressing LNCaP cell line did show a strong IR-induced upregulation of p21WAF1/Cip1.

Figure 2 (Continued).

(a) Nuclear morphology of selected cell populations stained with Hoechst 33342 at 48 h following 10 Gy showing evidence of apoptotic bodies and chromatin condensation in cells denoted with white arrows: left panel, irradiated LNCaP cells; right panel, irradiated Rat-1 HO15.19 positive control cells (magnification 1000x); (b) time course of IR-induced apoptosis following a dose of 10 Gy (each bar represents the mean and s.e.m.); (c) dose-dependence of IR-induced apoptosis assayed at 48 h (error bars omitted for clarity in three-dimensional plot).
The p53 and p21WAF1/Cip1 protein expression results were correlated to relative mRNA levels under similar culture conditions using RNA protection analyses in separate experiments (R Fan and RG Bristow, manuscript in preparation). These data support the idea that p53 can induce a molecular G1 checkpoint in both normal and malignant prostate epithelium, but highlights previous observations that, in certain normal epithelial cultures, p21WAF1/Cip1 expression may be attenuated relative to stromal cultures36 in a tissue-specific manner. This may relate to relative control of cell-cycle-related checkpoint and carcinogenesis in these two tissues.37

Figure 3 Western blot analysis of p53 and p21WAF1/Cip1 protein expression in (a) normal, and (b) malignant prostate cultures following 10 Gy irradiation.

SF2Gy and clonogenic survival for normal and malignant prostate cultures

Colony-formation after DNA damage measures the long-term survival of cells that are capable of unlimited proliferation and summarizes all types of IR-induced modes of cell death including apoptosis, mitotic-linked death (death after two or three aborted divisions followed by apoptosis or necrosis) and permanent growth arrest leading to necrosis.33 Consistent with selected reports,90,99 full clonogenic survival curves could not be generated for our LNCaP cell line, due to poor plating efficiencies, which made determination of colony-formation at doses greater than 2 Gy difficult. We encountered similar difficulties with PrEC normal epithelial cultures, which also had a poor plating efficiency (0.1–1%). Nonetheless, for all cell lines we were able to generate radiation survival data after a low, clinically relevant dose of 2 Gy (SF2), which approximates the daily fraction of radiation within curative radiation protocols. Full clonogenic survival curves following doses up to 10 Gy (a dose approximating a single-fraction palliative treatment) were derived for the PC-3, DU-145, PrSC and Rat-1 HO15.19 cell cultures and the results are plotted in Figure 4a. The SF2 values for all cell cultures are shown in Figure 4b. The normal stromal and epithelial cultures were the most radiosensitive based on SF2 values, even though they had the lowest levels of IR-induced apoptosis at similar doses. Furthermore, the apoptotic kill response in the DU-145 and Rat-1 HO Myc cell lines was quite disparate, despite similar clonogenic survival (see Figure 2b,c). We observed that the DU-145 and PC-3 cell lines with altered p53 status were more radioresistant than the WTp53-expressing LNCaP cell line. However, defined experiments with prostate cell lines that are isogenic save for p53 status are required before concluding that p53 status correlates with radiosensitivity in prostate cancer cells. In summary, we have observed that the overall level of apoptosis was not correlated to the overall level of clonogenic cell survival in our panel of cell lines. Plotting the relative cell kill following 2 and 10 Gy based on the two endpoints in Figure 4c illustrates the discrepancy between the results of two assays.

Permanent arrest in irradiated prostate cells

Given that apoptosis was not a dominant mechanism for clonogenic cell kill, we next investigated the contribution of terminal growth arrest associated with senescence-associated markers to clonogenic survival using both a representative stromal culture (PrSC cells), and a representative epithelial culture (DU-145 cells). The choice of these two cultures was predicated on the need for cell lines which would readily form colonies following flow cytometric sorting procedures at 2 and 10 Gy and to
maximize the tissue-specific and genetic differences relating to propensity for senescence, clonogenic cell kill and G1 checkpoint control.

Using a flow cytometric assay that simultaneously determines relative levels of FL1-CFSE fluorescence (ie proliferation) and SSC-parameter (cell granularity), we determined that up to 87% of the PrSC population was non-proliferating with an associated increased granularity (FL1(CFSE))SSC at 5 days, following a dose 10 Gy of radiation. In similarly plated cultures, only 14 and 8% showed the same cytometric profile in 2 Gy-treated or control cultures; these relative proportions being consistent over two or three representative experiments (Figure 5a, c).

By comparison, only 32% of DU-145 cells had a senescent-like cytometric profile, although upon closer inspection the data suggest that the vast majority (ie greater than 70%) of DU-145 cells were actually non-proliferating, but that these cells were inconsistently associated with increased granularity when compared with stromal PrSC cells (compare CFSE-fluorescence axis in both cell lines following 10 Gy in Figure 5). The FL1(CFSE))SSC cytometric profile was determined for 5% of DU-145 cells following 2 Gy and 3% in the untreated DU-145 population (Figure 5a, b; note that cells not growth-arrested following 2 Gy or in non-irradiated cultures may have undergone multiple rounds of division by this point differentially increasing the total 'proliferating' population). We then sorted and plated cells from the senescent-like, non-proliferating population relative to the remaining cells and observed that relative colony forming ability (plating efficiency) was decreased in the FL1(CFSE)SSC (non-proliferating), SLP population in a dose-responsive manner (see Table 2).

In normal fibroblasts (ie stromal cells), cells undergo decreasing proliferative potential with increasing passage in vitro, until finally undergoing senescence associated with increased granularity, positive SA β-gal staining and upregulation of the p16WAF1/CIP1 and p16INK4a proteins. Similar changes occur in normal fibroblast cultures when exposed to IR and has been referred to as a 'premature IR-induced senescence'. Although we observed greater SA β-gal staining intensity in an increased number of PrSC stromal cells following a dose 10 Gy (see Figure 6a), we found the endpoint to be highly variable across all cell lines and difficult to quantitate in epithelial cells (further data not shown; noted by others). Whether upregulation of one or both genes is absolutely required for senescence and whether the process is p53-dependent in all cell types remains controversial.

In order to determine whether similar gene expression changes occurred in PrSC and DU-145 cells, we performed western blot analyses of cell populations obtained in parallel with flow cytometric experiments at day 5. These analyses showed high, IR-invariant levels of p16INK4a protein in both PrSC and DU-145 cultures and a dose-dependent increase in p21WAF1/CIP1 levels in PrSC cells only (Figure 6b; confirmed using densitometry). We also analyzed p16INK4a expression in all of the cell cultures at 24 h following 10 Gy. In this case, levels of p16INK4a were either invariant (PrEC, LNCaP, DU-145) or undetectable (PrSC, PC-3) as confirmed by relative densitometry (data not shown). Long-term (up to 9 days) analysis of p16INK4a expression post-10 Gy irradiation DU-145 and PrSC demonstrated increasing
expression with time (data not shown), suggesting a time-dependent, though not dose-dependent, expression of p16\(^{INK4a}\). We conclude that cells within a terminally arrested population that have increased cellular granularity (SLP) are incapable of forming colonies and that the sub-population of proliferating cells without associated increased granularity defines the colony-forming potential of the entire irradiated culture.
Table 2: Relative colony forming ability within FL1(CFSE)5SSC5 (non-proliferating) and proliferating populations, as sorted by flow cytometry at day 5 post-irradiation.

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Dose (Gy)</th>
<th>Number of cells plated</th>
<th>Plating efficiency (proliferating)</th>
<th>Plating efficiency (non-proliferating)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrSC</td>
<td>0</td>
<td>100</td>
<td>0.33 ± 0.34a</td>
<td>0.03 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1000</td>
<td>0.06 ± 0.03</td>
<td>0.01 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1000</td>
<td>0.00 ± 0.00</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>DU-145</td>
<td>0</td>
<td>100</td>
<td>0.41 ± 0.35</td>
<td>0.15 ± 0.14</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1000</td>
<td>0.22 ± 0.17</td>
<td>0.01 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1000</td>
<td>0.01 ± 0.00</td>
<td>0.00 ± 0.00</td>
</tr>
</tbody>
</table>

aMean values and associated s.e.m.

Discussion

This is the first report, to our knowledge, documenting the relative role of apoptosis and terminal growth arrest as factors in determining overall clonogenic radiation cell survival for a panel of normal and malignant prostate cell cultures within the same laboratory setting. Using clinically relevant radiation doses, we observed a strong molecular apoptotic response in certain cell lines (bax and p53 upregulation in LNCaP cells, post-IR), yet this response did not correlate with quantitative determinations of apoptosis using morphology endpoints. The apoptotic response was not dose-responsive and did not correlate with final clonogenic cell kill. Further support for our data are the observations that manipulation of the ceramide-sphingomyelin and bcl-2-associated apoptotic pathways, or androgen ablation, can increase the apoptotic responses of prostate cells without altering final clonogenic radiation survival (K Shim and RG Bristow, unpublished observation2,24,44). Many groups have indicated that apoptosis may be the primary mode of death following gamma-irradiation only in specific cell types such as hematopoietic or lymphocytic cells, but not in stromal- or epithelial-derived tissues.$^{6,44-47}$ Furthermore, many attempts to alter apoptotic indices in epithelial- and stromal-derived tissues have failed to affect clonogenic survival. This suggests that, although the apoptotic pathway is intact in malignant prostate cells, other death mechanisms may override this response following irradiation.

It has been suggested that epithelial cell G_1 checkpoint may be abrogated or less efficient than that of its stromal counterpart, despite wild-type p53 status. Girinski et al.36 found an abrogated p21$^{WAF1/CIP1}$ induction and G_1 checkpoint in a panel of normal prostate epithelial cells as compared to a panel of normal prostate stromal cells following ionizing radiation. Meyer et al.48 reported similar findings for mammary epithelial vs stromal tissues. Within the same group, Romonov et al.49 observed an abrogated response to replicative crisis in the mammary epithelial cells suggesting a global defect in epithelial response to stress in comparison to its stromal counterpart. Our own experiments illustrated that, even for similar levels of p53 induction/stabilization, the p21$^{WAF1/CIP1}$ response in PrEC is greatly attenuated in comparison to its stromal counterpart. While the p53/ p21$^{WAF1/CIP1}$ responses for our panel of malignant cell lines were as previously reported, the LNCaP cell line's...
strong p21WAF1/Cip1 induction is still surprising in light of its epithelial nature. Girinski et al. suggested that epithelial cell response might be partially dependent on interactions with surrounding stromal tissues. LNCAp cells may have altered characteristics such that it does not require this interaction for a strong p21WAF1/Cip1 induction following irradiation. Furthermore, studying G1 arrest alone may not be sufficient, since cells lacking a functional G1 checkpoint can exhibit a G2 delay that may be linked to DNA repair and cellular survival following radiation. Indeed, although our results suggest increased survival for cells which lack the G1 checkpoint, defined studies in isogenic tissue culture or solid tumor models which differ in p53 status and specific G1, S and G2 checkpoint control experiments are required to prove this hypothesis, and are part of a current research program.

The success or failure of radical radiotherapy depends on the daily proportionate killing of tumor clonogens, which make up less than 1% of the total population of cells within a tumor. For example, it has been estimated that each gram of tumor contains approximately 1×10^7 tumor cells, with approximately less than 1×10^6 cells having clonogenic capacity. To date, no formal test or data exists for the pre-treatment determination of the number of clonogens existing prior to prostate radiotherapy. One can estimate that for a radiotherapy protocol using 35–40 fractions of 2 Gy, the clonogenic SF2 value should be less than 0.60 (ie death after 35 treatments $=0.6^{35}=1.7 \times 10^{-9}$) to cure a 1 g tumor, assuming equal killing per radiotherapy fraction. Our data suggests that the SF2 in vitro is less than 0.6 for the cell lines tested. However, the effective SF2 may be higher in vivo, due to cell–cell interactions, hypoxia, altered gene expression or cell cycle phase during irradiation and the absolute importance of these factors remains to be determined in radiotherapy cohorts. Our observed in vitro radiosensitivity of normal epithelial and stromal cultures in vitro may explain the observation of glandular atrophy, fibrosis and decreased glandular function observed in prostate glands following irradiation. Exquisite sensitivity of normal epithelial cells may also explain why final post-therapy nadir PSA values in patients who achieve local control are lower than the PSA values in men without a diagnosis of prostate cancer, reflecting residual normal gland function after IR-induced cell kill.

In our experiments, relative clonogenic cell kill was approximated by quantitative endpoints of a dose-responsive terminal growth arrest, in which certain cells acquired a senescent-like phenotype. Terminal growth arrest, rather than apoptosis, may begin to explain the slow kinetics of decreasing PSA values following radiotherapy over 12–16 months following treatment. Recent experiments by Pollack and colleagues are consistent with our data, as the supra-additive radioreponses observed in LNCAp and Dunning rat R3327-G tumor models following combined androgen withdrawal and fractionated radiation (mimicking clinical stage T3-T4 prostate cancer treatment protocols which increase overall patient survival) were secondary to factors which determined post-treatment cellular growth arrest rather than apoptosis.

If a surrogate measure of radiation sensitivity was developed to use prior to, or early during, the course of radiotherapy, specific measures could be used to increase radiocurability or abort radiotherapy altogether in favor of radical prostatectomy (if medically feasible).Crook et al. found that markers of proliferation (PCNA, MIB-1) in post-radiotherapy biopsies from 496 men were an independent indicator of treatment failure, but indeterminate biopsies do occur which complicate interpretation as to whether viable clonogenic cells remain 2–2.5 y following radical radiotherapy. Our data suggests that other surrogate predictive factors might include molecular or cellular senescence or cell cycle arrest factors, such as the cdk inhibitors, p21WAF1 or p16INK4a that are activated by DNA damage and lead to altered proliferation and terminal growth arrest.

At present, no predictive test can determine which cells in the tumor are prostate clonogens rather than non-clonogens, however we believe that terminal growth arrest should be further investigated as a major mechanism of cell death in addition to apoptosis, in protocols that utilize radiotherapy. If proven to be important in prostate cancer, the former mechanism of cell death might be augmented in vivo using radiotherapy in conjunction with inhibitors of prostate cancer cell proliferation such as retinoic acid, antisense to cdk inhibitors, inhibitors of telomerase, or inhibitors of histone deacetylase (HDCA). Indeed these agents are currently being prospectively tested as single agents or in combination with chemotherapy in phase I/II trials; our results suggest further studies of the efficacy of these agents in combination with radiation as a novel prostate treatment strategy are necessary.

Acknowledgements

The authors would like to thank Dr L. Chung for donating our LNCAp cell line, and Dr L. Penn and F. Soucie for the Rat-1 HO15.19 cell line. Special thanks to S. Al Rashid, C. Cantin, and F. Jalali for help in selected assays and guidance. These studies were supported by the National Cancer Institute of Canada, the Princess Margaret Hospital Foundation, and the US Army DOD Prostate Research Program.

References

Prostate Cancer and Prostatic Diseases

10 Grossfeld GD et al. Locally recurrent prostate tumors following either radiation therapy or radical prostatectomy have changes in Ki-67 labeling index, p53 and bcl-2 immunoreactivity. J Urol 1998; 159: 1437 - 1443.

16 Tannock IF, Lee C. Evidence against apoptosis as a major mechanism for reproductive cell death following treatment of cell lines with anti-cancer drugs. Br J Cancer 2001; 84: 100 - 105.

25 Lee ST et al. Bcl-2 targeted to the endoplasmic reticulum can inhibit apoptosis induced by Myc but not etoposide in R1 bisfot. Oncogene 1999; 18: 3520 - 3528.

35 Sherlock MT, West CM. Ability to undergo apoptosis does not correlate with the intrinsic radiosensitivity (SF2) of human cervix tumor cell lines. Int J Radiat Biol 2001; 78: 1789 - 1802.

Defective DNA Strand Break Repair after DNA Damage in Prostate Cancer Cells: Implications for Genetic Instability and Prostate Cancer Progression

Rong Fan, Tirukalikundram S. Kumaravel, Farid Jalali, Paula Marrano, Jeremy A. Squire, and Robert G. Bristow

ABSTRACT

Together with cell cycle checkpoint control, DNA repair plays a pivotal role in protecting the genome from endogenous and exogenous DNA damage. Although increased genetic instability has been associated with prostate cancer progression, the relative role of DNA double-strand break repair in malignant versus normal prostate epithelial cells is not known. In this study, we determined the RNA and protein expression of a series of DNA double-strand break repair genes in both normal (PrEC-epithelial and PrSC-stromal) and malignant (LNCaP, DU-145, and PC-3) prostate cultures. Expression of genes downstream of ATM after inducing radiation-induced DNA damage reflected the p53 status of the cell lines. In the malignant prostate cell lines, mRNA and protein levels of the Rad51, Xrcc3, Rad52, and Rad54 genes involved in homologous recombination were elevated ~2- to 5-fold in comparison to normal PrEC cells. The XRCCI1, DNA polymerase-β and -δ proteins were also elevated. There were no consistent differences in gene expression relating to the nonhomologous end-joining pathway. Despite increased expression of DNA repair genes, malignant prostate cancer cells had defective repair of DNA breaks, alkali-labile sites, and oxidative base damage. Furthermore, after ionizing radiation and mitomycin C treatment, chromosomal aberration assays confirmed that malignant prostate cells had defective DNA repair. This discordance between expression and function of DNA repair genes in malignant prostate cancer cells supports the hypothesis that prostate tumor progression may reflect aberrant DNA repair. Our findings support the development of novel treatment strategies designed to reinstate normal DNA repair in prostate cancer cells.

INTRODUCTION

The genetic determinants of prostate tumor progression are still poorly understood (1). However, numerous models of prostate carcinogenesis suggest that increasing chromosomal instability with the acquisition of mutations and chromosomal aberrations drives progression from preneoplasia to neoplasia (2). Furthermore, increased levels of chromosomal aberrations can be associated with decreased telomere length in high-grade prostate intraepithelial neoplasia, and acquired centrosome dysfunction is associated with prostate cancer progression and dissemination (3, 4). Human cells have therefore evolved complex signaling responses to both endogenous and exogenous DNA damage to preserve genomic integrity. Tumor progression in a number of epithelial malignancies has been associated with the prostate cancer progression, BRCA1 and BRCA2, and the sister chromatid or homologous recombination pathways (5). Defective DNA repair as a determinant of prostate cancer progression has not been extensively studied. Several groups have observed defective mismatch-repair in prostate cancer cell lines (8, 9). Other data support DNA polymorphisms in the Xrcc1, Ogg1, and DNA polymerase-β genes (involved in base excision repair or DNA single-strand break repair) as risk factors for prostate cancer (8, 10, 11). However, data are lacking concerning the homologous recombination and nonhomologous recombination (i.e., end-joining) pathways, which are involved in the repair of DNA double-strand breaks.

Nonhomologous end-joining repair requires little or no homology on the ends of the strands being joined and involves two main discrete repair protein complexes (1): the DNA-PK/XRCC4/LigIV complex and (2) the MRE11/RAD50 complex (12). In homologous recombination, extensive homology is required between the region of the DNA double-strand break and the sister chromatid or homologous chromosome from which repair is directed. Homologous recombination involves the BRCA2, RAD51, RAD52, RAD54, RAD55-57, and RPA proteins and the RAD51 paralogs, XRCC2/3 and RAD51B/C/D. The homologous recombination pathway predominates in the late S/G2 phase of the cell cycle and provides relatively error-free repair. In contrast, the nonhomologous end-joining pathway predominates in the G1 phase of the cell cycle (13). Recent data suggest an interplay between the two pathways dependent on cell type and initial versus late times after induction of DNA double-strand breaks (11). Cells defective for either homologous recombination or nonhomologous end-joining show increased rates of mutagenesis and chromosomal instability, which could relate to the propensity for acquired genetic instability during prostate carcinogenesis and tumor progression. Consistent with a possible role for DNA double-strand break repair in prostate cancer progression, BRCA1 and BRCA2 mutations are associated with an increased risk of prostate cancer and development of an aggressive disease course (2, 13-15).

Our laboratory has shown previously that normal and malignant prostate cells preferentially respond to DNA damage by undergoing terminal growth arrest rather than apoptosis (16). This may allow for attempted DNA repair during cell cycle arrest as a response to DNA damage. However, in malignant cells with aberrant cell cycle checkpoint control, defective DNA double-strand break repair could increase genetic instability as part of a "mutator" phenotype (17). We hypothesized that one of the critical steps in prostate tumor progression may be the loss of the normal repair response to DNA damage and that specific defects in DNA double-strand break repair would be associated with prostate malignancy.

Herein, we show that malignant prostate cancer cells have increased...
expression of homologous recombination-related and base excision repair-related genes independent of p53 status, G1 cell cycle checkpoint control, and relative cell proliferation. However, despite expressing high levels of DNA repair proteins, malignant cells have a decreased capacity for DNA double-strand break, DNA single-strand break, and base excision repair and acquire discrete chromosomal aberrations after exposure to DNA-damaging agents. Our findings support inappropriate DNA repair as a potential determinant of prostate cancer progression.

MATERIALS AND METHODS

Prostate Cell Cultures and DNA-Damaging Treatments. All of the cell cultures were incubated in vented tissue culture flasks under 5% CO2 and 37°C culture conditions as described previously (16). LNCaP cells were maintained in T-media (Life Technologies, Inc., Gaithersburg, MD) and supplemented with 10% fetal calf serum. PC-3 and DU-145 cells were purchased from American Type Culture collection (Manassas, VA) and supplemented with 10% fetal calf serum in Ham’s F12K or a-Medium Eagles Medium, respectively. PrEC (normal prostate epithelial cells) and PrSC (normal prostate stromal cells) were purchased from Promega (Madison, WI). Cell cultures have limited proliferative potential in culture and decrease in proliferation after passages 5 to 8 from frozen stock. Approximate doubling times for cell cultures under these conditions were as follows: PrEC, 48 to 72 hours; PrSC, 18 hours; LNCaP, 26 hours; PC-3, 24 hours; and DU-145, 18 hours (16). Asynchronous cultures were irradiated, or treated with mitomycin C, at 16 to 20 hours after plating to reduce the immediate effects of trypanocytosis. Cells were either mock irradiated or irradiated with 0 to 10 Gy under aerobic conditions using a 137Cs irradiator at ~1 Gy/min at room temperature (16). Mitomycin C was prepared as a stock solution of 0.5 mg/mL in distilled water before each use.

Quantification of Gene Expression by RNase Protection Assays. Asynchronously growing cells were harvested at 70% to 80% growth confluence from either nonirradiated cultures or at 0 to 24 hours after irradiation. RNase protection assays were carried out as per the manufacturer’s instructions (BD Biosciences-PharMinigen, San Diego, CA). Total RNA was first extracted using Trizol reagent (Life Technologies, Inc.). Antisense riboprobes (Rad50, Mre11, Rad52, Rad54, Rad55, Xrc2, Xrc3, Rad51B, Rad51C, L32, and Gapdh from DBSR1 set; Actb, Nbs1, Xrc2, Xrc3, Xrc9, Ligase IV, Xrc4, Ku70, DNA-PKcs, Ku86, L32, and Gapdh from DBSR2 set; and Becl-x, p33, Gadd45, c-jun, p21WAF1, Bax, Becl-2, McI-1, L32, and Gapdh from HSTRESS set) were synthesized with multiprobe template sets and purified by MAXIscript (Ambion Inc., Houston, TX). Five micrograms of sample RNA were hybridized with 2,000 counts per minute of the synthesized multiriboprobe in buffer (300 mmol/L NaOH, 1 mmol/L EDTA, 10 mmol/L Tris base, 10% DMSO, and 1% Triton X-100 [pH 9.0]) at pH 9.0. The slides were then placed in 1× Tris-buffered boric acid-EDTA and electrophoresis for 15 minutes at 32V (current ~25mA). After electrophoresis, the slides were dried and stored until scoring. The slides were finally stained with ethidium bromide (2 ng/mL) and the comets scored under a Zeiss fluorescence microscope coupled to KOMET 5.0 software (Kinetic Imaging, Durham, NC). The alkaline comet assay detects alkali-labile sites in the DNA, which are a global assessment of DNA single-strand breaks, DNA double-strand breaks, and DNA base damage. In brief, cells were suspended in 0.5% low melting-point agarose and spread on glass microscope slides precoated with 1% normal melting agarose. Slides were then treated overnight with lysis solution (2.5 mol/L NaCl, 100 mmol/L EDTA, 10 mmol/L Tris base, 10% DMSO, and 1% Triton X-100 [pH 9.0]) at pH 9.0. The slides were then placed in 1× Tris-buffered boric acid-EDTA and electrophoresed for 30 minutes at 32V. After electrophoresis, the slides were dried and stored until scoring. The slides were then stained with ethidium bromide (2 ng/mL; Sigma-Aldrich) before scoring.

Repair of DNA base damage was scored by treating the DNA with a lesion-specific glycosylase (formamidopyrimidine-DNA glycosylase). This enzyme recognizes oxidative damage as specific DNA base modifications including 8-oxo-7,8-dihydro-2′-deoxyguanosine, 7-methylguanine, 3-OH-cytosine, and 5-OH-uracil. Cells were suspended in 0.5% low melting-point agarose and spread on glass microscope slides precoated with 1% normal melting agarose. After immersion in lysis solution (2.5 mol/L NaCl, 100 mmol/L EDTA, 10 mmol/L Tris base, 10% DMSO, and 1% Triton X-100) at 4°C for 1 hour to remove cellular proteins, the slides were immersed in electrophoresis buffer (300 mmol/L NaOH, 1 mmol/L EDTA [pH >13]) for unwinding DNA. Finally, single cells were subjected to electrophoresis (25 V; 300 mA) for a total of 20 minutes. Neutralized and dehydrated slides were finally stained with ethidium bromide (2 ng/mL; Sigma-Aldrich) before scoring.

Repair of DNA base damage was scored by treating the DNA with a lesion-specific glycosylase (formamidopyrimidine-DNA glycosylase). This enzyme recognizes oxidative damage as specific DNA base modifications including 8-oxo-7,8-dihydro-2′-deoxyguanosine, 7-methylguanine, 3-OH-cytosine, and 5-OH-uracil. Cells were suspended in 0.5% low melting-point agarose and spread on glass microscope slides precoated with 1% normal melting agarose. After immersion in lysis solution (2.5 mol/L NaCl, 100 mmol/L EDTA, 10 mmol/L Tris base, 10% DMSO, and 1% Triton X-100) at 4°C for a minimum period of 1 hour and then equilibrated with enzyme reaction buffer (HEPES 9.5g, KCI 7.5 g, and EDTA 0.5 mmol/L). Bovine serum albumin fraction V was then added [0.2 ml per mL (pH 8.0)] for 10 minutes on ice. The slides were then washed in 2× Tris-buffered EDTA-EDTA for 5 minutes each and, finally, ethidium bromide. The ratio of DNA migration between the enzyme treated and buffer control slides gives an
estimate of the formamidopyrimidine-DNA glycosylase sensitive sites in the sample.

For all of the comet assays, the comet parameter, “Olive Tail Moment” (i.e., % DNA X distance of center of gravity of DNA) was used as the indicator of DNA damage (19). One hundred consecutive cells were scored at random from the middle of each slide for two to three independent experiments and the final result expressed as the (mean of the median Olive Tail Moment values) ± SEM of the medians. For graphical purposes in the formamidopyrimidine-DNA glycosylase assay, the difference between the Olive Tail Moment for formamidopyrimidine-DNA glycosylase-treated slides versus the Olive Tail Moment of same population treated with buffer alone were plotted as the final end point of formamidopyrimidine-DNA glycosylase-sensitive sites. Statistical differences in Olive Tail Moment values were determined using non-parametric Mann-Whitney analyses.

Chromosomal Aberration Assays. The frequency of spontaneous, ionizing radiation-induced (4 Gy) or mitomycin C-induced (40 µg/mL, for 24 hours) chromosomal aberrations were determined in exponentially growing cell cultures of PrSC, LNCaP, DU-145, and PC-3. The cells were harvested by trypsinization 24 hours after treatment and incubation with 1 µg of Colcemid/mL for 2 hours to collect metaphase spreads for analysis. The cells were fixed, after treatment with hypotonic solution (0.06% sodium citrate), in EtOH-glacial acetic acid (3:1). Air-dried preparations were made and slides were stained 4', 6-diamidino-2-phenylindole/Vectashield antifade mixture (Vector Laboratories, Burlingame, CA). For chromosomal aberrations, 25 mitotic cells were analyzed for each treatment per cell line.

Immunohistochemistry of Prostate Xenografts. For xenograft studies, 1 x 10^6 of PC-3 or DU-145 cells were injected i.m. into the gastrocnemius muscle (calf of hind leg) of BALB/c-nu mice. Tumors were mock-irradiated or irradiated at a weight of 0.5 g with 20 Gy using a 250KvP X-ray unit without anesthesia. For irradiation, the mouse was lightly restrained in a lucite holder box with lead shielding, such that only the tumor-bearing hind leg was within the irradiation volume. Tumors were then excised and placed immediately in formalin for subsequent fixation and immunostaining using primary RAD51 antibodies (Ab-1, Oncogene Research Products, San Diego, CA) and secondary horseradish peroxidase antibodies for immunodetection. All of the studies were in ethical compliance with the PMH-UHN Animal Care Committee.

RESULTS

Gene Expression Relating to Atm-p53 DNA Damage Pathways in Prostate Cell Cultures. To initially test the utility of RNase protection assays in quantifying gene expression in our panel of two normal (PrEC-epithelial and PrEC-stromal) and three malignant (LNCaP, PC-3, and DU-145) prostate cell lines, we first quantitated ionizing radiation induction of genes associated with the Atm-p53 DNA damage signaling cascade. We have reported previously the apoptotic and G1 checkpoint responses in these cell cultures (16). All five of the cell cultures undergo minimal and nondifferential apoptosis (<5%) after doses of up to 20 Gy (measured 12-96 hours after ionizing radiation); yet the three malignant cell lines have the highest clonogenic survival (i.e., mean SF2Gy values ranging from 0.40 to 0.55 relative to the values for PrSC and PrEC at 0.25 and 0.10, respectively).

PrSc, PrEc, and LNCaP cells express two wild-type p53 alleles and have an intact G1 cell cycle arrest checkpoint with increased p21WAF protein expression after irradiation. PC-3 cells are devoid of p53 protein expression due to chromosome 17p hemizygosity and a mutation in the remaining allele at codon 138 that results in a premature stop codon at position 169. DU-145 cells express high levels of trans-dominant, mutant (MT) p53 proteins due to missense mutations at codons 223 and 274. Both latter cell lines lack a G1 checkpoint and do not show increased p21WAF protein expression after DNA damage (15). Using the RNase protection assay analyses at 4 hours after 10 Gy, we observed increased expression of p21WAF, Gadd45, Bax, and Bcl-2 genes in the WTP53-expressing cells (i.e., PrSc, PrEc, and LNCaP), whereas similar increases in gene expression were not observed for the null-p53 and MTp53-expressing, PC-3 and DU-145 cells (see Fig. 1A and B).

The RNase protection assay also confirmed a previous observation that the relative up-regulation of p21WAF in PrEC epithelial cells was attenuated in comparison to PrSc stromal cells (16). Neither Atm nor p53 RNA was increased after irradiation, consistent with post-translational modification as the basis for activation of these proteins (6). Furthermore, the level of p53 RNA in PC-3 (null for p53) was at background. These results confirmed previous p21WAF expression data from our laboratory for the same cell lines (16). We also confirmed a dose- and time-dependent (i.e., maximal induction at 4-6 hours after ionizing radiation) induction of both RNA and protein relating to p21WAF in the LNCaP cell line (Fig. 1B inset and data not shown). We conclude that the RNase protection assay is a sensitive indicator of gene expression under the conditions of DNA damage and repair within our panel of prostate cell cultures.

Expression and Functional Assessment of DNA Double-Strand Break and DNA Single-Strand Break Repair Proteins in Prostate Cultures. The initial data relating to the Atm<p53> stress response provided confidence in the use of RNase protection assay for quantification of gene expression relating to the nonhomologous (nonhomologous end-joining) and homologous recombination pathways of DNA double-strand break repair. We observed a significant and differential increase (approximately 2-3 fold) in homologous recombination associated genes (i.e., Rad51, Rad54, Xrc3, and Rad52) in malignant prostate cell cultures at both the RNA and protein levels when compared with PrEC cells (see Fig. 2). Gene expression relating to the MRN complex (Mre11/Rad50/Nbs1-p95) was not differentially expressed. We also found little evidence for increased basal mRNA or protein expression of the nonhomologous end-joining-related Ku70, Ku80, DNA-PKcs, XRC4, or LIGase IV genes (see Fig. 3A and data not shown). We observed elevated levels of the DNA single-strand break repair protein XRC1 in malignant cultures (Fig. 3A). In contrast to a previous report (20), homologous recombination and nonhomologous end-joining gene expression at both the RNA and protein levels was invariant after irradiation (Fig. 2A and data not shown). We conclude that the endogenous expression of the homologous recombination-related Rad51, Rad52, Rad54, Xrc3, and Xrc1 genes are increased at RNA and/or protein levels in malignant prostate cell lines.

We next compared the panel of cell cultures for their relative ability to repair DNA double-strand breaks, DNA single-strand breaks, and alkali-labile sites using the Comet assay under neutral or alkaline lysis conditions (Fig. 3B and C). Despite similar amounts of initial DNA damage, the malignant cultures had significantly decreased capacity in repairing ionizing radiation-induced DNA damage. These data suggest that despite high levels of homologous recombination-related and XRCC1 proteins, malignant prostate cells are defective in the rejoining of DNA double-strand breaks and alkali-labile sites (the latter reflecting DNA single-strand breaks and DNA base damage).

Base Excision Repair in Malignant Prostate Cultures. As the alkaline Comet assay also scores abasic sites, we used the formamidopyrimidine-DNA glycosylase Comet assay to directly determine whether the malignant cultures had relatively increased spontaneous and ionizing radiation-induced levels of oxidative damage. Treating DNA with formamidopyrimidine-DNA glycosylase unmasks nonrepaired oxidative damage as 8-oxo-7,8-dihydro-2'-deoxyguanosine, 7-methyl-guanine, 5-OH-cytosine, or 5-OH-uracil DNA lesions (19). The results shown in Fig. 4A are consistent with a decreased capacity for base excision repair of these lesions in the malignant cultures. This defect was not related to decreased levels of the base excision repair-related p53, APE/REF1, or OGG1 proteins. In fact, the malignant
Fig. 1. Gene expression relating to *Amo*-*p53* signaling in malignant and normal prostate cultures using RNase protection assay analyses. A, representative example of RNase protection assay blot whereby 32P-labeled multiprobe probes were hybridized to the total mRNA derived from mock-irradiated (NIR) or irradiated (IR: 10 Gy-4 hours) asynchronously growing prostate cultures. Specific multiprobe probes used in this analysis are indicated in the far left margin of the blot aside the corresponding gene band of interest. Also shown are lanes containing probed sequences within HeLa cells (positive control), Yeast (Var, negative control), and the RNA probes themselves (far right). *Gapdh* was a housekeeping gene that served as internal control for densitometric quantitation of results. Note IR-induced *p21WAF* signal in WT-*p53* expressing PrSC, PrEC, and LNCaP cell lines consistent with wild-type *p53* status and an intact G1 checkpoint in these cells. B, quantitation of *Arabidopsis*-dependent stress response based on RNase protection assay analyses of mRNA in normal and malignant prostate cells. Top figure shows basal (i.e., nonirradiated) levels of mRNA expression. Shown are mean gene expression values based on at least three independent experiments. Bars, ±1 SEM. Bottom panel, shows mean values of expression of same genes relative to basal levels at 4 hours after 10 Gy. Significantly increased expression was observed for the *p21WAF* gene in WT-*p53*-expressing cells (PrSC, PrEC, and LNCaP), which is both time-dependent (see insert for *p21WAF* protein expression over 6 hours post-10 Gy in LNCaP cells) and dose dependent from 2 to 10 Gy (data not shown; Mann-Whitney test; *P* < 0.005). *Bac, Bcl-2*, and *Gadd45* mRNA in these cell lines was also significantly increased after irradiation (Mann-Whitney test; *P* < 0.05).

DNA Repair and Prostate Cancer

Cells lines had increased levels of DNA-polymerase-β and -δ, two key enzymes involved in short-patch and long-patch base excision repair (ref. 21; Fig. 4B and C). We also assessed whether increased expression of homologous recombination-related or base excision repair-related proteins could be secondary to cell cycle bias given that these proteins are optimally expressed in S and G2 phases of the cell cycle (13). In comparing the cell culture doubling times in *vivo* with mitotic and S-phase biomarkers (phosphorylated-histone 3 and RNase protection assay proteins, respectively), we did not observe any correlation between increased DNA repair protein expression and cell proliferation indices among the five cultures (Fig. 4B).

Chromosomal Repair and Heterogeneity of RAD51 Protein Expression In vivo. Homologous recombination and nonhomologous end-joining events can be scored using integrated genetic substrates (22) or characterization of distinct types of chromosomal aberrations after cellular exposure to mitomycin C or ionizing radiation (known to induce DNA cross-links or predominantly DNA strand breaks, respectively). We used the chromosomal damage assay, as it directly compares the capacity for homologous recombination and nonhomologous end-joining in both malignant and normal cells. Normal PrSc and PrEC cells are difficult to transfect with DNA repair plasmid reporter substrates (22). The metaphase spreads in Fig. 5A show representative structural cytogenetic aberrations, which are quantified in Table 1 for four of the five cultures. The protracted doubling time of PrEC cells precluded their assessment in this assay. All three malignant cell lines show an increased incidence of a variety of aberrations associated with aberrant homologous recombination occurring in the S and G2 phases of the cell cycle phases including: chromatid breaks; double minutes; tri-, quad-, and complex-radial chromosomes; abnormal telomeric associations; and centromere fissions. Furthermore, nonhomologous end-joining–associated defects occurring within the G1 cell cycle phase were also observed as increased chromosomal breaks and di- or tricentric chromosomes in malignant cultures. These data support our hypothesis that defects in DNA double-strand break repair...
Taken together, our data suggest that RAD51 expression in xenografts before and after 20 Gy irradiation was not stained for the RAD51 protein in histologic sections derived from the PC-3 or DU-145 xenografts irradiated under in vivo conditions. Taken together, our data suggest that RAD51 expression in vivo can be additionally modified by intratumoral biology and physiology with the three-dimensional tumor architecture.

Figure 2

A

- **Top panel:** shows relative basal homologous recombination gene expression based on RNase protection assay analyses in normal and malignant prostate cells. Significant increased mRNA expression of Rad51, Rad54, Rad52, and Xrc3/C in the malignant prostate cultures in comparison with normal cell cultures (Mann-Whitney test, P < 0.05). Irradiated (IR) induction of the Rad51, Rad54, Rad52, and Xrc3/C genes was observed solely in the PrEC atromal cell line (Mann-Whitney test, P < 0.05), but not the other epithelial cell lines (data not shown; Supplementary Fig. 1A).
- **Bottom panel:** shows Western blot of selected homologous recombination proteins in which protein expression is invariant before (mock-irradiated, NIR) or at 4 hours after 10 Gy (IR). α-Tubulin is shown as the protein loading control. Increased p21WAF protein expression serves as an irradiation control whereby p21WAF protein was elevated in cell lines with wild-type p53 gene status. Bars, ± SEM.

Figure 3

A

- **Top panel:** shows relative density of DNA repair in normal and malignant prostate cells. Significant increased mRNA expression of Rad51, Rad54, Rad52, and Xrc3/C in the malignant prostate cultures in comparison with normal cell cultures (Mann-Whitney test, P < 0.05). Spike of XRCC3 protein expression was consistently elevated in all three of the malignant cell lines. Neither nonhomologous end-joining– nor DNA single-strand break-related protein expression was additionally induced at 4 hours after a 10 Gy dose (data not shown).
- **Bottom panel:** represents the relative expression compared with the PrEC cell line. The level of XRCC3 protein expression was consistently elevated in all three of the malignant cell lines.

B

- **Top panel:** shows relative density of DNA repair in normal and malignant prostate cells. Significant increased mRNA expression of Rad51, Rad54, Rad52, and Xrc3/C in the malignant prostate cultures in comparison with normal cell cultures (Mann-Whitney test, P < 0.05). Spike of XRCC3 protein expression was consistently elevated in all three of the malignant cell lines. Neither nonhomologous end-joining– nor DNA single-strand break-related protein expression was additionally induced at 4 hours after a 10 Gy dose (data not shown). B, neutral Comet assay of malignant and normal prostate cells before and after 10 or 25 Gy of ionizing radiation. Plotted is the Olive Tail Moment (OTM), i.e., % DNA × distance of center of gravity of DNA on the Y axis as the indicator of the presence of DNA double-strand breaks for a given time and radiation dose. No significant differences exist between the five cell lines for OTM values at baseline or immediately after irradiation (i.e., time = 0). However, the residual number of DNA double-strand breaks at 24 hours after 25 Gy is greater in the three malignant cultures in comparison with the normal cultures (Mann-Whitney test, P < 0.05). C, alkaline (pH >13.0) Comet assay of malignant and normal prostate cells before and after 6 Gy of ionizing radiation. Similar to B above, the OTM on the Y axis as the indicator of the presence of alkali-labile sites, DNA-double-strand breaks, DNA single-strand breaks, and DNA base damage after irradiation. The residual damage at 24 hours after irradiation in the three malignant cultures is greater than that of the control PrEC cultures (Mann-Whitney test, P < 0.05). For both B and C, 100 consecutive cells were scored at random from the middle of each slide for two to three independent experiments and the final result expressed as the mean of the OTM median values; bars, ± SEM.
Dna repair and prostate cancer

Discussion

This is the first study to report defective DNA double-strand break, DNA single-strand break, and base damage repair in malignant prostatic cancer cells and associate these defects with increased chromosomal aberrations and genetic instability. Our data are consistent with homologous recombination-related and base excision repair-related protein dysfunction in malignant cells as a biomarker of a "mutator" phenotype driving genomic instability after cytotoxic insult. These findings are supported by previous data in which LNCaP cells had a decreased ability to repair restriction-enzyme-mediated DNA double-strand breaks based on a fluorescence-based plasmid reconstitution assay (24). Additionally, during the preparation of this article, Trzebiak et al. (25) reported that PC-3 and DU-145 cells have defective excision of oxidative lesions with altered levels of superoxide dismutase and glutathione peroxidase supporting our observation of decreased base excision repair in these cell lines. Other reports in the literature within panels of cell lines with varying histopathologic type have reported heterogeneity in DNA polymerase-β activity and elevated PARP expression (26-28).

There have been previous reports of elevated levels of Rad51 mRNA or RAD51 protein expression within human tumor cell lines (29, 30). However, to our knowledge, this is the first direct comparison of DNA double-strand break gene expression within normal and malignant cells from the same histopathologic type linked to a functional assessment of DNA double-strand break repair. Altered stoichiometry of repair proteins or a disconnect between cell cycle checkpoint control and DNA repair may be the basis for the observed discordance between repair protein expression and function (13, 31). Altered homologous recombination-related protein expression might indirectly lead to altered nonhomologous end-joining activity given the interplay between the two pathways during DNA double-strand break repair (32, 33). Maintenance of survival in malignant cells, despite high levels of DNA double-strand breaks and chromosomal aberrations after DNA damage, is probably secondary to loss of potentially deleterious accentric fragments or other chromosomal abnormalities within micronuclei at 48 to 72 hours after irradiation (34, 35).

In isogenic systems, the relationship among Rad51 expression, homologous recombination, and induction of chromosomal aberrations remains controversial (29, 36-38). This may relate to variability in genetic background or the plasmid homologous recombination reporter substrates used for study (22). Transfection studies with forced overexpression of Rad51 have led to observations of both increased and decreased frequencies of homologous recombination, arguing for Rad51 acting as either a promoter or repressor of genetic instability and tumor progression (37, 39). Other transfection studies suggested that Rad51, XrcC3, and XrCC1 protein overexpression leads to increased p21WAF expression and a decreased apoptotic response with resulting radioresistance (23, 40, 41). However, our data do not support such a direct correlation. Our malignant cultures, which overexpress homologous recombination-related proteins have varying G1 checkpoint control and p21WAF expression, and all five of the cultures are resistant to apoptosis (16). The increased DNA repair protein expression observed in the malignant cell lines was independent of p53 status, G1 checkpoint control, androgen responsiveness, clonogenic radiation cell survival, cell proliferation, and susceptibility for radiation-induced apoptosis (16, 20, 42).

It had also been hypothesized that Rad51 overexpression might abrogate Rad51-p53 interactions and override the G1 checkpoint leading to aneuploidy and high levels of homologous recombination (37, 43). The decreased levels of MMS- and ionizing radiation-induced homologous recombination-related chromosomal aberrations in the G1 checkpoint-proficient LNCaP cultures, relative to the G1 checkpoint-deficient DU-145 and PC-3 cultures, would support this hypothesis. Additionally, our observed overexpression of the Rad51, XrcC3, Rad52, and Rad54 genes at both the RNA and protein level suggests that loss of control of homologous recombination expression in malignant cells is operational at the transcriptional level and may be secondary to altered activity of transcription factors in cancer cells. Rad51 gene overexpression can be mediated by Bcr/Abl and STAT5-dependent transcription in addition to inhibition of caspase-3-dependent Rad51 protein...
cleavage (44, 45). Similar mechanisms may exist for other homologous recombination-related genes in prostate cancer. Indeed, preliminary data in our laboratory suggests that endogenous BRCA1 and BRCA2 protein expression are also elevated in the three malignant cell lines.

Our results implicate DNA repair, and particularly DNA double-strand break repair and homologous recombination, as a potential factor in prostate tumor progression. Importantly, our data may have implications for both prostate cancer diagnosis and therapy. Profiling of DNA repair protein expression may be useful to discover new biomarkers of genetic instability, malignant progression, and aggressive tumor phenotypes (46, 47). We would also hypothesize that prostate intraepithelial neoplasia (PIN) may have altered frequencies of homologous recombination and defective DNA double-strand break repair when compared with nonmalignant epithelium. Unfortunately, the paucity of cell lines for the study of prostatic intraepithelial neoplasia or early stage prostate cancer prevents us from making this direct link in vitro (48).

Prostate tissue arrays will be useful to confirm that our in vitro findings are operational in vivo and that loss of checkpoint control and DNA repair activity is correlated to tumor progression similar to that reported for breast cancer (49). However, the data presented in Fig. 5B suggest that interpretation of tissue arrays may be difficult without added information pertaining to cell cycle phase, oxygenation, nutritional status, or clonal variation, which may affect the intratumoral heterogeneity of protein expression. For example, the relative increase in RAD51 expression after irradiation in vivo may be secondary to the arrest of cells in the G0 phase of the cell cycle, which has higher levels of RAD51 expression (50), or due to microenvironmental factors. Indeed, in a separate study, we have observed that RAD51 expression

Fig. 5. Chromosomal damage in vitro and patterns of RAD51 expression in vivo in PC-3 after DNA damage. A, representative images of photomicrographs of metaphase spreads stained with 4', 6-diamidino-2-phenylindole from (i) untreated and (ii) MMC-treated (30 ng/mL for 1 hour) PC-3 cells at 24 hours after treatment. The two representative spreads in (i) also show magnified images of quadrads (radio-radial, and dicentric chromosomes (see white arrows and magnified views) consistent with defects in DNA double-strand break repair. The full spectrum of chromosomal aberrations within PC-3, DU-145, LNCAP, and PrSC cells after DNA damage is quantitated in Table 1. B, immunohistochemistry for RAD51 protein in vivo within human PC-3 cells grown as a solid tumor xenograft in the hind leg of a BALB/c nude mouse. Note heterogeneity of cytoplasmic and nuclear staining within tumor before irradiation (NIR, left). After X-irradiation with a single dose of 20 Gy in vivo, intratumoral heterogeneity of RAD51 staining is maintained, yet the number and intensity of nuclear-stained cells increases at 24 hours after irradiation (20 Gy, right). Similar observations were made in DU-145 xenografts (data not shown).

Table 1 Chromosomal aberrations in prostate cell cultures in response to DNA damage

<table>
<thead>
<tr>
<th>Aberration</th>
<th>PRSC Control</th>
<th>PRSC MMC</th>
<th>PRSC IR</th>
<th>LNCAP Control</th>
<th>LNCAP MMC</th>
<th>LNCAP IR</th>
<th>DU145 Control</th>
<th>DU145 MMC</th>
<th>DU145 IR</th>
<th>PC-3 Control</th>
<th>PC-3 MMC</th>
<th>PC-3 IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome break</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Chromatid break</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tri-, quad-, or complex radial</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Di- or tricentric</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ring chromosomes</td>
<td>0</td>
</tr>
<tr>
<td>Double minutes</td>
<td>0</td>
</tr>
<tr>
<td>Anaphase fragments</td>
<td>0</td>
</tr>
<tr>
<td>Telomeric association of 2 acentric chromosomes</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Centromere fission</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>23</td>
<td>46</td>
<td>19</td>
<td>57</td>
<td>58</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Note. For each cell culture, the frequency of spontaneous (control), IR-induced (4 Gy), or MMC-induced (40 ng/mL for 24 hours) chromosomal aberrations were determined in exponentially growing cell cultures of PRSC, LNCAP, DU145, and PC-3. The extremely slow doubling time of PrEC cells (>48 hours) precluded a similar analysis in this cell type. The cells were harvested by trypsinization 24 hours after treatment and then incubated with I.

* R. Fan, F. Jalali, and R. G. Bristow, unpublished observations.
Dna repair and prostate cancer

can be altered under conditions of intratumoral hypoxia (51). Additional experiments with defined doses and time points after irradiation in vivo using prostate xenografts may clarify these issues and glean more information regarding RAD51 function within solid tumors.

We speculate that the use of agents that either augment DNA repair in premalignant prostate epithelium or inhibit the hyper-recombinogenic phenotype of malignant cells may be valuable in prostate cancer treatment. For example, the antioxidant selenium has been implicated in prostate cell lines. Anticancer Res 2003;23:1473–8.

Radiation and New Molecular Agents Part I: Targeting ATM-ATR Checkpoints, DNA Repair, and the Proteasome

Ananya Choudhury, MA, MRCP, FRCR, Andrew Cuddihy, PhD, and Robert G. Bristow, MD, PhD, FRCPC

In response to DNA breaks, human cells delay their progression through the G1, S, and G2 phases of the cell cycle. This response requires the coordinated effort of the ATM-CHK2-p53 and ATR-CHK1 DNA damage-sensing pathways and DNA repair (eg, DNA-PK and RAD51 complexes). The turnover of many of these DNA damage-associated proteins is controlled by the 26S proteasome. In this article, we review molecular strategies that target each of these pathways using silencing RNA (siRNA), antisense, or small-molecule inhibition. Although these agents can radiosensitize tumor cells, little data are available regarding potential effects on normal tissues to determine the potential therapeutic ratio of these strategies after fractionated radiotherapy. Clinical trials using such agents will require novel correlative science endpoints to track DNA repair and cell-cycle arrest and will need careful assessment of normal tissue toxicity and stability.

Semin Radiat Oncol 16:51-58 © 2006 Elsevier Inc. All rights reserved.

In modern radiotherapy, biological targeting requires an understanding of malignant and nonmalignant tissue responses pertaining to relative cell proliferation, DNA repair, and cell death (eg, tissue-specific apoptosis, mitotic catastrophe, and tumor cell senescence). In this article, we review new molecular radiosensitizers that target cell-cycle checkpoint control and intracellular DNA damage responses. With increasing available information regarding the molecular pathways of radiosresponse, we are learning that combined-modality chemoradiation protocols take advantage of disparate molecular DNA repair and cell-cycle transitions that can exist among malignant and normal cells. This characteristic feature supports further exploitation of these pathways to improve local control. Improving the therapeutic ratio is paramount to the success of these new agents and underlies the need for simultaneous study of normal tissue toxicity, as outlined later.

Targeting the ATM-p53 and ATR-CHK1 Cell-Cycle Checkpoints

Molecular Basis for Cell-Cycle Checkpoints After DNA Damage

In response to DNA breaks, human cells delay their progression through the G1, S, and G2 phases of the cell cycle, potentially allowing for the repair of DNA damage (Fig 1). Central to the activation of the ionizing radiation checkpoints is the initial sensing of DNA breaks by the telomeric protein TRF2 and the MRE11-RAD50-NBS1 (MRN) complex with subsequent activation of the ATM kinase. ATM is a member of the phosphatidylinositol 3-kinase-like family of serine/threonine protein kinases (PIKKs). Other members of this family include the ATM- and Rad3-related (ATR) kinase that responds to single-stranded DNA, stalled or collapsed DNA replication forks, and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), which is a DNA-dsb repair protein. ATM, together with DNA-PKcs, phosphorylates the histone H2AX (called γ-H2AX when phosphorylated on serine residue...
Figure 1. Radiosensitization by inhibiting cell-cycle checkpoints. Initial DNA-dsbs are recognized by the TRF2-MRN complex within 2 seconds after DNA damage. This is followed by recruitment of the ATM and ATR kinases that phosphorylate target proteins to enact the G1, S, and G2 checkpoints. These target proteins include the histone H2AX and the p53, 53BP1, CHK2, MDC1, NBS1, BRCA1, and SMC1 proteins. Distally, the G1, S, and G2 arrests are engaged by the cyclin D-CDK4, cyclin E-CDK2, RB-E2F, and cyclin B-CDC2 complexes. RNA antisense (AS) or siRNA strategies can inhibit ATM, ATR and MRN function, leading to radiosensitization. Reconstitution of normal wild-type p53 function in tumors can be achieved through gene therapy (eg, adenoviral WTp53 or ONXY-015) or novel pharmaceuticals (eg, CP-31398, PRIMA1). Finally, there are a number of ATM (eg, KU55953), CDK (eg, CYC-202 (roscovitine), BMS-387032), and CHK1 (eg, UCN-01) inhibitors that prevent cells from repairing DNA-dsbs before entry into mitosis and promote mitotic catastrophe and radiation cell kill. (Color version of figure is available online.)

For further details, the reader is referred to specific reviews of these pathways.5,7,8

Targeting ATM-p53

Strategies designed to exploit the ATM-p53 pathway are based on the assumption that ATM signaling or p53 function is inactive within tumor cells because of gene mutation or protein degradation (eg, p53 degraded by the oncoproteins HPV-E6 or MDM2). Although not universal, human tumors coexpressing mutant p53 and other oncoproteins can show decreased rates of local control after radiotherapy.7 In more recent studies, a single-nucleotide polymorphism (SNP) at p53 codon 72 has been correlated with sensitization of tumor cells to radiotherapy and chemotherapy in vitro and in vivo through increased levels of apoptosis.9 Therefore, SNP and/or mutation analyses within normal and tumor tissues may soon drive the rational design of ATM-p53 pathway-specific therapies.

The nonspecific PIKK inhibitors wortmannin and caffeine have been used preclinically to sensitize tumor cells through inhibition of ATM; however, both agents are too toxic in vivo for clinical use.10 ATM has been targeted in prostate cancer cells using specific antisense or siRNA; however, there was
only a moderate decrease in ATM expression and resultant radiosensitization (eg, dose-reduction factor of 1.4). More recently, Hickson and colleagues have reported the discovery of a specific ATM inhibitor, KU55933, by screening of a small molecular-compound library. With an inhibitory IC50 value of 13 nM, KU55933 decreased ATM phosphorylation of p53, NBS1, γH2AX, SMC1 and inhibited ATM-mediated checkpoints. Radiosensitization and chemosensitization to etoposide, doxorubicin, and camptothecin in HeLa cells using KU55933 produced sensitization enhancement ratios ranging from 2.6 to 36.5. At the present time, data are not available for differential radiosensitization of tumor over normal tissues.

Small-molecule inhibitors or peptides have been developed to bind to mutant forms of p53 (MTP53) and revert them to wild-type (WTp53) conformation. Two examples of these compounds are CP-31398 and PRIMA-1. Both induce cell-cycle arrest and/or apoptosis in vitro; however, no preclinical data yet exist for these agents as radiosensitizers. In addition, the use of small molecules to mimic downstream p21WAF1, MDM2, or BAX activity can reactivate G1 and G2 checkpoints or apoptotic cascades and engage WTP53-mediated radiosensitization.

WTP53 function in tumor cells can also be reconstituted through intratumoral or systemic (liposomal) delivery of adenoviral WTP53 (Ad-WTP53). In both preclinical studies and phase I-II clinical trials, this has led to stimulation of cell-cycle arrests and apoptosis and also suppressed DNA-dsdb repair. Complete or partial responses have been achieved in lung cancer patients using this agent in combination with radiotherapy. ONX-015 is an adenovirus that lacks the E1B-55K gene product for p53 degradation and therefore was designed to selectively replicate within, and kill, p53-defective tumor cells. Although p53-dependent responses have not been universally shown, this agent has been used in more than 250 patients in 15 clinical trials using a variety of delivery strategies. It has elicited partial and complete responses when combined with chemotherapy or radiotherapy in sarcoma, head and neck, lung, and brain tumors. Problems with intratumoral delivery, viral immune-mediated clearance, and lack of viral replication when given with chemotherapy, have slowed this agent's widespread clinical use.

Increases in the therapeutic ratio could also stem from a radioprotection of normal tissues. Pifithrin-α is a chemical inhibitor of p53 that was found to radioprotect mice from the gastrointestinal radiation syndrome. However, a theoretical concern is that this agent will also reduce the anticarcinogenic effect of WTP53, resulting in radiation-induced carcinogenesis. This could be clinically relevant for intensity-modulated radiotherapy protocols in which multiple beams lead to large volumes of normal tissues receiving small daily radiation doses.

Targeting ATR, CHK1, and the G2 Checkpoint

If the G2/M checkpoint is inhibited, this results in the catastrophic segregation of damaged, partially repaired chromosomes and mitotic cell death. Targeting ATR, CHK1, and other G2 checkpoint-associated proteins in tumor cells, in combination with chemo- or radiotherapy such that they enter mitosis inappropriately, is an attractive therapeutic concept (Fig 1). Tumor cells usually lack a normal G1 checkpoint and rely more on the S and G2 checkpoints for survival when compared with normal cells. This led to promising initial studies using caffeine, pentoxifylline, and staurosporine as G2 checkpoint inhibitors and radiosensitizers of tumor cells in vitro, but some proved too toxic for use in vivo.

Other G2-inhibitors include nonspecific protein kinase inhibitors, such as UCN-01, and more selective cyclin-dependent kinase (CDK) antagonists, such as flavopiridol (see Table 1). These agents are in various stages of clinical trials. Single-agent and combined-modality phase I-II trials of UCN-01 and flavopiridol have shown dose-limiting toxicity that includes arthralgias, syncope, nausea/vomiting, hypoxemia, and insulin-resistant hyperglycemia. Several newer compounds have been identified that inhibit CHK1 with varying degrees of specificity. For example, high-throughput screening of novel compound libraries has identified CDK inhibitors that target CDK1, 2, and 5 and decrease DNA-dsdb repair as the basis for radiosensitization. These agents (eg, CYC-202, roscovitine and BMS-387032) are currently being tested in phase I/II lung and breast cancer trials.

The use of UCN-01, or the expression of siRNA or dominant negative alleles against CHK1, abrogates the S and G2 checkpoints and can sensitize MTP53-expressing cells to radiation. A recent report shows that concomitant siRNA knockdown of both ATM and CHK1 (ie, targeting ATM signaling and the G2 checkpoints) radiosensitized prostate cancer cells in a p53-dependent manner. This result suggested a potential therapeutic ratio for irradiating tumors with nonfunctional p53 protein relative to WTP53-expressing normal tissues; however, p53-independent radiosensitization has also been reported with CHK1-inhibition.

Increased tumor cell kill in vivo with the use of these CHK1/CDK agents, in combination with radiotherapy, is predicted by preclinical studies showing synergistic radiosensitization by UCN-01 with fractionated radiotherapy. A caveat to all these studies is a recent report showing that CHK1 is required during repair and the G2 checkpoints for survival when compared with normal cells.

Targeting DNA Repair Pathways

One of the central radiobiological tenets is that DNA is an important target for the biological effects of ionizing radiation. Human DNA-dsbs are repaired mainly through 2 pathways that can both interact and compete with each other across cell-cycle transitions. These include homologous recombination (HR) and nonhomologous recombination (ie, end-joining or NHEJ) (Fig 2 and Table 1). Strategies that target DNA repair pathways preferentially in tumor cells (eg, using chemoradiation or DNA repair inhibitors) may augment clinical radiotherapy response
Table 1 Evidence for Radiosensitization Using Chemical Inhibitors of Cell-Cycle Checkpoint Control, DNA Repair, and the Proteasome

<table>
<thead>
<tr>
<th>Agent</th>
<th>Target/Action</th>
<th>Evidence for Radiosensitization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checkpoint inhibitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCN-01</td>
<td>CHK1; inhibits G2 checkpoint</td>
<td>In vitro: sensitizes colon, breast, lymphoma, cervix, lung cancer cell lines</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In vivo: synergistic growth delay in murine fibrosarcoma following fractionated radiotherapy in vivo; clinical trials ongoing</td>
</tr>
<tr>
<td>Flavopiridol</td>
<td>Non-specific for CDK; inhibits G2 checkpoint and DNA-dsb repair</td>
<td>In vitro: sensitizes esophageal and colon cancer cell lines</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In vivo: increased growth delay in murine tumors and colon cancer xenografts; clinical trials ongoing</td>
</tr>
<tr>
<td>Roscovitine (CYC-202)</td>
<td>CDK1/CDK2/CDK5; inhibits DNA-dsb repair</td>
<td>In vitro: sensitizes breast cancer cell lines</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In vivo: increased growth delay in breast cancer xenografts; clinical trials ongoing</td>
</tr>
<tr>
<td>CEP-3891</td>
<td>CHK1; inhibits S and G2 checkpoint</td>
<td>In vitro: sensitizes osteosarcoma cells</td>
</tr>
<tr>
<td>KU55953</td>
<td>ATM; inhibits G1 and G2 checkpoints and DNA-dsb repair</td>
<td>In vitro: sensitizes HeLa cells</td>
</tr>
<tr>
<td>AdenoWTp53</td>
<td>p53; inhibits cell cycle arrests and DNA-dsb repair and induces apoptosis</td>
<td>In vitro: sensitizes brain, lung, prostate, and head and neck cancer cell lines</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In vivo: complete and partial clinical responses in lung cancer; clinical trials ongoing</td>
</tr>
<tr>
<td>ONYX-015</td>
<td>p53; targets MTp53-expressing tumors through cell cycle arrest and apoptosis</td>
<td>In vitro: sensitizes colon and thyroid cancer cell lines</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In vivo: sensitized glioma xenografts in vivo; clinical trials ongoing</td>
</tr>
<tr>
<td>DNA repair inhibitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanillin, SU1172, IC886, NU7163, NU7026</td>
<td>DNA-PKcs and NHEJ; inhibits DNA-dsb repair</td>
<td>In vitro: sensitizes ovarian, HeLa, glioma, CHO, and fibroblast cells</td>
</tr>
<tr>
<td>Imatinib</td>
<td>c-ABL; inhibits RAD51/HR and DNA-dsb repair</td>
<td>In vitro: sensitizes leukemic and glioma cells</td>
</tr>
<tr>
<td>3-AB, ISQ, NU1025, KU0058684 or AG14361</td>
<td>PARP; inhibits DNA-ssb repair and homologous recombination</td>
<td>In vitro: sensitizes prostate, lung, and lymphoma cancer cell lines</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In vivo: AG14361 sensitized colon cancer xenografts</td>
</tr>
<tr>
<td>Proteasome inhibitors</td>
<td>26S proteasome; altered apoptosis, cell cycle arrest and signal transduction</td>
<td>In vitro: sensitizes melanoma, lymphoma, colon cancer cell lines</td>
</tr>
<tr>
<td>PS-341 (bortezomib)</td>
<td></td>
<td>In vivo: sensitized colon cancer xenografts</td>
</tr>
<tr>
<td>Ritonavir, saquinavir</td>
<td>26 proteasome; HIV protease</td>
<td>In vitro: sensitizes glioma and prostate cancer cell lines</td>
</tr>
</tbody>
</table>

Abbreviations: NHEJ, nonhomologous end-joining; HR, homologous recombination; PARP, poly(ADP-ribose) polymerase-1; HIV, human immunodeficiency virus; DNA-dsb, DNA double-strand break; MTP53, mutant p53. Data from the following references: 1, 2, 7, 8, 10, 11, 13, 14, 16, 18, 28, 31, 32, 37, 41, 44, 48,

given correlations between DNA repair gene expression and radiosensitivity. Indeed, cisplatin and gemcitabine are among the most effective clinical radiosensitizers, and recent reports suggest these drugs can act in part by inhibiting HR and NHEJ. These observations support the concept that the predetermination of the repair capacity of tumor cells may help select appropriate agents for use in combination with radiotherapy.

Targeting HR: RAD51, BRCA1/2, and PARP

HR is an error-free pathway operational in S and G2 phase and involves RAD51, its paralogs RAD51B/C/D and...
Figure 2 Radiosensitization by inhibiting DNA repair. The DNA-dsb is the most cytotoxic DNA lesion produced by ionizing radiation. Initially, DNA break sensing by TRF2-MRN leads to the recruitment of 53BP-1, MDC1, BRCA1, and specific DNA-dsb repair proteins within γ-H2AX–positive chromatin. Human DNA-dsbs are repaired mainly HR or nonhomologous recombination (ie, end-joining or NHEJ) in a cell-cycle specific manner. Radio- or chemosensitization can be achieved by the use of siRNA, antisense, or small-molecule inhibitors that block DNA-PK, ATM, or RAD51-BRCA2 function. The repair of DNA-sbs and DNA base damage is mediated by the base excision repair pathway, including the PARP protein. PARP can be inhibited by 3-AB, ISQ, NU1025, KU0058684, or AG14361, and in the context of cells that are BRCA1 or BRCA2-deficient, these inhibitors lead to cell death because of the persistence of DNA lesions normally repaired by homologous recombination. (Color version of figure is available online.)
deficient tumors by using PARP inhibition, in combination with chemotherapy or radiotherapy.

Targeting NHEJ: DNA-PK and γ-H2AX

NHEJ requires little homology at the DNA ends and can be operational during any phase of the cell cycle but is probably preferential to G1. NHEJ involves the proteins Ku70/80, DNA-PKcs, Artemis, XRCC4, DNA ligase IV, and more recently, ATM, p53, and MDM2. DNA-PK (consisting of DNA-PKcs and the Ku70/80 heterodimer) has emerged as a possible genetic target for molecular radiotherapeutics using siRNA, antisense, and novel inhibitory small molecules (Fig 2 and Table 1). Inhibition of DNA-PK has led to increased radiosensitization in vitro and in vivo in lung, colon, prostate, and brain cancer models but, unfortunately, also in normal human fibroblasts. This latter observation may have important implications for normal tissue toxicity and an unfavorable therapeutic ratio. Reducing the level of DNA-PKcs may also affect the levels of other PIKKs, including ATM, which may augment radiosensitization. Novel small-molecule inhibitors of DNA-PKcs have been tested both in vitro and in vivo (eg, IC86621, NU7441 and NU7026, the vanillic acids). Some of these agents have greater than normal level killing in vitro and in vivo (eg, IC86621, NU7441 and NU7026, the vanillic acids).

Inhibiting the Proteasome

The proteasome is a multisubunit protease complex that is involved in the turnover of cellular proteins via degradation and recycling (Fig 3 and Table 1). In this ubiquitin (Ub)/proteasome pathway, proteins are targeted for degradation by conjugation to polymers of the 8-kDa polypeptide (ATP) and are degraded via an adenosine triphosphate-dependent process. Over 80% of all cellular polyubiquitylated proteins are recycled through the proteasome. The activation and conjugation of ubiquitin is, in part, mediated by E3 protein ligases, which include the BRCA1-BARD1 complex and the MDM2 protein. These ligases target the RAD51 and p53 proteins for proteasomal degradation, respectively. Ubiquitin-mediated degradation of regulatory proteins may play an important role after irradiation by targeting proteins involved in cell-cycle progression, DNA repair, signal transduction, and transcriptional regulation (eg, cyclins, p53 and p21WAF, RAD51, BAX). Proteins that are targeted for destruction become polyubiquitylated by E3 ligases that include the BRCA1-BARD1 repair complex and the MDM2 protein (involved in p53 turnover). The peptide boronic acid compound, PS-341, inhibits proteasome activity and is currently in clinical trials. (Color version of figure is available online.)
Conclusions and Outstanding Questions

Although exciting in concept, clinical trial data for many of these agents in combination with radiotherapy is still lacking. The relative sensitization in vitro may not predict the sensitization achieved in vivo because of microenvironmental factors or altered pharmacodynamics.41 However, biomarker analyses may help. The temporal tracking of intranuclear focal complexes in situ using specific antibodies to activated checkpoint or DNA repair proteins (e.g., tracking RAD51-BRCA2, DNA-PKcs, γ-H2AX, or ATM-Ser1981), in relation to hypoxia biomarkers, could provide a quantitative measure of DNA repair or genetic stability on a tissue-specific basis. Quantitation of these foci in vivo may therefore be useful in determining the efficacy of DNA repair inhibitors in combination with radiotherapy.21-23,46,47

The success of these agents is also dependent on inhibiting DNA damage and repair responses in tumor cells, but not normal cells.48 They must also not increase genetic instability within irradiated tissues.19 We currently know little about the relative molecular repair responses among the different types of normal tissues after fractionated irradiation. This information will be required for the judicious choice of repair-based agents in combination with radiotherapy.

References

5. Lukas J, Lukas C, Bartek J: Mammalian cell cycle checkpoints: signaling pathways and their organization in space and time. DNA Repair (Amst) 3:997-1007, 2004
28. Bryant HE, Schulz N, Thomas HD, et al: Specific killing of BRCA2-
Down-Regulation of Rad51 and Decreased Homologous Recombination in Hypoxic Cancer Cells

Ranjit S. Bindra,1,2 Paul J. Schaffer,3 Alice Meng,4 Jennifer Woo,4 Kärstein Mäseide,4 Matt E. Roth,3 Paul Lizardi,2,3 David W. Hedley,4 Robert G. Bristow,4 and Peter M. Glazer1,5*

Department of Therapeutic Radiology,1 Department of Experimental Pathology,2 and Department of Genetics,5 Yale University School of Medicine, and Agilis Corporation,3 New Haven, Connecticut, and Ontario Cancer Institute/Princess Margaret Hospital (University Health Network) and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada4

Received 16 April 2004/Returned for modification 24 May 2004/Accepted 6 July 2004

There is an emerging concept that acquired genetic instability in cancer cells can arise from the dysregulation of critical DNA repair pathways due to cell stresses such as inflammation and hypoxia. Here we report that hypoxia specifically down-regulates the expression of RAD51, a key mediator of homologous recombination in mammalian cells. Decreased levels of Rad51 were observed in multiple cancer cell types during hypoxic exposure and were not associated with the cell cycle profile or with expression of hypoxia-inducible factor. Analyses of RAD51 gene promoter activity, as well as mRNA and protein stability, indicate that the hypoxia-mediated regulation of this gene occurs via transcriptional repression. Decreased expression of Rad51 was also observed to persist in posthypoxic cells for as long as 48 h following reoxygenation. Correspondingly, we found reduced levels of homologous recombination in both hypoxic and posthypoxic cells, suggesting that the hypoxia-associated reduction in Rad51 expression has functional consequences for DNA repair. In addition, hypoxia-mediated down-regulation of Rad51 was confirmed in vivo via immunofluorescent image analysis of experimental tumors in mice. Based on these findings, we propose a novel mechanism of genetic instability in the tumor microenvironment mediated by hypoxia-induced suppression of the homologous recombination pathway in cancer cells. The aberrant regulation of Rad51 expression may also create heterogeneity in the DNA damage response among cells within tumors, with implications for the response to cancer therapies.

Solid tumors constitute a unique tissue type, characterized by hypoxia, low pH, and nutrient deprivation (45). Although decreased oxygen tension is potentially toxic to normal human cells, cancer cells acquire genetic and adaptive changes allowing them to survive and proliferate in a hypoxic microenvironment. Intratumoral hypoxia induces profound alterations in numerous physiological processes, including altered glucose metabolism, up-regulated angiogenesis, increased invasive capacity, and dysregulation of apoptotic programs (37).

From a clinical standpoint, many studies have established hypoxia as an independent and adverse prognostic variable in patients with head and neck, cervical, or soft tissue (sarcoma) tumors (3, 26). With regard to the extent of hypoxia observed in tumors, it has been proposed that cells within hypoxic regions of solid tumors often derive almost all metabolic energy requirements from up-regulated glycolytic pathways. This phenomenon has been referred to as the Pasteur effect (34) and provides a partial physiologic explanation for the viability of tumor cells exposed to severe hypoxia within the tumor microenvironment. Polorgraphic needle electrode studies used to measure oxygen tension directly in cancer patients have revealed that a significant proportion of breast carcinomas (up to 40%) contain regions of severely decreased oxygen tension (2 to 2.5 mm Hg, compared to the normal tissue range of 24 to 66 mm Hg) while still supporting viable tumor cells (40). In addition, hypoxic cells are more resistant to radiotherapy and chemotherapy; this resistance represents a significant challenge in achieving maximal treatment efficacy (32). Collectively, these studies underscore the importance of elucidating the effects of hypoxia at the molecular level and the mechanisms by which such conditions can lead to a more aggressive phenotype and tumor progression.

Tumor progression has been specifically correlated with genetic instability (27). Furthermore, it has long been argued that the large number of mutations found in malignant cells cannot be accounted for by the low rate of mutation observed in somatic cells, leading to the suggestion that cancer cells assume a mutator phenotype during tumorigenesis (23). We and others have proposed that the tumor microenvironment contributes to such genetic instability (31). Indeed, several studies using both reporter genes and endogenous loci have demonstrated increased mutation rates in cells grown in tumors relative to those in identical cells grown in culture (22, 29, 31).

Hypoxia appears to be a key microenvironmental factor involved in the development of genetic instability. Studies have suggested that it is associated with increased DNA damage, enhanced mutagenesis, and functional impairment in DNA repair pathways. With regard to DNA damage, hypoxia and subsequent reoxygenation induce DNA strand breaks and oxidative base damage such as 8-oxoguanine and thymine glycols (47). Exposure of cells in culture to hypoxic conditions yields increased frequencies of point mutations at reporter gene loci (31). Hypoxia-reoxygenation cycles are also associated with other genetic aberrations, including gene amplification and DNA overreplication, although the mechanism by which they...
occur has not been fully elucidated (7, 46). Studies in our laboratory have also established that hypoxia induces functional decreases in the nucleotide excision repair (NER) pathway (48). Additionally, it has been reported previously that severe hypoxia (0.01% O₂) specifically down-regulates the expression of the DNA mismatch repair gene MLH1, contributing to increased mutation rates (25). Collectively, these phenomena constitute a source of genetic instability induced by hypoxia, thus potentially accelerating the multistep process of tumor progression.

Given the dynamic and complex gene expression changes that have been observed under hypoxia, we have been investigating whether alterations in the expression of other DNA repair genes could also occur in response to hypoxia and thereby play a role in hypoxia-induced genetic instability. In the present study, we utilized transcriptome profiling to identify DNA repair pathways which may be regulated by hypoxia. We report that the expression of RAD51, a critical mediator of homologous recombination (HR) in mammalian cells, is specifically down-regulated by hypoxia at the mRNA level, resulting in marked decreases in the protein expression of this gene. Decreased Rad51 protein expression under hypoxia was observed in numerous cell lines from a wide range of tissues, and importantly, these decreases persisted even during the posthypoxic phase following reoxygenation. This finding is especially relevant to solid tumors that typically experience fluctuating vascular perfusion, resulting in oxygen tensions that vary spatially and temporally. Analyses of protein stability, mRNA stability, and promoter activity indicate that hypoxia regulates this gene via a mechanism involving repression of the RAD51 gene promoter. Rad51 down-regulation also appears to be independent of both the cell cycle and hypoxia-inducible factor (HIF), since no correlations were found between Rad51 expression and either the cell cycle profile or HIF induction. We also detected significantly decreased HR in both hypoxic and posthypoxic cells, indicating that hypoxia-mediated reductions in RAD51 gene expression have functional consequences. Hypoxia-mediated Rad51 down-regulation was also confirmed in vivo within the tumor microenvironment: we observed a consistent inverse association between staining with a hypoxia marker (EFS) and Rad51 protein expression in vivo by use of immunofluorescent image analysis of cervical and prostate cancer xenografts. We propose the existence of a hypoxic and posthypoxic phenotype in solid tumors characterized by decreased expression of critical DNA repair genes, representing a novel mechanism of acquired genetic instability within the tumor microenvironment.

MATERIALS AND METHODS

Cells. MCF-7 (HTB-22), A549, RKO, SW-80, HeLa (CCL-2), ME180, SiHa, PC3, DU145, and A31 cells were obtained from the American Type Culture Collection (Manassas, Va.) and were grown according to supplier instructions. PC3, DU145, and A31 cells were obtained from the American Type Culture Collection (Manassas, Va.) and were grown according to supplier instructions. Luciferase reporter plasmid was a gift from Zhong Yun and has been identified by in silico analysis using the Geno-
transfected with 1 μg of each reporter construct by using the Fugene 6 reagent (Roche Diagnostics Corporation). Firefly and Renilla luciferase activities were measured by using the Dual-Luciferase Reporter Assay System Kit (Promega) according to the manufacturer's instructions. Renilla luciferase activity from a cotransfected pRL-SV40 control vector (5 ng/well) was used for normalization.

Cell cycle and fluorescence-activated cell sorter (FACS) analysis. Cell cycle analyses were performed as described previously (2). Stained cells were analyzed on a Becton Dickinson FACS-Calibur flow cytometer. Data capture, density plots, and histogram construction were performed by using BD CellQuest Pro software (Becton Dickinson), and cell cycle distribution profiles were determined by using ModFit LT software (Verity House Software, Topsham, Maine).

For FACS experiments, normoxic and hypoxic cells were incubated with 10 μg of Hoechst 33342 (Molecular Probes)/mL for 1 h at 27°C in the dark. Verapamil (100 mM; Sigma) was also added to the culture medium to inhibit dye efflux during the incubation. Cells were then trypsinized and resuspended in the culture medium supplemented with 0.1% fetal bovine serum, 10 μg of Hoechst 33342 dye/mL, and 100 mM verapamil to further enhance the dye uptake. Equal numbers of specific G1- and S-phase cell populations were sorted on the basis of DNA content by using a BD FACSAria flow cytometer fitted with a UV laser, and cells were collected in 0.5 mL of culture medium supplemented with 10% fetal bovine serum. RNA was then extracted from the isolated cells by using a modified TRIzol protocol. This technique has recently been reported to facilitate the recovery of intact mRNA from viable cells in distinct phases of the cell cycle (20).

HR assay. The shuttle vector plasmid pSupFG1/G144C, containing a supFG1 gene with an inactivating G-to-CG point mutation at position 144, has been described previously (5). For all shuttle assays, 5 μg of pSupFG1/G144C plasmid DNA was mixed with 10 μg of a PCR-generated, 1-kb homologous donor fragment containing the wild-type supFG1 gene in 50 mM Tris (pH 8.8). After transfection of the plasmid-donor mixture into cells for the indicated times, plasmid DNA was recovered by using a modified Hirt lysate procedure, as described previously (5). The purified plasmid was then used to transform Escherichia coli SY302 cells by electroporation, followed by growth of the cells on indicator plates for genetic analysis of supFG1 gene function as described previously (5).

Results

Transcriptome response to hypoxia. Several reports have been published with the primary goal of assessing gene expression patterns under hypoxic conditions (37). Most of these studies have focused on induced expression patterns during brief periods of exposure to mild or moderate hypoxia. In this work, we sought to further characterize gene expression patterns under more prolonged exposure to hypoxia (24 h at 0.5% O2) by using a transcriptome profiling-based approach to screen for both known and novel genes which are regulated by hypoxia.

Analysis of hypoxia/normoxia (H/N) expression ratios for approximately 48,000 transcripts (16,000 unique transcripts in three biological replicates) detected in human MCF-7 breast cancer cells by transcriptome profiling revealed that the expression levels of the great majority of genes (~85%) are not altered by a 24-h exposure to hypoxia (0.5% O2) (Fig. 1A); at a threshold of ±2-fold regulation, approximately 5% of the genes detected demonstrated up-regulation, while 10% were down-regulated, by hypoxia. These findings were derived from pooled RNA samples analyzed in triplicate and obtained in two independent hypoxia-normoxia experiments. Intriguingly, when the threshold for analysis is increased to a ±6-fold change, more genes appear to be up-regulated than down-regulated by hypoxia (0.5% versus 0.1%, respectively). These results show that specific patterns of both up- and down-regulation occur in response to hypoxia, and they suggest that decreased expression of certain genes may be as important as increased expression in determining the phenotype of hypoxic cells.

As expected, hypoxia exposure led to increased expression of several known HIF target genes (Fig. 1B), such as glucose transporter 1 (SLC2A1, or Glut1) and VEGF (17). Glycolysis-associated genes previously shown to be up-regulated by hypoxia, such as phosphoglycerate kinase 1 (PGK1) and aldolase C (ALDOC), were also significantly up-regulated. In addition, several other genes recently reported to be hypoxia inducible, such as DEC1 (BH3L1B2) and hypoxia-inducible gene 2 (HIG2), displayed marked elevation, with 9.1- and 9.3-fold changes in H/N ratios, respectively. The H/N fold changes for the genes shown in Fig. 1B were verified by qPCR (data not shown).

Expression of DNA repair genes under hypoxia. Given that a comprehensive analysis of DNA repair gene expression under prolonged hypoxia had not been performed previously, we sought to determine whether there are specific genes in this category that exhibit novel regulation by hypoxia. The microarray detected expression of more than 50 transcripts from genes that directly play a role in DNA repair, and representative genes from several repair pathways are shown in Fig. 1C. The expression levels of the majority of DNA repair genes detected were not substantially altered by hypoxia, including genes in pathways such as NER and base excision repair, consistent with previous work in our laboratory examining expression patterns of factors in these pathways by Western blot analyses (48). A more comprehensive list of DNA repair genes from these pathways, including qPCR expression validation for several of these genes, is available upon request. We did detect a moderate decrease in the level of MLH1 expression under hypoxia (1.3-fold [data not shown]). It had been demonstrated previously that MLH1 expression is down-regulated by hypoxia, especially after prolonged periods (>24 h) of severe hypoxia (<0.1% O2), and thus the finding that MLH1 mRNA is only slightly decreased at 24 h of moderate hypoxia (0.5% O2) is consistent with previous data (25).

Intriguingly, we detected substantial decreases in the expression of RAD51 under hypoxia (4.3-fold). This decrease was verified by qPCR and was specific to the RAD51 gene; we did not detect hypoxia-induced decreases in the expression of other HR genes in the RAD52 epistasis group (38), including RAD51B, RAD54B, RAD52, and RAD50 (data not shown). Consequently, we reasoned that such decreases in a critical HR-associated gene could compromise recombinational repair in cells exposed to hypoxia.
FIG. 1. Transcriptome response to hypoxia after 24-h exposure of MCF-7 cells to 0.5% O₂. (A) Histogram analysis of the approximately 48,000 transcripts (16,000 unique transcripts for each of three biological replicates) detected by the GenCompass microarray, based on H/N expression ratios (log₂). (Inset) Percentages of genes up-regulated and down-regulated at two-, four-, and sixfold thresholds. (B) Selection of genes previously identified as regulated by hypoxia which were detected by the GenCompass microarray. Accession numbers are given for reference. H/N ratios are averaged from three independent experiments. NDRGI, N-myc downstream-regulated gene 1. (C) GenCompass H/N expression ratios of selected DNA repair genes, with the respective pathways listed. H/N ratios are averaged from two experiments. BER, base excision repair; MMR, mismatch repair. ERCCI, excision repair cross-complementing group 1; APEX2, apurinic/apyrimidinic endonuclease/redox factor 2; PMS2, postmeiotic segregation increased 2; RAD51, RAD51 homolog.

Decreased expression of Rad51 protein in response to hypoxia or the Fe²⁺ chelator DFX. We sought to determine whether the changes observed in the microarray and qPCR experiments were also manifested at the protein level. In order to account for the effects of protein stability, we examined Rad51 protein expression levels not only at the 24-h time point used in the microarray experiments but also after 48 h of hypoxia. As shown in Fig. 2A, Western blot analysis revealed that Rad51 protein levels were substantially decreased after 48 h of hypoxia (approximately threefold) (lane 4), with minimal decreases observed after 24 h of hypoxia (lane 2). The expression of HIF-1α and its downstream target Glut1 (which appears as multiple isoforms between 37 and 75 kDa) is shown for comparison, to confirm physiologically relevant levels of hypoxia. In addition, levels of tubulin were unchanged and served as standards to confirm equal loading of cellular protein samples.

As discussed earlier, we had previously reported the specific down-regulation of the MLH1 gene after prolonged exposure to more severe hypoxia. Based on this finding and on the relevance of such conditions to chronically hypoxic regions in tumors, we subjected MCF-7 cells to more severe hypoxia (0.01% O₂) for prolonged periods in order to determine whether there might be even greater reductions in Rad51 protein expression. As shown, a 48-h exposure to 0.01% O₂ resulted in a larger decrease (approximately sixfold) in Rad51 protein expression (Fig. 2A, lane 8). As expected, decreases were also observed in Mlh1 protein expression, but no reductions were observed in the expression of several other DNA repair proteins, including Msh2 and Msh6 (data not shown). Thus, both moderate hypoxia and severe hypoxia are associated with profound and specific decreases in the expression of the RAD51 gene in MCF-7 cells.

The hypoxic state can be mimicked in cell culture by using the iron chelator DFX, which has been proposed to disrupt normal oxygen-sensing pathways in mammalian cells by inhibiting heme-Fe²⁺ interactions (43). As shown in Fig. 2A, a 24-h exposure of MCF-7 cells to DFX also resulted in decreased Rad51 protein expression (lane 10). In addition, HIF-1α and Glut1 levels were increased in DFX-treated MCF7 cells, confirming that this chemical treatment mimicked aspects of gas-induced hypoxia. These results show that Rad51 protein expression is reduced not only in truly hypoxic cells but also in cells in which hypoxia is simulated by interference with normal cellular oxygen sensing.

Given that such profound decreases in Rad51 protein ex-
expression after hypoxic stress could have broad implications for genetic instability in the tumor microenvironment, we sought to determine whether this phenomenon could also be detected in tumor cell lines derived from other tissues. A selection of tumor cell lines from various tissues were cultured under hypoxic and normoxic conditions, followed by Western blot analysis to assess Rad51 protein levels. As shown in Fig. 2B, significant decreases in Rad51 protein expression were observed...
after 48 h of hypoxia in a wide range of human cell lines, including the A549 epithelial lung carcinoma cell line and the HeLa cervical cancer cell line. Densitometry analysis was used to approximate H/N protein expression ratios for several cell lines evaluated in this study, based on triplicate hypoxia experiments and normalization to either β-actin or tubulin expression. As shown in Fig. 2C, A549 and MCF-7 cells displayed the highest levels of down-regulation, with H/N ratios of −13 and −6, respectively. Taken together, significant hypoxia-mediated down-regulation of Rad51 protein is observed in numerous human cell lines derived from a wide range of tissues.

To determine whether the observed decreases in Rad51 protein expression could be accounted for by an increase in protein degradation, MCF-7 cells were either left untreated or exposed to DFX, followed by coinoculation with CHX to block new protein synthesis. Cells were then harvested at various times after the addition of CHX, and Rad51 protein expression was determined by Western blotting. As shown in Fig. 2D, while a 24-h DFX exposure resulted in a threefold decrease in Rad51 protein expression (compare lanes 1 and 6), no significant differences in Rad51 protein stability between untreated cells and cells exposed to DFX were observed after the addition of CHX. In contrast, HIF-1α expression was substantially increased in the presence of DFX, and HIF-1α degraded rapidly after CHX addition, confirming both the induction of chemical hypoxia and successful abolition of new protein synthesis. In addition, levels of tubulin protein were unchanged and served as standards to confirm equal loading of cellular protein samples. These findings suggest that the hypoxia-mediated down-regulation of the Rad51 gene does not occur at the posttranslational level.

Prolonged hypoxia leads to the down-regulation of Rad51 mRNA expression. To determine if the decreases in Rad51 protein expression observed after severe hypoxia are also associated with decreased mRNA levels, Northern blot analyses were performed on total RNAs extracted from MCF-7 and A549 cells after 24- and 48-h exposures to 0.01% O2. Rad51 mRNA levels were substantially decreased at the 48-h time point, with H/N ratios of approximately −8 and −9 in MCF-7 and A549 cells, respectively (Fig. 3A and B, respectively). Ratios were averaged from multiple experiments and normalized to either 28S rRNA or β-actin mRNA levels. Significant decreases were also observed at the 24-h time point in both cell lines. The expression of VEGF is shown, to verify the induction of physiological levels of hypoxia, and β-actin and 28S rRNA are presented as loading controls. Consistent with the protein expression levels, a 24-h exposure of MCF-7 cells to DFX also resulted in decreased expression of Rad51 mRNA (Fig. 3A, lane 6), and this finding was also verified by qPCR analysis (data not shown). Additionally, hypoxia-induced decreases in Rad51 mRNA expression were observed in a number of other human cell lines, including SiHa, RKO, and DU145 (Fig. 3B; also data not shown). These findings provide consistent evidence that hypoxia regulates the expression of the Rad51 gene at the mRNA level.

Transcriptional repression of the Rad51 gene by hypoxia. We next sought to determine the mechanism by which hypoxia down-regulates steady-state levels of Rad51 mRNA. To test a possible effect on Rad51 mRNA stability, MCF-7 cells were exposed to DFX, followed by coinoculation with ActD to block transcription. Cells were then harvested at various times after the addition of ActD, and Rad51 mRNA expression was determined by Northern blotting. As shown in Fig. 3C, while a 24-h DFX exposure resulted in a twofold decrease in Rad51 mRNA expression (compare lanes 1 and 6), no significant differences in mRNA stability after ActD addition were observed between cells exposed to DFX and cells left untreated (Fig. 3D). Rad51 mRNA half-lives were determined to be approximately 20 and 15 h in DFX-exposed and untreated cells, respectively, and these values were based on duplicate ActD experiments. In contrast, VEGF expression is substantially increased in the presence of DFX, and VEGF mRNA degrades rapidly after ActD addition, confirming both the induction of chemical hypoxia and the successful inhibition of transcription. In addition, 28S rRNA levels were unchanged and served as standards to confirm equal sample loading. These data indicate that the hypoxia-induced down-regulation of Rad51 mRNA expression cannot be accounted for by decreases in the stability of the mRNA; thus, they suggest that regulation occurs at the level of transcription.

To test whether the reduction in steady-state levels of Rad51 mRNA under hypoxia is dependent on Rad51 promoter regulation, the effect of hypoxia on Rad51 promoter activity was examined by using a promoter-luciferase reporter system. As shown in Fig. 3E, a 1.8-kb fragment from the 5'-flanking region of the Rad51 gene, containing the core promoter region(s) described in the Eukaryotic Promoter Database (30) and that identified by in silico analysis using the Genomatix promoter identification algorithm PromoterInspector (44), was isolated. A firefly luciferase reporter plasmid containing this fragment (pGL3-Rad51p) was transiently transfected into RKO cells 4 h prior to normoxic or hypoxic exposure (48 h), immediately followed by measurement of luciferase activity. Renilla luciferase activity from a cotransfected pRL-SV40 control vector was used for normalization. The luciferase reporter plasmid 5X-HRE, which contains five hypoxia response elements (HREs) tandemly ligated to a human cytomegalovirus minimal promoter, was used as a control to confirm physiologically relevant levels of hypoxia. As shown in Fig. 3F, exposure to hypoxia resulted in a fivefold repression of pGL3-Rad51p reporter activity. In contrast, 5X-HIF reporter activity increased approximately 50-fold, and no change in activity was observed in the promoterless control plasmid pGL3-Basic, in hypoxic cells. RKO cells were used in these studies due to the ease with which they are transfected and because of their ability to support high levels of Rad51 promoter activities. Rad51 promoter activity was also repressed by hypoxia in MCF-7 and A549 cells, with H/N ratios of −1.8- and −1.5-fold, respectively (data not shown). Taken together, these findings suggest that hypoxia down-regulates the expression of the Rad51 gene via a mechanism involving transcriptional repression.

Persistent down-regulation of Rad51 expression posthypoxia. Given the dramatic decreases that we observed in Rad51 mRNA and protein levels after 48 h of hypoxia, we sought to determine the extent to which these alterations persisted after reoxygenation. MCF-7 cells were exposed to 48 h of hypoxia, followed by a return to normoxic conditions for several days thereafter. Cell lysates were prepared at 24-h intervals throughout the time course, and Western blot analyses
FIG. 3. Transcriptional repression of the RAD51 gene by hypoxia. (A) Northern blot analyses were performed on total RNA extracted from MCF-7 cells after exposure to normoxia (lanes N), hypoxia (0.01% O2) (lanes H), or DFX (250 μM). The time for which cells were maintained under each condition (24 or 48 h) is given. VEGF expression is shown for comparison, to verify that physiologically relevant levels of hypoxia were present in the treated cells, and expression of 28S rRNA is presented to confirm equal sample loading. (B) Northern blot analysis of RAD51 mRNA expression in A549, SiHa, and RKO cells after a 24- or 48-h exposure to hypoxia (0.01% O2). VEGF expression is shown for comparison, to verify that physiologically relevant levels of hypoxia were present in the treated cells. Expression of 28S rRNA (MCF-7, SiHa, and RKO cells) and 3-actin mRNA (A549 cells) is presented to confirm equal sample loading. (C) To assess the stability of RAD51 mRNA, MCF-7 cells were either left untreated or exposed to DFX (250 μM) for 24 h, followed by coinubation with ActD (5 μg/ml) to block transcription. Cells were harvested at the indicated times after the addition of ActD, and RAD51 mRNA expression was determined by Northern blotting. Expression of VEGF is shown to confirm both the induction of chemical hypoxia and successful abolition of transcription. In addition, 28S rRNA levels were unchanged and served as standards to confirm equal sample loading. (D) Analysis of RAD51 mRNA expression at each time point after ActD addition in cells exposed to DFX or left untreated, as determined by phosphorimager analysis of Northern blots. Values are the percentage of RAD51 mRNA remaining in either DFX-treated or untreated cells at each time point, and error bars are based on standard errors calculated from duplicate experiments. (E) Schematic of the 5‘-flanking region of the RAD51 gene, with delineation of the promoter fragment used for luciferase reporter gene assays (pGL3-Rad51p). Approximate locations of the core promoter regions, as described in the Eukaryotic Promoter Database (EPD) and as identified by in silico analysis using the Genomatix promoter identification algorithm PromoterInspector, are shown for reference. Bent arrow above exon 2 indicates the ATG translation start codon. (F) To determine the effect of hypoxia on RAD51 gene promoter activity, the pGL3-Rad51p luciferase (firefly) reporter plasmid was transiently transfected into RKO cells 4 h prior to normoxic or hypoxic exposure (for 48 h), immediately followed by measurement of luciferase activity. Firefly luciferase values were normalized to Renilla luciferase activity from a cotransfected pRL-SV40 control vector, and error bars are based on standard errors calculated from duplicate experiments. The activity of the luciferase reporter plasmid 5X-HRE, which contains five HREs tandemly ligated to a human cytomegalovirus minimal promoter, is shown as a control to confirm physiologically relevant levels of hypoxia. The activity of the promoterless luciferase reporter gene construct pGL3-Basic is also shown as a control.
were performed to assess Rad51 expression levels during and after hypoxic exposure. Intriguingly, we detected the lowest levels of Rad51 protein in the period following hypoxia. As shown in Fig. 4A, Rad51 levels were lowest at 24 h after reoxygenation (referred to as the 72-h time point) (lane 4), and these levels did not return to normal, prehypoxia expression levels until after the 96-h time point (lane 6), which corresponds to 48 h posthypoxia. The HIF-1α protein is rapidly degraded under normoxic conditions, and thus it was not detected upon reoxygenation at any of the posthypoxia time points shown. Furthermore, we also observed a rapid decrease in Glut1 expression following reoxygenation, a response that is expected for this gene in the transition from hypoxia to normoxia. Rad51 protein expression levels at the 48- and 72-h time points were reduced approximately 6- and 12-fold, respectively, and these values were based on triplicate experiments. Reductions in Rad51 protein expression were also observed 20 h after a shorter, 24-h hypoxia exposure, although these decreases were not as pronounced (data not shown). In addition, similar trends were also observed at the protein level in A549 cells, with a slightly more rapid return of protein levels following reoxygenation (Fig. 5D).

Northern blot analysis revealed that RAD51 mRNA levels were also maximally decreased at the 72-h time point, representing 24 h posthypoxia (Fig. 4B, lane 6). Furthermore, mRNA and protein expression data from three independent experiments revealed that the hypoxia-induced decrease in Rad51 protein levels was consistently preceded by decreased RAD51 mRNA levels (data not shown). As expected, the expression of VEGF decreased rapidly to undetectable levels after reoxygenation and thus serves as a control for the physiological transition from hypoxia to normoxia. Taken together, these results indicate that hypoxia induces substantial decreases in RAD51 mRNA levels, which are followed by corresponding reductions in Rad51 protein levels. Importantly, these reductions are most pronounced in the posthypoxia reoxygenation phase and persist for a significant period thereafter.

Hypoxia-mediated down-regulation of the RAD51 gene is independent of the cell cycle profile. RAD51 mRNA expression levels have been shown to be highest in the S and G2 phases of the cell cycle, and lowest during G0 and G1, in mammalian cells (11). We thus sought to determine whether the observed decreases in Rad51 expression could be accounted for by specific changes in the cell cycle profile induced by hypoxia. To this end, we used flow cytometric analyses to determine the cell cycle profiles of several of the human cell lines listed in Fig. 2C upon exposure to hypoxia. As shown in Fig. 5A, a range of cell cycle profile changes were observed under hypoxia among the four cell lines studied. We reasoned that if Rad51 expression decreases could be accounted for by increases in the proportion of cells in the G1 phase under hypoxia, for example, then there should be direct correlations between hypoxia-induced G1 shifts and H/N ratios of Rad51 expression in the cell lines evaluated. As shown in Fig. 5B, no such correlations were observed; MCF7, A549, and HeLa cells all displayed small increases in the proportion of G1-phase cells upon hypoxia exposure (1.3-, 1.2-, and 1.2-fold, respectively) yet exhibited...
FIG. 5. Decreased Rad51 expression is not associated with the cell cycle profile. (A) Quantitative assessment of cell cycle profiles of four cell lines exposed to hypoxia (0.01% O₂) or normoxia for 48 h. Calculated proportions are expressed as percentages based on triplicate hypoxia experiments using flow cytometric analysis of PI-stained cells and histogram analysis software. (B) Fold changes in both the percentage of cells in the G₁ phase and the Rad51 protein level in hypoxia compared to normoxia, as calculated from panel A and Fig. 2C, respectively. (C) Semi-quantitative RT-PCR analysis of RAD51 mRNA expression in isolated G₁- and S-phase populations of normoxic and hypoxic cells. Equal numbers of cell cycle-specific populations were obtained by DNA staining of cells with the vital fluorochrome Hoechst 33342, followed by flow cytometric analysis and cell sorting. Unsorted cells processed in parallel are also shown for reference (lanes 1 and 2). VEGF expression is shown for comparison, to verify physiologically relevant states of hypoxia in normoxic and hypoxic cell populations, and the expression of β-actin is presented to confirm equal sample loading. (D) Cell cycle profiles of A549 cells exposed to either normoxia or hypoxia for 48 h and of A549 cells reoxygenated immediately following hypoxia for the indicated times, shown as histograms based on PI staining for DNA content. Approximate ranges of G₁-, S-, and G₂/M-phase populations are shown for reference. (E) S-phase proliferation in normoxic A549 cells or in A549 cells reoxygenated for the indicated times, as assessed by BrdU incorporation. Dotted lines represent the threshold for positive BrdU incorporation, based on cells assayed in parallel without BrdU incubation at each time point. Quantitative assessments of cell cycle profiles at each time point are shown in each panel and were calculated as described in the legend to panel A. The percentage of total cells in each sample that incorporated BrdU is given in parentheses.
substantial (but variable) H/N ratios of Rad51 expression (−6.0, −13.0, and −2.9, respectively). A431 cells, by contrast, displayed no detectable G1 shift under hypoxia yet displayed H/N expression ratios similar to those seen in HeLa cells (−2.4-fold).

In order to further confirm the cell cycle independence of the down-regulation of RAD51 gene expression by hypoxia, specific populations of G1-, S-, and G2/M-phase cells were isolated from both normoxic and hypoxic A549 cells, followed by analysis of RAD51 mRNA expression by semiquantitative RT-PCR. Cell cycle phase-specific cell populations were obtained by DNA staining of cells with the vital fluorochrome Hoechst 33342, followed by flow cytometric analysis and cell sorting. This technique has recently been reported to facilitate the recovery of intact mRNA from viable cells in distinct phases of the cell cycle (20). As shown in Fig. 5C, substantial decreases in RAD51 mRNA expression were observed in both G1- and S-phase cells after a 48-h exposure to hypoxia (lanes 4 and 6, respectively), with H/N ratios of −3.2 and −2.7, respectively. These H/N ratios were similar in magnitude to those observed in unsorted hypoxic cells processed in parallel (Fig. 5C, lanes 1 and 2), which displayed H/N ratios of approximately −3.4. VEGF expression is shown for comparison, to verify physiologically relevant states of hypoxia in the individual normoxic and hypoxic G1- and S-phase cell populations, and the expression of β-actin is also presented to confirm equal sample loading. These data provide direct evidence that the down-regulation of RAD51 gene expression by hypoxia occurs in both the G1 and S phases of the cell cycle and thus cannot be attributed to changes in the cell cycle profile.

A lack of correlation between the cell cycle phase and decreased Rad51 expression was also observed during the post-hypoxia reoxygenation period, based on propidium iodide (PI) analyses of DNA content and on the technique of bromodeoxyuridine (BrdU) incorporation to assess rates of S-phase proliferation. As shown in Fig. 5D, marked increases in the proportions of A549 cells in the S and G2/M phases were observed 24 h posthypoxia (58 and 12%, respectively), yet Rad51 levels in these cells were persistently decreased. In addition, cells were clearly entering S phase and undergoing DNA replication in the early posthypoxic period, when Rad51 expression remained at its lowest levels. For example, S-phase proliferation rates at 3 and 24 h posthypoxia were 25 and 46%, respectively (Fig. 5E). Collectively, these data demonstrate that posthypoxic A549 cells resume S-phase replication and enter the G2/M phase of the cell cycle yet still show substantial decreases in Rad51 protein expression, indicating further that the down-regulation of Rad51 is not governed by the proportion of cells in G1 or S phase and demonstrating an uncoupling between cell proliferation and DNA repair gene expression. Taken together, these findings provide strong evidence that decreased RAD51 gene expression is more hypoxia specific than cell cycle phase dependent.

Reduced expression of Rad51 is not associated with HIF expression. The HIF family of proteins has been shown to regulate the expression of numerous genes that play roles in angiogenesis, glycolysis, invasion, and metastasis in response to hypoxia (17). It has also been demonstrated recently that HIF-1α can induce the expression of transcriptional repressors such as DEC1, a gene revealed by our microarray analysis to be decreased in RAD51 expression induced by hypoxia (Fig. 1B). Hence, we tested whether the observed decreases in RAD51 expression induced by hypoxia might be mediated by HIF-1α or HIF-2α. HIF proteins are highly unstable under normal oxygen tensions, because both HIF-1α and HIF-2α are ubiquitinated through the interaction with the von Hippel-Lindau tumor suppressor protein (pVHL) and subsequently degraded by the 26S proteasome under normoxic conditions (19). The pVHL-deficient cell line 786-0 specifically overexpresses HIF-2α and consequently overexpresses HIF-2α downstream target genes, including Glut1 and VEGF (24). Expression of the VHL cDNA in these cells restores the normoxic regulation of HIF-2α. We thus examined the expression of Rad51 protein in 786-0 cells complemented either with the VHL cDNA or with an empty vector. As shown in Fig. 6A,
the expression of Rad51 was not affected by VHL status or HIF-2α expression. The expression of VHL and Glut-1 proteins are shown to confirm VHL status and a constitutively hypoxic phenotype, respectively, in these two cell lines. Northern blotting also revealed no differences in steady-state RAD51 mRNA levels between the VHL mutant and wild-type cells (data not shown). Interestingly, exposure of 786-0 cells expressing either wild-type or mutant VHL to hypoxia resulted in similar decreases in Rad51 expression (Fig. 6B). Taken together, these data suggest that the hypoxia-mediated down-regulation of Rad51 expression occurs independently of HIF-2α. It also suggests that the down-regulation does not require the expression of HIF-1α, since 786-0 cells lack HIF-1α expression (19). As an alternative approach to assessing the role of HIF-1α in the regulation of Rad51 expression by hypoxia, we transiently overexpressed a full-length HIF-1α cDNA in normoxic HeLa cells. Figure 6C demonstrates that exogenous overexpression of HIF-1α was not associated with decreased expression of Rad51. Collectively, these data suggest that hypoxia-induced decreases in Rad51 expression are not mediated by HIF-dependent pathways.

Decreased HR in hypoxic and posthypoxic cells. We next sought to determine whether hypoxia-induced reductions in Rad51 protein expression were associated with functional decreases in HR. We utilized a shuttle vector recombination assay involving the transient transfection of a plasmid containing a mutated reporter gene along with a wild-type donor fragment into MCF-7 cells exposed to normoxia or hypoxia in order to assess frequencies of HR. Plasmid pSupFG1/G144C, containing a mutated version of the supFG1 amber suppressor tRNA gene, supFG1-144, was used as the recombination substrate. A homologous fragment containing the wild-type supFG1 gene was used as a donor for recombination. The function of the supFG1 gene can be assayed by recovery of the episomal shuttle vector plasmid from the MCF-7 cells, with subsequent transformation into indicator bacteria carrying an amber stop codon in the lacZ gene. In this manner, supFG1-144 reports recombination events that cause the gene to revert to the functional sequence as detected in a blue/white colony screen (5). A schematic of this reporter system is presented in Fig. 7A for reference. Important features of this assay are the facts that vector replication and recombination are independent of the cell cycle and that previous studies in our lab have provided evidence that recombination events in this assay are dependent on Rad51 (8).

As shown in Fig. 7B, cotransfection of the shuttle vector and wild-type fragment into MCF-7 cells immediately prior to hypoxic exposure (for 48 h), followed by plasmid recovery 24 h posthypoxia, revealed a ~3-fold decrease in recombination frequency in hypoxic cells relative to that observed in MCF-7 cells incubated under normoxia for the same total time. Intriguingly, we observed the most substantial decreases in HR frequencies when the cells were transfected during the posthypoxic period. Figure 7C shows that transfection of the shuttle vector and donor fragment into MCF-7 cells immediately following the hypoxic (48-h) period resulted in an almost five-fold decrease in HR, again relative to the frequency observed in cells maintained under normoxic conditions throughout. Thus, the observed decreases in HR parallel the changes in expression of Rad51 protein in hypoxia and posthypoxia. Taken together, these data provide evidence that the decreased expression of Rad51 caused by hypoxia is associated with a substantial and prolonged reduction in the capacity of cells to carry out HR both during and after hypoxia, for as long as 48 h following hypoxic exposure.

Inverse association between hypoxia and Rad51 expression in cervical and prostate cancer xenografts. We next sought to determine whether hypoxia-induced decreases in Rad51 expression could be detected in vivo in the tumor microenvironment. To this end, human prostate and cervical cancer xenografts in mice were generated from the PC3, Me180, and SiHa6 cell lines. These cell lines had all exhibited hypoxia-induced decreases in Rad51 expression in culture (Fig. 2C and 3B; also data not shown). Histological sections from the re-
resulting tumors were analyzed by immunofluorescence for Rad51 expression and staining with the hypoxia marker EF5. The binding of EF5 to cellular macromolecules occurs as a result of hypoxia-dependent bioreduction by cellular nitroreductases and thus can be used to detect hypoxia in solid tumors (10). As shown in Fig. 8, we detected an inverse association between Rad51 protein expression and EF5 staining in xenografts from all three cell lines. All tumors were found to contain hypoxic areas, as measured by an Eppendorf pO2 probe prior to removal for immunostaining (data not shown) (9). This inverse association is particularly striking along the upper border of the section from a Me180 cervical xenograft shown in Fig. 8A, in which Rad51 expression is substantially decreased within a region of strong EF5 staining. In the merged image, the overlay of Rad51 expression and EF5 binding reveals minimal overlap in the majority of the section (Fig. 8A). Figure 8B and C also demonstrate consistent inverse associations between Rad51 expression and EF5 staining in PC3 and SiHa6 xenografts, respectively. Collectively, these findings demonstrate that hypoxia within the tumor microenvironment is associated with decreased Rad51 expression; thus, they extend our in vitro observations to the in vivo situation in tumors.

DISCUSSION

In the present study, we have demonstrated that hypoxia specifically down-regulates the expression of RAD51, a critical mediator of HR, both in vitro in cell culture and in vivo within the tumor microenvironment. Substantial decreases in Rad51 expression both during and after hypoxic exposure were observed in a wide range of cell types, and the mechanism of regulation appears to be independent of cell cycle profile and HIF expression. Analyses of protein stability, mRNA stability, and promoter activity indicate that hypoxia regulates RAD51...
gene expression via a mechanism involving transcriptional repression. We detected decreased HR in cells both during and after hypoxic stress, demonstrating that the down-regulation of Rad51 expression by hypoxia has functional consequences for DNA repair. These findings were extended to the tumor microenvironment; we detected decreased expression of Rad51 in hypoxic regions of cervical and prostate tumor xenografts. Taken together, we propose a novel mechanism of genetic instability in the tumor microenvironment mediated by hypoxia-induced suppression of the HR pathway.

In a recent review regarding genetic instability and tumorigenesis, Loeb and colleagues proposed a paradigm shift in the way in which DNA repair pathways are thought to be regulated in mammalian cells (25). In the traditional view, it was thought that DNA repair genes were expressed constitutively in cells, such that they may be readily available as new DNA damage lesions arise from exogenous insults or endogenous processes such as replication errors or oxidative metabolism. Inactivation of these pathways in cancer was thought to occur primarily through genetic mutation or silencing by promoter methylation, thus resulting in an irreversible mutator phenotype. Recent studies, however, have supported the concept that genetic instability can arise from dysregulation, rather than complete inactivation, of DNA repair pathways (13). Our results are in accord with such a paradigm shift, as we detected substantial but reversible hypoxia-induced decreases in Rad51 expression that were associated with significant functional consequences with respect to recombinational repair.

The HR pathway in the maintenance of genetic stability. Despite extensive studies, there have been few reports describing mutations in the Rad51 gene in human tumors (18). However, it was recently shown that overexpression of a dominant-negative form of the Rad51 gene (dnRad51), but not a wild-type form, was associated with increased tumorigenicity in Chinese hamster ovary (CHO) cells (1), suggesting that Rad51 indeed acts as a tumor suppressor. Furthermore, recent studies have suggested that BRCA1, a well-documented tumor suppressor (41), may function specifically to promote high-fidelity HR while simultaneously suppressing the error-prone, nonhomologous end-joining (NHEJ) pathway (49). Along these lines, several reports have demonstrated up-regulated NHEJ repair activity in the context of impaired HR, and vice versa (39). Thus, the BRCA1-Rad51 pathway likely represents an axis of tumor suppression, in which genome integrity is maintained by high-fidelity HR-mediated repair. As proposed for the case of inherited BRCA1 deficiency, hypoxia-induced acquired decreases in Rad51 expression, and consequently diminished HR frequencies, thus may lead to genetic instability by shifting the balance between HR and NHEJ. We are currently investigating this possibility in further detail.

Hypoxia, DNA damage, and genetic instability. As discussed earlier, hypoxia is associated with a diverse spectrum of DNA damage and genetic aberrations. In particular, hypoxia-reoxygenation cycles are associated with oxidative stress and the production of reactive oxygen species, which are thought to induce high levels of both single-strand breaks and double-strand breaks. Studies have demonstrated that reoxygenation after a brief period of hypoxia can induce a high level of DNA damage (in the form of double-strand breaks) comparable to that observed after exposure to 4 to 5 Gy of ionizing radiation (IR) (15). In spite of this potentially large number of DNA strand breaks following hypoxic exposure, it is striking that we observed such profound decreases in Rad51 expression in the same time period, as Rad51 is a central protein in the pathway responsible for the error-free repair of such DNA lesions. In addition, studies have demonstrated that Rad51 is required for normal S-phase progression in mammalian cells, because of the role of Rad51 in resolving stalled and collapsed replication forks (36). Thus, the finding that posthypoxic cells resume DNA replication in the setting of decreased Rad51 expression suggests that hypoxia-induced down-regulation of Rad51 may have a major impact on genome integrity in the tumor microenvironment. This uncoupling of proliferation and Rad51 expression may be particularly important in regions of tumors undergoing fluctuating perfusion and consequently repeated cycles of hypoxia followed by reoxygenation. Hypoxia itself has been shown to induce an S-phase arrest which is reversible upon reoxygenation and may be associated with stalled replication forks (14, 16). In this situation, hypoxia-induced reductions in Rad51 expression would again have a major impact on the ability of tumor cells to maintain genomic integrity.

Regulation of DNA repair gene expression. Microarray data from this study have provided further evidence that the down-regulation of specific genes by hypoxia is as important as up-regulation in accurately characterizing gene expression profiles associated with hypoxia. The data presented here demonstrate that the hypoxia-induced decreases in Rad51 expression occur through a HIF-independent pathway involving transcriptional repression of the Rad51 promoter. Initial analyses of promoters from genes involved in the HR pathway have revealed a complex picture of regulatory elements, and many of these elements appear to be conserved in mice and humans (18). Interestingly, the Rad51 transcript contains an untranslated first exon (Fig. 3E), suggestive of gene regulation at the mRNA level. While the 5' regulatory region of the Rad51 gene contains a CpG-rich region and lacks a TATA box (a typical arrangement found in many housekeeping genes), recent analyses have demonstrated numerous potential regulatory elements in the core promoter region of this gene (18). In one study by Levy-Lahad et al., a single-nucleotide polymorphism at nucleotide 135 of the untranslated first exon of the Rad51 gene was associated with increased breast cancer risk in BRCA2 mutation carriers (21). These analyses strongly suggest that the expression of Rad51 may be regulated by specific promoter elements in response to various stimuli, and they represent potential sites of dysregulation in the context of tumorigenesis and the tumor microenvironment.

Implications for cancer therapy. It has been established that hypoxic cells are more resistant to IR than their well-oxygenated counterparts due to decreased potentiation of free radical damage mediated by oxygen, and numerous studies have quantitatively associated tumor oxygenation with response to radiotherapy (32). Interestingly, however, it has also been reported that cells irradiated under normoxic conditions in the period immediately following hypoxia are actually more radiosensitive than cells irradiated without such hypoxic pretreatment (50). At the time, the underlying mechanism for this sensitivity was not clear. This phenomenon was observed in numerous cell lines, including two used in the present study, HeLa and A431 cells. Interestingly, cells with inactivated HR components ex-
hibit hypersensitivity to DNA-damaging agents, including IR (38). Specifically, several studies have demonstrated an association between down-regulation of Rad51 expression and increased radiosensitivity in a number of cell types (28). We propose that the persistent posthypoxic decreases in Rad51 expression reported here may partially account for the phenomenon of posthypoxia-associated radiosensitivity. These findings suggest that gene expression changes that persist in the posthypoxic period may significantly impact the response of cancer cells to therapy. Daily fractionated radiotherapy is thought to preferentially kill oxygenated cells and promote the reoxygenation of previously hypoxic cells. Hence, the extra sensitivity of immediately posthypoxic, reoxygenated cells (perhaps due to the dynamics of *Rad51* expression and dysregulation of other DNA repair genes) may provide insight into the basis for the efficacy of fractionated radiotherapy.

Substantial evidence now exists implicating tumor hypoxia in the development of aggressive tumor phenotypes. Recent studies have further clarified this association, leading to the finding that hypoxia up-regulates numerous genes involved in invasion and metastasis (37). We and others have demonstrated that the tumor microenvironment contributes to genetic instability and tumor progression, and the data presented in this study provide a mechanistic basis for this phenomenon. Furthermore, Rad51 dysregulation may also create heterogeneity in the DNA damage response among cells within tumors, with implications for the response to cancer therapies.

ACKNOWLEDGMENTS

We thank Tom Taylor for technical expertise in the FACScan analyses, Geoffrey Lyon for assistance with tools for flow cytometry analysis, the Department of Microbial Pathogenesis for use of its BD FACScan flow cytometer, Anthony Valerio for assistance with real-time PCR assays, B. Kuba for excellent technical assistance, Greg Semenza for the pCEP-HIF-1α expression vector, William Kaelin for the pCEP-HIF-Iα expression vector, William Kaelin for the cytometer, Anthony Valerio for assistance with real-time PCR assays, Walter J. Evans, K. A. Turner, H. Krishnaswamy, J. Lane, G. Intrieri, J. S. Merkel, C. Perbost, A. Valerio, Juan, G., E. Hernando, and C. Cordón-Cardo. 2003. Separation of live cells in different phases of the cell cycle for gene expression analysis. Cytometry 49:170–175.

Hypoxia-inducible factor-1 is an intrinsic marker for hypoxia in cervical cancer xenografts. Cancer Res. 61:7394-7398.

