Spray Combustion Modeling Including Detailed Chemistry

Eva Gutheil

Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg
Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
1. REPORT DATE
22 JUN 2004

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
Spray Combustion Modeling Including Detailed Chemistry

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Universität Heidelberg Im Neuenheimer Feld 368, 69120 Heidelberg, Germany

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
33

19a. NAME OF RESPONSIBLE PERSON

Form Approved
OMB No. 0704-0188

Prepared by ANSI Z39.18
I. Why Detailed Chemistry?

II. Structures of Spray Flames in the Counterflow Configuration

III. Turbulent Spray-Flame Modeling

IV. Summary and Conclusions
Modeling of Technical Spray Flames

Detailed Chemistry

Gas Phase

Droplet Vaporization

Drop Trajectories

Separated Flow
Why Detailed Chemistry?

Detailed Chemical Reaction Mechanisms are Available for a Considerate Number of Relevant Combustion Systems (Alcanes, Alcohols, Hydrogen/Air, Hydrogen/Oxygen, …)

• Combustion of liquid fuel sprays in air (e.g. internal engine combustion, industrial furnaces, gas turbine combustors)

• Liquid oxygen in (gaseous) hydrogen (liquid rocket propulsion)

• Liquid oxygen in gaseous hydrocarbons or alcohols (green propellants)
Advantages of Using Detailed Chemistry:

- Mechanism is independent of the experimental configuration, it depends only on pressure (not for hydrogen/air or hydrogen/oxygen)
- Mechanism is the base for development of reduced mechanisms (both manually or automatically developed systems)
- Prediction of pollutants and precursors of soot formation

Disadvantages of Using Detailed Chemistry:

- Stiffness of the conservation equations
- Consume a considerable amount of computer time

Applications:

Laminar Flames: Detailed mechanisms can be implemented directly for hydrogen and small hydrocarbons and alcohols
Turbulent Flames: Detailed chemistry may be implemented through use of the flamelet model
Modeling of Laminar Spray Flames in the Counterflow Configuration

Motivation:
Investigation of laminar spray flame structures using detailed models for instance for chemical reactions

Flamelet modeling of turbulent spray diffusion flames

Properties:
- Planar or axisymmetric
- Two-dimensional
- Strained
Detailed Versus One-Step Chemistry

n-Heptane/Air Spray Flame at Atmospheric Pressure

\(a = 500/s \)

Detailed Chemistry:

- Solid Lines, Square

One-Step Chemistry:

- Dashed Lines, Triangles

⇒ **One-Step Chemistry is not Suitable to Correctly Predict Even the Outer Flame Structure**

Mathematical Model

Gas-phase with dilute spray

- Boundary layer approximation, low Mach number
- Dimensionless, steady equations
- Similarity transformation \Rightarrow 2D \rightarrow 1D equations
- Ideal gas law
- Detailed chemical reaction mechanisms.
 - H_2/O_2 (8 species and 38 elementary reactions)
 - methanol/air (23 species and 170 elementary reactions)
- Detailed transport: molecular diffusion and thermo diffusion
- Gas-phase properties between 300 and 5000 K from NASA polynomials
- Physical properties of H_2 and O_2 in the range of 80 to 300 K and 1 to 200 bar from JSME tables
Mathematical Model

Liquid phase

- Mono-, bi- and polydisperse sprays, single-component sprays
- Discrete droplet model
- Spherically symmetric droplets
- Convective droplet model for heating and vaporization (Abramzon-Sirignano model)
- Pressure and temperature dependent heat of vaporization
- Assumption of thermodynamic equilibrium:
 - Ambrose’s equation for the evaluation of the vapor pressure for methanol/air
 - Calculation of binary H₂/O₂ mixtures to obtain the gas mixture composition at the interface (replacement of Raoult’s law)
- Droplet motion (drag)
Physical Properties of Oxygen (Cryogenic, High Pressure)

H₂/Air Spray Flame at Atmospheric Pressure

$p = 1$ bar, $T_\infty = T_\infty = 300$ K, $a = 100$/s

LOX/H\textsubscript{2} Spray Flame

\begin{itemize}
 \item **bidisperse**
 \item **monodisperse**
\end{itemize}

\begin{equation*}
 p = 30 \text{ bar}, \quad \Phi = 6, \quad a = 3,000/\text{s (spray side)}, \quad R_{A,0} = 10 \ \mu\text{m}, \quad R_{B,0} = 25 \ \mu\text{m}, \quad \text{SMR}_0 = 14.3 \ \mu\text{m}
\end{equation*}

LOX/H₂ Spray Flame

\[p = 30 \text{ bar}, \ \Phi = 6, \ a = 3,000/\text{s (spray side)}, \ R_{A,0} = 10 \ \mu\text{m}, \ R_{B,0} = 25 \ \mu\text{m}, \ \text{SMR}_0 = 14.3 \ \mu\text{m} \]

LOX/H₂ Spray Flame

Chemical Reaction Rate and Vaporization Rate

\[p = 30 \text{ bar}, \ \Phi = 6, \ a = 3,000/s \text{ (spray side)}, \ R_{A,0} = 10 \ \mu m, \ R_{B,0} = 25 \ \mu m, \ SMR_0 = 14.3 \ \mu m \]

Multiple Structures of Spray Flames

Methanol/Air Spray Flame at Atmospheric Pressure

\(a = 100/s \)

Multiple Structures of Spray Flames

Methanol/Air Spray Flame at Atmospheric Pressure

\[a = 300/s \]

Methanol/Air Spray Flame at Atmospheric Pressure

\(a = 500/s \)

Multiple Structures of Spray Flames

Methanol/Air Spray Flame at Atmospheric Pressure

\[a = 300/s \]

Comparison: Gas-Sided Flame and Pure Gas Flames

Methanol/Air Spray Flame at Atmospheric Pressure

\[a = 300/s \]

Methanol/Air Spray Flame at Atmospheric Pressure

Comparison of Spray and Gas Flame

Structures of Laminar Spray Flames in the Counterflow Configuration

• The LOX/H₂ Spray Flames are very stable and persist to strain rates of 25,000/s. The non-monotonicity of the gaseous oxygen profile on the spray side stems from the competition of vaporization and combustion.

• Multiple structures of methanol/air spray flames have been found for strain rates up to 400/s. The inner structure of the gas-sided flame is the same as a pure gas flamelet with appropriate initial conditions.

• At high strain, the gas-sided flame is extinguished and the spray-sided flame moves towards the gas-side of the counterflow configuration.

Question: How does the finding affect models such as the flamelet model for turbulent spray diffusion flames?
Flamelet-Model for Turbulent Diffusion Flames

Turbulent Flame

Library of laminar flame structures in the counterflow configuration

\[\chi_1 \quad \chi_2 \quad \chi_3 \]

\[\Phi_i = \Phi_i(\xi, \chi) \]

\[\tilde{\Phi}_i = \int_0^\infty \int_0^1 \Phi_i(\xi; \chi) \tilde{P}(\xi) \tilde{P}(\chi) \, d\xi \, d\chi \]

- Gas flames
 - Strain rate
- Spray flames
 - Strain rate
 - Droplet size
 - Droplet velocity
 - Equivalence ratio
Laminar Spray Flame Structures for Use in Flamelet Models for Turbulent Spray Diffusion Flames (Methanol/Air)

Modeling of Turbulent Spray Flames

Replace by Pure Gas Flamelet

Turbulent Flow

All droplets vaporized $r_s < 1 \mu m$
Sauter Mean Radius $1 \mu m < r_s < 10 \mu m$
Sauter Mean Radius $10 \mu m < r_s < 25 \mu m$

Laminar Flow

Left Wing

Leads to Simplification of Implementing Laminar Spray Flamelets

$r_g = 10 \mu m$
$r_g = 25 \mu m$
Modeling of Turbulent LOX/H₂ Spray Flames

Micro Combustion Chamber M3 (DLR Lampoldshausen)

OH-Emission, $p = 5$ bar, $T_0 = 100$ K

Modeling of Turbulent Spray Flames

Mixing in Turbulent Sprays

- The β-function that is typically used to describe the mixing in turbulent diffusion flames does not perform well in regions where vaporization is present1.

- **Here**: Modification of the description of the β-function through use of a transport equation for the probability density function of the mixture fraction, \tilde{f}, in turbulent sprays2:

\[
\overline{\rho}_g \frac{\partial \tilde{f}}{\partial t} + \overline{\rho}_g U_j \frac{\partial \tilde{f}}{\partial x_j} + \frac{\partial (\overline{\rho}_g \overline{S}_s \tilde{f})}{\partial \zeta_c} = - \frac{\partial}{\partial \zeta_c} \left[\overline{\rho}_g \left(\frac{\partial}{\partial x_j} \left(D_M \frac{\partial \zeta_c}{\partial x_j} \right) \right) \zeta_c \right] \tilde{f}.
\]

Mixing in Turbulent Methanol/Air Sprays

Methanol Vapor Fraction and PDF of the Mixture Fraction

Probability Density Functions at Various Positions

\[P(\xi_c) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \xi_c^{\alpha - 1} (1 - \xi_c)^{\beta - 1} \]

\[P(\xi_c) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} (\xi_{c,\text{max}} - \xi_{c,\text{min}})^{1 - \alpha - \beta} (\xi_c - \xi_{c,\text{min}})^{\alpha - 1} (\xi_{c,\text{max}} - \xi_c)^{\beta - 1} \]

Comparison of Results with Presumed and Monte-Carlo PDF, and with Experiment

$x = 25 \text{ mm}$

$x = 50 \text{ mm}$

Summary and Conclusions

- LOX/H₂ spray flames in the counter-flow configuration have been studied, and the gaseous oxygen profile shows a non-monotonic behavior because of the high reactivity of the system. The flames persist to strain rates up to 25,000/s, and extinction has not yet been found.

- Multiple structures of laminar methanol/air counter-flowing spray flames have been identified at low strain rates up to 400/s on the spray side of the configuration for the present conditions. The gas-sided spray flame shows the same inner structure as a pure gas flamelet with appropriate boundary conditions, and this simplifies the implementation of the flamelet model for turbulent spray diffusion flames.

- The assumed β-function for the turbulent mixing in spray flames is poor in regions where vaporization exists, and it has been replaced by a PDF transport equation for the mixture fraction. A modified β-function is suitable to predict the shape of the PDF of the mixture fraction.
Future Research

- Extension of the model to unsteady flamelets
- Application of the PDF method to turbulent spray flame simulations
- Extension to other liquids