Physical and Bio-Optical Processes in the Gulf of Mexico - Linking Real-Time Circulation Models and Satellite Bio-Optical and SST Properties

4. TITLE AND SUBTITLE

Physical and Bio-Optical Processes in the Gulf of Mexico - Linking Real-Time Circulation Models and Satellite Bio-Optical and SST Properties

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Research Laboratory
Oceanography Division
Stennis Space Center, MS 39529-5004

8. PERFORMING ORGANIZATION REPORT NUMBER

NRL/PP/7330--05-5226

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217-5660

10. SPONSOR/MONITOR'S ACRONYM(S)

ONR

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release, distribution is unlimited.

14. ABSTRACT

Ocean circulation is shown to influence the bio-optical properties in open and coastal waters in the Gulf of Mexico. 3-dimensional physical ocean properties of temperature, salinity, and currents determined from the Navy Coastal Ocean Model (NCOM) are being combined with daily "latest pixel composite" satellite properties (phytoplankton, CDOM and detritus absorption and backscattering and SST). The coupling of these data sources provides supportive evidence of the degree which physical processes influence bio-optical processes in the surface ocean. NCOM assimilates daily SST along with synthetic temperature and salinity profiles from MODAS and is forced by surface COAMPS winds. Ocean color and SST from SeaWIFS and MODIS (Terra aqua) provide daily real-time observations.

We demonstrate the response of the Mississippi River plume (observed through bio-optical signatures), to coastal advection and eddy circulation. We observe that divergent and convergent regions in the model show a strong bio-optical response (growth and decay of phytoplankton) in the imagery. Furthermore, particle tracking in the model is used to follow different river discharges and track the corresponding bio-optical response in the imagery.

Using effective methods, these combined data sources provide new tools for coastal managers in assessing and predicting HABS, hypoxia and freshwater impacts.

15. SUBJECT TERMS

MODAS, bio-optical, pixel

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>REPORT</th>
<th>ABSTRACT</th>
<th>THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT

UL

18. NUMBER OF PAGES

6

19. NAME OF RESPONSIBLE PERSON

Robert Arnone

20. TELEPHONE NUMBER (Include area code)

228-688-5268
Title of Paper or Presentation

Author(s) Name(s) (First, MI, Last), Code, Affiliation if not NRL

Robert A Arnone, Arthur R. Parsons, Dong Shan Ko, Brandon J Casey, Sherwin Ladner, Ruth H. Preller, C. M. Hall

It is intended to offer this paper to the 8th Int. Conference on Remote Sensing for Marine & Coastal Environments (Name of Conference)

17-MAY - 19-MAY-2005, Halifax, Canada, Unclassified (Date, Place and Classification of Conference)

and/or for publication in 8th Int. Conference on Remote Sensing for Marine & Coastal Environments (Name and Classification of Publication) (Name of Publisher)

After presentation or publication, pertinent publication/presentation data will be entered in the publications data base, in accordance with reference (a).

It is the opinion of the author that the subject paper (is ______) (is not X) classified, in accordance with reference (b).

This paper does not violate any disclosure of trade secrets or suggestions of outside individuals or concerns which have been communicated to the Laboratory in confidence. This paper (does ____) (does not X) contain any militarily critical technology.

This subject paper (has _____) (has never X) been incorporated in an official NRL Report.

Robert A Arnone, 7330

Name and Code (Principal Author)

5. ROUTING/APPROVAL

<table>
<thead>
<tr>
<th>CODE</th>
<th>SIGNATURE</th>
<th>DATE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arnone</td>
<td></td>
<td></td>
<td>Need by 16 May 05</td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td>Publicly accessible sources used for this publication</td>
</tr>
<tr>
<td>Robert A Arnone, 7330</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Division Head</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruth H. Preller, 7330</td>
<td></td>
<td></td>
<td>1. Release of this paper is approved</td>
</tr>
<tr>
<td>Security, Code</td>
<td></td>
<td></td>
<td>2. To the best knowledge of this Division, the subject matter of this paper (has _____) (has never X) been classified.</td>
</tr>
<tr>
<td>7030.1</td>
<td></td>
<td></td>
<td>3. Paper or abstract was released.</td>
</tr>
<tr>
<td>Office of Counsel, Code</td>
<td></td>
<td></td>
<td>4. A copy is filed in this office.</td>
</tr>
<tr>
<td>1008.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADOR/Director NCST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.O. Hartwig, 7000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Affairs (Unclassified/Unlimited Only), Code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7030.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Division, Code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author, Code</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HQ-NRL 5511/8 (Rev. 12-98) (e) THIS FORM CANCELS AND SUPERSEDES ALL PREVIOUS VERSIONS
A - Approved for public release, distribution is unlimited.

B - Distribution authorized to U.S. Government agencies only (check reason below):
 - Foreign Government Information
 - Contractor Performance Evaluation
 - Critical Technology
 - Premature Dissemination
 - Test and Evaluation
 - Software Documentation
 - Cite "Specific Authority ____________________"

 Date statement applied ____________
 Other requests for this document shall be referred to ____________________
 (Insert Controlling DOD Office*)

C - Distribution authorized to U.S. Government agencies and their contractors (check reason below):
 - Foreign Government Information
 - Software Documentation
 - Administrative/Operational Use
 - Critical Technology
 - Cite "Specific Authority ____________________"

 Date statement applied ____________
 Other requests for this document shall be referred to ____________________
 (Insert Controlling DOD Office*)

D - Distribution authorized to DOD and DOD contractors only (check reason below):
 - Foreign Government Information
 - Critical Technology
 - Software Documentation
 - Administrative/Operational Use
 - Cite "Specific Authority ____________________"

 Date statement applied ____________
 Other requests for this document shall be referred to ____________________
 (Insert Controlling DOD Office*)

E - Distribution authorized to DOD components only (check reason below):
 - Proprietary Information
 - Premature Dissemination
 - Foreign Government Information
 - Software Documentation
 - Administrative/Operational Use
 - Contractor Performance Evaluation
 - Cite "Specific Authority ____________________"

 Date statement applied ____________
 Other requests for this document shall be referred to ____________________
 (Insert Controlling DOD Office*)

F - Further dissemination only as directed by ____________________

 Date statement applied ____________ or higher DOD authority ____________
 (Insert Controlling DOD Office*)

G - Distribution authorized to U.S. Government agencies and private individuals or enterprises eligible to obtain export-controlled technical data in accordance with regulations implementing 10 U.S.C. 140c.

 Date statement applied ____________
 Other requests for this document shall be referred to ____________________
 (Insert Controlling DOD Office*)

*For NRL publications, this is usually the Commanding Officer, Naval Research Laboratory, Washington, DC 20375-5320

7. OTHER LIMITATION

 Classification ____________ NOFORN ____________ DTIC exempt (explain) ____________

 Classification Review (initial/Date) ____________________
 Substantive changes made in this document after approval by Classification Review and Public Release invalidate these reviews. Therefore, if any substantive changes are made by the author, Technical Information, or anyone else, the document must be returned for another Classification Review and Publication Release.

8. INSTRUCTIONS

 Author completes and submits this form with the manuscript via line channels to the division head for review and approval according to the routing in Section 4.

 1. NRL Reports..
 - Submit the diskette (if available), manuscript, typed double-spaced, complete with tables, illustrations, references, draft SF 298, and proposed distribution list.

 2. NRL Memorandum Reports..
 - Submit a copy of the original, typed manuscript complete with tables, illustrations, references, draft SF 298, and proposed distribution list.

 3. NRL Publications or other books, brochures, pamphlets..
 - Handled on a per case basis by Site Technical Information Office, proceedings, or any other printed publications.

HQ-NRL 5219/1 (Rev. 5-97) (e) (Back)
PHYSICAL AND BIO-OPTICAL PROCESSES IN THE GULF OF MEXICO – LINKING REAL-TIME CIRCULATION MODELS AND SATELLITE BIO-OPTICAL AND SST PROPERTIES*

R. A. Arnone¹, A. R. Parsons⁵, D. S. Ko¹, B. Casey², S. Ladner², R. H. Preller¹, C. Hall³

¹. Naval Research Laboratory, Oceanography Division Code 7300, SSC. MS
². Planning Systems Incorporated, SSC, MS
³. Science Applications Directorate, NASA, SSC, MS

ABSTRACT

Ocean circulation is shown to influence the bio-optical properties in open and coastal waters in the Gulf of Mexico. Three dimensional physical ocean properties of temperature, salinity, and currents determined from the Navy Coastal Ocean Model (NCOM) are being combined with daily “latest pixel composite” satellite properties (phytoplankton, CDOM and detritus absorption and backscattering and SST). The coupling of these data sources provides supportive evidence of the degree which physical processes influence bio-optical processes in the surface ocean. NCOM assimilates daily SST along with synthetic temperature and salinity profiles from MODAS and is forced by surface COAMPS winds. Ocean color and SST from SeaWIFS and MODIS (Terra and Aqua) provide daily real-time observations. We demonstrate the response of the Mississippi River plume (observed through bio-optical signatures), to coastal advection and eddy circulation. We observe that divergent and convergent regions in the model show a strong bio-optical response (growth and decay of phytoplankton) in the imagery. Furthermore, particle tracking in the model is used to follow different river discharges and track the corresponding bio-optical response in the imagery. The combined model and imagery analyses provide new methods to extend the limitations of models and imagery when analyzed individually. These include model validation of ocean features and extending the surface satellite properties to include subsurface processes. Lastly, we applied time inversion of particle tracking from the models to show the source waters where satellite observed phytoplankton blooms originated.

Using effective methods, these combined data sources provide new tools for coastal managers in assessing and predicting HABS, hypoxia and freshwaters impacts

1.0 INTRODUCTION:

Monitoring the ocean conditions on a real-time basis is becoming a reality as a result of the increased number of satellite data products and the ocean information become available from numerical models. Similar to what occurred within the weather forecast systems in the 1950’s, the ability to ocean forecast and monitor is occurring with the research and being transitioned to the operational community. This capability is expanding as a result of our ability to fuse and combine these data sets together and provide increased awareness of how the ocean is responding to the physical and biological processes.

Increased satellite capability from SeaWIFS, MODIS (AQUA, and TERRA) and AVHRR satellite provide coverage of both coastal and open ocean conditions for monitoring the bio-optical properties and the SST. These satellites provide near real-time coverage of quantitative ocean properties based on the inter-calibration of sensors and algorithms. However, these sensors are still remain limited by cloud cover and inability to completely understand the ocean processes.

Increased capability with numerical models at global and regional scales are available to define the nowcast and forecast of mesoscale ocean features and processes. These models have expanded to subnesting of models which can accurately define finer scales coastal processes well beyond the spatial and temporal scales of present satellite sensing tools.

The combined remote sensing and numerical models provide enhanced understanding of the ocean processes and provides a “window” toward the future capability for monitoring and forecasting ocean conditions. To a certain extent, our ability exists “now” for defining ocean conditions at regional scales. Remote sensing and numerical models work together to provide the character of the ocean. The limitations of the satellite coverage are mitigated by the increased temporal coverage from numerical models. Similarly, the validation and confidence of the model is enforced by similarities with satellite products. Correspondingly, the linkages of the satellite bio-optical processes as described by satellite products, can be better defined by how the physical circulation provided by models. The fusion of these data sets provide for the first time the ability to define how the physical ocean properties can control the biological, geological and optical processes in the ocean.

Our objective is to define how biological, optical and SST properties defined by satellites in the Gulf of Mexico are partially controlled by the physical circulation as defined by numerical models. We will provide example of the time series of these fused data sets to demonstrate the enhanced capability for monitoring the ocean processes.

2.0 SATELLITE DATA

The examples used will be from MODIS Terra and Aqua data collected and processed in near realtime at 1 km resolution (Arnone and Parsons.) Currently, there are approximately 2 daytime passed per day at ~0930 and 1430 from Terra and Aqua, and 2 night time passes. These data are processed using the NRL, Automated Processing System (APS) software which is an extension of the NASA – Goddard SeaDAS software. The data are automatically calibrated, atmospheric corrected and in-water optical products of the inherent optical properties using the quasi analytical algorithms (QAA) and chlorophyll (OC3) and sea surface temperature products are produced. (Lee et al. 2003, Arnone and Parsons 2004). These products are registered to a Mercator projection. The IOP products include 1) backscatter at 550 nm provides estimated of the number of particulate scattering from both the suspended inorganic and organic (phytoplankton) 2) total absorption coefficient at 443 nm which defines all absorption components such as phytoplankton (aphi), detritus (adet) and colored dissolved organic matter (CDOM).

A seven day latest pixel composite image is created for each day to help remove cloud cover and bad pixel coverage. The most recent valid pixel is used for each day which extend backward for 7 day. Pixels that are invalid represent no coverage for the last 7 days. This technique proved to provide the best image for a given day and can be used to characterize the ocean processes and mesoscale features.

Figure 1: Example of the seven day latest pixel compositing method for removal of clouds and defining mesoscale ocean features

3.0 NUMERICAL MODEL – NAVY COASTAL OCEAN MODEL

Satellite ocean properties are combined with surface currents from the Naval Coastal Ocean Model (NCOM) (Martin, 2000) to characterize how the physical circulation influences the chlorophyll signatures observed. Ocean models also have advanced significantly within the last five years and provide methods to understand a variety of coastal processes at different resolutions. The Intra-America Seas NCOM coastal model uses a horizontal grid resolution of 1/24 degree (~6 km) and 41 vertical sigma-z levels. The 3-hourly atmospheric heat fluxes, solar radiation, wind stresses, and surface pressure fields generated by the U.S. Navy’s mesoscale atmospheric model, the Navy Coupled Ocean Atmosphere Prediction Systems (COAMPS®), drive the system. Open boundary conditions, including sea surface elevation, transport, temperature, salinity and currents, are provided by the NRL-SSC 1/8-degree Global NCOM model. The monthly freshwater discharge from 53 rivers is included in NCOM. The nowcast and predicted variables include a time series of sea surface height, temperature, salinity, and currents in four dimensions that are combined with real-time satellite image properties of the physical and bio-optical properties (Ko et al., 2003).

Figure 2: The fusing of the NCOM model with the satellite optical properties are illustrated for a single day. The NCOM surface currents, sea surface heights and the surface salinity are overlaid with the MODIS latest pixel composite of the chlorophyll. Note locations of A) Loop current B) spin off eddy C) clouds

4.0 RESULTS
A sequence of model and remote sensing products from July 1 through August 17 2003 illustrate the response of the chlorophyll to the separate of the loop current from a warm core eddy. The ocean color imagery shows variability of the patches of the surface chlorophyll. With the overlay of the surface currents from NCOM, the location of the Loop current and the development of a warm core eddy (b) suggest that the chlorophyll bloom is responding the divergence of the current field. Also shown in the sequence are the changes in the Mississippi River Plume dispersion along the Gulf Coast as the warm core eddy interacts with the coast. The influence of offshore mesoscale eddies on coastal regions is illustrated in the SeaWiFS image for Dec 18, 2003 Figure 4. The MS Plume is advected to the west to the south of the delta by a cyclonic eddy (a) North of the delta, the coastal waters are advected eastward by the surface currents. The surface currents clearly are linked to the observed changes in the surface chlorophyll.

Figure 3 – Illustrates the response of the satellite biological properties in response to the mesoscale ocean features. A) Loop current b) warm core eddy c) high chlorophyll in response the surface divergence.

Figure 4- The SeaWIFS chlorophyll field and NCOM model are used to illustrate how coastal currents help define the chlorophyll distribution in coastal areas. The SSH are shown in the contours and the white and red dots represent particle that were seeded in the model.

5.0 SUMMARY

The fusing of satellite biological and SST products with numerical model surface circulation provides new understanding of ocean processes. The large-scale mesoscale rings and eddies play key roles in the locations of biological blooms. Additionally, these mesoscale features strongly influence the coastal biological and optical conditions. The locations of features in satellite images can be explained by understanding the physical circulation processes.

The results presented illustrate that the models provide reasonable expectations of the physical oceanography and can be qualitatively validated using the satellite surface properties.

The fusing of these remote sensing and modeling data products provides a synergetic approach toward characterizing the ocean weather. Future developments in ocean forecasting and monitoring coastal conditions will require using these extensive data sets for assimilation.

6.0 REFERENCES

